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Abstract. Granularity of knowledge attracted attention of many researchers re-
cently. This paper concerns this issue from the rough set perspective. Granularity
is inherently connected with foundation of rough set theory. The concept of the
rough set hinges on classification of objects of interest into similarity classes, which
form elementary building blocks (atoms, granules) of knowledge. These granules
are employed to define basic concepts of the theory. In the paper basic concepts of
rough set theory will be defined and their granular structure will be pointed out.
Next the consequences of granularity of knowledge for reasoning about imprecise
concepts will be discussed. In particular the relationship between some ideas of
Lukasiewicz’s multi-valued logic, Bayes’ Theorem and rough sets will be pointed
out.

1 Introduction

This paper is an extended version of [15].

Information (knowledge) granulation, discussed recently by Prof. Zadeh
[27, 28, 29] seems to be a very important issue for computing science, logic,
philosophy and others.

In this note we are going to discuss some problems connected with granu-
larity of knowledge in the context of rough sets. First, discussion of granula-
tion of knowledge in connection with rough and fuzzy sets has been presented
by Dubois and Prade in [8]. Recently, an interesting study of information
granulation in the framework of rough sets can be found in Polkowski and
Skowron [16] and Skowron and Stepaniuk [20].

In rough set theory we assume that with every object some information
is associated, and objects can be "seen” through the accessible information
only. Hence, object with the same information cannot be discerned and ap-
pear as the same. This results in, that indiscernible objects of the universe
form clusters of indistinguishable objects (granules, atoms, etc.). Thus from
the rough set view the granularity of knowledge is due to the indiscernibility
of objects caused by lack of sufficient information about them. Consequently
granularity and indiscerniblity are strictly connected and the concept of in-
discernibility seems to be prior to granularity.
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Current state of rough set theory and its application can be found in [19].

Indiscernibility attracted attention of philosophers for a long time and its
first formulation can be attributed to Leibniz (cf. Forrest [9]), and is known
as the principle of "the identity of indiscernibles”. The principle says that
not two objects have exactly the same properties, or in other words if all
properties of objects z and y are the same then x and y are identical.

But what are ”properties of objects”? and what does it mean ”all prop-
erties”? A lot of philosophical discussions have been devoted to answer these
questions (cf. e.g., Black [3], Forrest [9]), but we will refrain here from philo-
sophical debate. Let us observe only that Leibniz approach to indiscernibility
identifies indiscernibility with identity. The later is obviously an equivalence
relation, i.e., it leads to partition of the universe into equivalence classes
(granules) of objects which are indistinguishable in view of the assumed prop-
erties. Thus in the rough set approach granulation is a consequence of the
Leibniz principle.

It is worthwhile to mention that indiscernibility can be also viewed in a
wider context, as pointed out by Williamson [25]: ”Intelligent life requires
the ability discriminate, but not with unlimited precision”. This is a very
interesting issue however it lays outside the scope of this paper.

In rough set theory we assume empiristic approach, i.e., we suppose that
properties are simply empirical data which can be obtained as a result of
measurements, observations, computations, etc. and are expressed by values
of a fixed, finite set of attributes, e.g., properties are attribute-value pairs,
like (size, small), (color, red) etc. The idea could be also expressed in more
general terms assuming as a starting point not a set of specific attributes but
abstract equivalence relation, however, the assumed approach seems more
intuitive.

Equivalence relation is the simplest formalization of the indiscernibility
relation and is sufficient for many applications. However, more interesting
seems to assume that the indiscernibility relation is formalized as a tolerance
relation, i.e., transitivity of indiscernibilty is denied in this case, for, if x is
indiscernible from y and y is indiscernible from z then not necessarily x is
indiscernible from z. Many authors have proposed tolerance relation as a ba-
sis for rough set theory (cf. e.g., Skowron and Stepaniuk [19]). This causes,
however, some mathematical complications as well philosophical questions,
because it leads to vague granules, i.e., granules without sharp boundaries,
closely related to the boundary-line approach to vagueness (cf. e.g., Chatte-
brjee [7], Sorensen [22]).

Besides, instead of tolerance relation also more sophisticated mathemati-
cal models of indiscernibility, as a basis for rough set theory, have been pro-
posed (cf. e.g., Krawiec, Slowinski, and Vanderpooten [11], Yao and Wong,
[26], Ziarko [30]). Interested readers are advised to consult the mentioned
above references, but for the sake of simplicity we will adhere in this paper
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to the equivalence relation as a mathematical formalization of the indiscerni-
bility relation.

