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Decision tables and decision spaces
Z. Pawlak1

Abstract
Abstract. In this paper an Euclidean space, called a decision space is associated with every decision
table. This can be viewed as a generalization of the indiscernibility matrix, basic tool to find reducts in
information systems. Besides, the decision space gives a clear insight in the decision structure imposed
by the decision table.

1. Introduction
This paper concerns granular structure of decision tables imposed by the indiscernibility relation on
data. With every decision rule in a decision table three coefficients are associated: the strength, the
certainty and the coverage factors of the rule. It is shown that these coefficients satisfy Bayes’
theorem and the total probability theorem. This enables us to use Bayes’ theorem to discover patterns
in data in a different way than that offered by standard Bayesian inference technique employed in
statistical reasoning. Besides, it is shown that the decision rules define a relation between condition
and decision granules, which can be represented by a flow graph. The certainty and coverage factors
determine „flow of information” in the graph, which shows clearly the relationship between condition
and decision granules determined by the decision table. The decision structure of a decision table can
be represented in a „decision space”, which is Euclidean  space, in which dimensions of the space are
determined by values of the decision attribute, points in the space are condition granules and
coordinates of the points are strengths of the corresponding rules. Distance in the decision space
between condition granules allows to determine how „distant” are decision makers in view of their
decisions. This idea can be viewed as a generalization of the indiscernibility matrix, basic tool to find
reducts in information systems. Besides, the decision space gives a clear insight in the decision
structure imposed by the decision table.

2. Information systems and decision tables
In this section we define basic concept of rough set theory, information system.

An information system is a data table, whose columns are labeled by attributes, rows are labeled by
objects of interest and entries of the table are attribute values.

Formally, an information system is a pair S = (U,A), where U and A, are non-empty finite sets called
the universe, and the set of attributes, respectively such that a:U →Va, where Va, is the set of all values
of a called the domain of a. Any subset B of A determines a binary relation I(B) on U, which will be
called an indiscernibility relation, and defined as follows: (x, y)∈I(B) if and only if a(x) = a(y) for
every a∈A, where a(x) denotes the value of attribute a for element x. Obviously I(B) is an equivalence
relation. The family of all equivalence classes of I(B), i.e., a partition determined by B, will be denoted
by U/I(B), or simply by U/B; an equivalence class of I(B), i.e., block of the partition U/B, containing x
will be denoted by B(x).

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible (indiscernible with respect to B).
Equivalence classes of the relation I(B) (or blocks of the partition U/B) are referred to as B-elementary
sets or B-granules.

If we distinguish in the information system two disjoint classes of attributes, called condition and
decision attributes, respectively, then the system will be called a decision table and will be denoted by
S = (U, C, D), where C and D are disjoint sets of condition and decision attributes, respectively and
C ∪ D = A.

C(x) and D(x) will be referred to as the condition class and the decision class induced by x,
respectively.
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Thus the decision table describes decisions (actions, results etc.) determined, when some conditions
are satisfied. In other words each row of the decision table specifies a decision rule which determines
decisions in terms of conditions.

An example of a simple decision table is shown below.

decision
rule age sex profession disease

1 old male yes no
2 med. female no yes
3 med. male yes no
4 old male yes yes
5 young male no no
6 med. female no no

Table 1. Decision table

In the table age, sex and profession are condition attributes, whereas disease is the decision attribute.

The table contains data concerning relationship between age, sex, profession and certain vocational
disease.

3. Decision rules
In what follows we will describe decision rules more exactly.

Let S = (U, C, D) be a decision table. Every x∈U determines a sequence c1(x),…, cn(x), d1(x),…, dm(x)
where {c1,…, cn} = C and {d1,…, dm} = D.

The sequence will be called a decision rule induced by x (in S) and denoted by c1(x),…, cn(x) →
d1(x),…, dm(x) or in short DC x→ .

The number suppx(C,D) = |C(x) ∩ D(x)| will be called a support of the decision rule DC x→ and the
number
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will be referred to as the strength of the decision rule DC x→ , where |X| denotes the cardinality of
X.

In Table 2 below a modified version of Table 1 is shown.

decision
rule age sex profession disease support strength

1 old male yes no 200 0.18
2 med. female no yes   70 0.06
3 med. male yes no 250 0.23
4 old male yes yes 450 0.41
5 young male no no  30 0.03
6 med. female no no 100 0.09

Table 2. Support and strength

This decision table can be understood as an abbreviation of a bigger decision table containing 1100
rows. Support of the decision rule means the number of identical decision rules in the original decision
table.

With every decision rule DC x→  we associate a certainty factor of the decision rule, denoted
cerx(C, D) and defined as follows:
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The certainty factor may be interpreted as a conditional probability that y belongs to D(x) given y
belongs to C(x), symbolically πx(D|C), i.e., cerx(C, D) = πx(D|C).

If cerx(C, D)= 1, then DC x→ will be called a certain decision rule; if 0 < cerx(C, D) < 1 the
decision rule will be referred to as an uncertain decision rule.

Besides, we will also use a coverage factor of the decision rule, denoted covx(C, D) defined as
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Similarly
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If DC x→ is a decision rule then CD x→ will be called an inverse decision rule. The inverse
decision rules can be used to give explanations (reasons) for decisions.

4. Probabilistic properties of decision tables
Decision tables have important probabilistic properties which are discussed next.

Let DC x→  be a decision rule, then the following properties are valid:
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That is, any decision table, satisfies (1) - (6). Observe that (3) and (4) refer to the well known total
probability theorem, whereas (5) and (6) refer to Bayes' theorem.

Thus in order to compute the certainty and coverage factors of decision rules according to formula (5)
and (6) it is enough to know the strength (support) of all decision rules only. The strength of decision
rules can be computed from data or can be a subjective assessment.

Certainty and coverage factors for the decision table presented in Table 2 are shown in Table 3.
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decision
rule strength certainty coverage

1 0.18 0.31 0.34
2 0.06 0.40 0.13
3 0.23 1.00 0.43
4 0.41 0.69 0.87
5 0.03 1.00 0.06
6 0.09 0.60 0.17

Table 3. Certainty and coverage factors

Let us observe that according to formulas (5) and