Since granules of knowledge can be considered as a basic building blocks
of knowledge about the universe it seems that natural mathematical model
for granulated knowledge can be based on ideas similar to that used in mere-
ology proposed by Lesniewski [12], in which part of is the basic relation of this
theory. Axioms of mereology, in particular in a version proposed by Suppes
[23], seem to be natural candidate for this purpose. Moreover, rough mereol-
ogy, extension of classical mereology proposed by Polkowski and Skowron in
[17, 18], seems to be exceptionally suited to analyze granules of knowledge
with not sharp boundaries (cf. Polkowski and Skowron [16], Skowron and
Stepaniuk [20]).

It also worthwhile to mention in this context that granularity of knowledge
has been also pursued in quantum physics. Its relation to fuzzy sets and rough
sets has been first mentioned by Cattaneo [5, 6].

Recently a very interesting study of rough sets, granularity and foun-
dations of mathematics and physics has been done by Apostoli and Kanda
[2].

Besides, it is also interesting to observe that computations and measure-
ments are very good examples of granularity of information, for they are based
in fact not on real numbers but on intervals, determined by the accuracy of
computation or measurement.

2 Basic Philosophy of Rough Sets

The rough set philosophy is founded on the assumption that with every object
of the universe of discourse we associate some information (data, knowledge).
E.g., if objects are patients suffering from a certain disease, symptoms of the
disease form information about patients. Objects characterized by the same
information are indiscernible (similar) in view of the available information
about them. The indiscernibility relation generated in this way is the math-
ematical basis of rough set theory.

Any set of all indiscernible (similar) objects is called an elementary con-
cepts, and forms a basic granule (atom) of knowledge about the universe. Any
union of some elementary concepts is referred to as crisp (precise) concept —
otherwise the set is rough (imprecise, vague).

Consequently each rough concept has boundary-line cases, i.e., objects
which cannot be with certainty classified neither as members of the con-
cept nor of its complement. Obviously crisp concepts have no boundary-line
elements at all. That means that boundary-line cases cannot be properly
classified by employing the available knowledge.

Thus, the assumption that objects can be ”seen” only through the infor-
mation available about them leads to the view that knowledge has granular
structure. As a consequence vague concepts, in contrast to precise concepts,
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cannot be characterized in terms of elementary concepts. Therefore in the
proposed approach we assume that any vague concept is replaced by a pair
of precise concepts — called the lower and the upper approximation of the
vague concept. The lower approximation consists of all elementary concepts
which surely are included in the concept and the upper approximation con-
tains all elementary concepts which possibly are included in the concept.
Obviously, the difference between the upper and the lower approximation
constitutes the boundary region of the vague concept. Approximations are
two basic operations in rough set theory.

3 Indiscernibility and Granularity

As mentioned in the introduction, the starting point of rough set theory
is the indiscernibility relation, generated by information about objects of
interest. The indiscernibility relation is intended to express the fact that due
to the lack of knowledge we are unable to discern some objects employing
the available information. That means that, in general, we are unable to deal
with single objects but we have to consider clusters of indiscernible objects,
as fundamental concepts of knowledge.

Now we present above considerations more formally.

Suppose we are given two finite, non-empty sets U and A, where U is the
universe, and A — a set attributes. With every attribute a € A we associate a
set V,, of its values, called the domain of a. The pair S = (U, A) will be called
an information system. Any subset B of A determines a binary relation Ig on
U, which will be called an indiscernibility relation, and is defined as follows:

xIpy if and only if a(x) = a(y) for every a € A,
where a(x) denotes the value of attribute a for element x.

Obviously I is an equivalence relation. The family of all equivalence classes
of Ip, i.e., the partition determined by B, will be denoted by U/Ig, or sim-
ply U/B; an equivalence class of Ig, i.e., the block of the partition U/B,
containing  will be denoted by B(x).

If (z,y) belongs to Iz we will say that = and y are B-indiscernible. Equiv-
alence classes of the relation Iz (or blocks of the partition U/B) are referred
to as B-elementary concepts or B-granules.

In the rough set approach the elementary concepts are the basic building
blocks (concepts) of our knowledge about reality.

4 Approximations and Granularity

Now the indiscernibility relation will be used to define basic operations in
rough set theory, which are defined as follows:

B.(X) = | J{B() : B(x) € X},
xeU
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B*(X) = [J{B(x): Bx)n X # 0},
xzeU
assigning to every X C U two sets B.(X) and B*(X) called the B-lower and
the B-upper approximation of X, respectively.

Hence, the B-lower approximation of a concept is the union of all B-
granules that are included in the concept, whereas the B-upper approximation
of a concept is the union of all B-granules that have a nonempty intersection
with the concept. The set

BNp(X) = B*(X) - B.(X)

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, i.e., BNp(X) =0, then X
is crisp (exact) with respect to B; in the opposite case, i.e., if BNg(X) # 0,
X is referred to as rough (inexact) with respect to B.

Rough sets can be also defined using a rough membership function, defined
as

1B (2) = card(g(a@) nXx)
card(B(zx))

Obviously
p%(x) € [0,1].

Value of the membership function p% (z) is kind of conditional probability,
and can be interpreted as a degree of certainty to which x belongs to X (or
1 — % (z), as a degree of uncertainty).

The rough membership function, can be used to define approximations
and the boundary region of a set, as shown below:

B(X)={reU: pX(z) =1},
B*(X) ={z € U: pk(x) >0},
BNp(X)={zcU:0< ¥ (x)<1}.

The rough membership function can be generalized as follows (cf. Polkowski
and Skowron [17]):
card(X NY)

card X

where X, Y CU, X # 0 and p(P,Y) = 1.

Function p(X,Y) is an example of a rough inclusion [14] and expresses
the degree to which X is included in Y. Obviously, if u(X,Y) = 1, then
XCv.

If X is included in a degree k we will write X Ci Y.

The rough inclusion function can be interpreted as a generalization of the
mereological relation ”part of”, and reads as ”part in a degree”.

WX, Y) =
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Employing now the rough inclusion function we can represent approxima-
tions in an uniform way:

B.(X) = [J{B() : p(B(x), X) = 1},

xzeU

B*(X) = | J{B() : u(B(z), X) > 0}.
zeU

Hence, the B-lower approximation of X consists of all B-granules included in
X, whereas the B-upper approximation of X consists of all roughly included
B-granules of X.

In this way approximations reveal granular structure of complex concepts.
Thuse granularity of knowledge is inherently incorporated in the foundations
of rough set theory.

5 Dependencies and Granularity

Another important issue in data analysis is discovering dependencies between
attributes. Intuitively, a set of attributes D depends totally on a set of at-
tributes C, denoted C' = D, if all values of attributes from D are uniquely
determined by values of attributes from C. In other words, D depends totally
on C, if there exists a functional dependency between values of D and C.

We would need also a more general concept of dependency, called a partial
dependency of attributes. Intuitively, the partial dependency means that only
some values of D are determined by values of C.

Formally dependency can be defined in the following way. Let D and C
be subsets of A.

We will say that D depends on C'in a degree k (0 < k < 1), denoted
C = D, if

card(POS¢ (D))
cardU ’

k=~(C,D) =

where
XeU/D

called a positive region of the partition U/D with respect to C, is the set of
all elements of U that can be uniquely classified to blocks of the partition
U/D, by means of C.
Obviously
_ card(Cy(X))
WOD)= >,
XeUu/D

If £k = 1 we say that D depends totally on C, and if k < 1, we say that D
depends partially (in a degree k) on C.
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The coefficient k expresses the ratio of all elements of the universe, which
can be properly classified to blocks of the partition U/D, employing attributes
C and will be called the degree of the dependency.

Obviously if D depends totally on C' then I C Ip. That means that the
partition generated by C' is finer than the partition generated by D.

Degree of dependency expresses to what extend granularity imposed by
the set of attributes D can be expressed in terms of elementary concepts
associated with C.

The function v(C, D) can be regarded as a generalization of the rough
inclusion function u(X,Y), for it expresses to what degree partition generated
by C, i.e., U/C is included in the partition generated by D, i.e., U/D.

In other words, degree of dependency between C' and D reveals to what
degree granular structure imposed by D can be expressed in terms of granular
structure associated with C.

In fact approximations and dependencies are different sides of the same
coin, and exhibit a relationship between two kinds of granular structures.

6 Decision Rules

With every dependency C' =, D we can associate a set of decision rules,
specifying decisions that should be taken when certain condition are satistied.

To express this idea more precisely we need a formal language associated
with any information system S = (U, A). The language is defined in a stan-
dard way and we omit detailed definition here, assuming that the reader is
familiar with the construction (cf. Pawlak [15]).

By &, ¥ etc. we will denote logicals formulas built from attributes, attribute-
values and logical connectives (and, or, not) in a standard way. We will denote
by ||®||s the set of all object x € U satistying ¢ and refer to as the meaning
of in S.

The expression 7g(¢) = <2rdlllls)

card(0) will denote the probability that the

formula @ is true in S.
A decision rule is an expression in the form ”if...then...”, written @ — ¥;
@ and ¥ are refered to as condition and decision of the rule respectively.
The number supps(®,¥) = card(||® A ¥||g) will be called the support of
the decision rule @ — ¥ in S and the number

supps (P, ¥)

os(®,¥) = card(U)

will be reffered to as the strenght of the decision rule @ — ¥ in S.

If supps(P,¥) # @ then the decision rule @ — ¥ will be called admissible
in S.

In what follows we will consider admissible decision rules only.

A decision rule ¢ — ¥ is true in a degree [ (0 <1 < 1) in S, if ||D||s <
1¥]]s-
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With every decision rule @ — ¥ we associate a certainty factor

card(||® AP||s)

ms (V1) = = dials)

which is the conditional probability that ¥ is true in S given @ is true in S
with the probability wg(®P).

The certainty factor of a decision rule can be understood as the degree
of truth of the decision rule or as the degree of inclusion of conditions in
decisions of the decision rule. Besides, we will also need a coverage factor [24]

card(||® AP||s)

ms(P) = = rdToTls)

which is the conditional probability that @ is true in S given ¥ is true in S
with the probability mg(¥).

The coverage factor of a decision rule can be interpreted as the degree
of truth of the inverse decision rule, or as the degree of the corresponding
inclusion.

7 Properties of Certainty and Coverage Factors

Let & — ¥ be a decision rule admissible in S. By C(¥) we denote the set of
all conditions of ¥, such that if &' € C(¥) then &' — ¥ is admissible in S,
and by D(®) we mean the set of all decisions of ¢ such that if ¥/ € D(P)
then & — ¥’ is admissible in S. Moreover we assume that all conditions
in C(¥) and all decisions in D(®) are pairwise mutually exclusive, i.e., if
P, P € O(W) then ||&' A D||s = 0 and if ¥, ¥ € D(®) then |[¥' A ¥||s = 0.
Then the following property holds:

S rs@|r) =1 1)

' eC(¥)
3 ws(@]e) =1 (2)
U'eD(d)
(@)= > ws(WP) ws(@) = Y os(P,¥) (3)
PEC (W) P'eC(¥)
(@) = > wg(@W) - ms(@)= Y os(¥,P) (4)
w'eD(P) v'eD(P)
_ ms(¥|2) - ms(P) ~0s5(9,¥)
7(5(@“?) - ZQYGC(J/) ﬂ.S(kap/) . ﬂs(gpl) - WS(W) (5)
- _ Ts(PW) - ms(¥) _ 05(2,¥)
S(W@) ZW’GD(qﬁ) 7T5(¢|!I/’) -WS(!I/’) 7TS(@) (6)
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Formulas 3) and 4) are the total probability theorems, whereas formulas 5)
and 6) are the Bayes’ theorems. The relationship between truth of implica-
tions and the Bayes’ theorem first was observed by Lukasiewicz [4, 13] (see
also [1]). The meaning of Bayes’ theorem in this case differs from that postu-
lated in statistical inference, where we assume that prior probability about
some parameters without knowledge about the data is given. The posterior
probability is computed next, which tells us what can be said about prior
probability in view of the data.

In the rough set approach the meaning of Bayes’ theorem is unlike. It
reveals some relationships between decision rules, without referring to prior
and posterior probabilities. Instead, the proposed approach connects the total
probability theorem and the Bayes, theorem with the strength of decision
rules, giving a very simple way of computing the certainty and the coverage
factors.

Thus, the proposed approach can be seen as a new model for Bayes’ the-
orem, which offers a new approach to data analysis, in particular, to inverse
decision rules and to compute their certainty factors, which can be used to
explain decisions in terms of conditions.

8 Rough Modus Ponens and Rough Modus Tollens

The above considerations can be seen as a generalization of modus ponens
and modus tollens inference rules.
Modus ponens inference rule says that:

if @ — Wistrue
and @ 18 true
then v is true

This rule can be generalized as rough modus ponens as follows. For any @ — ¥
we have

if © — W istrue with the probability

Ts(¥|P)

and @ is true with the probability
s (P)

then ¥ is true with the probability

s(¥) = queC(qx) s (¥U|P') - ms(P') = Z@’GC(W) os(®',¥)

Similarly, modus tollens inference rule

if ® — W is true
and ~ W is true
then ~ @ s true
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can be generalized as rough modus tollens as follows. For any & — ¥ we have

if @ — Wis true with the probability

Ts(¥|P)

and ¥ is true with the probability
ms(¥)

then @ 1s true with the probability

Ts(P) = ZW’GD(@) T (W) - ms (W) = ZW’GD(@) os(¥', )

Due to the Bayes’ theorem (5) and symmetry of strength of decision rules we
get

7TS(41)) = Z US(QI)?W/)'

W' eD(d)

The generalizations of both inference rules consist in replacing logical
values of truth and falsehood with their probabilities in accordance with the
total probability theorem (3),(4) and the Bayes’ theorem (5),(6).

9 Conclusions

Granularity of knowledge, information, measurements, computations etc.,
seems to be an intrinsic feature of our thinking and can be considered as a
manifestation of an old antinomy associated with continuos-discrete paradigm.

Rough set philosophy hinges on the granularity of data, which is used to
build up all its basic concepts, like approximations, dependencies, reduction
etc.

Particularly interesting in this approach seems to be the relationship be-
tween partial truth, rough mereology, Lukasiewicz’s many-valued logic and
Bayes’ theorem.
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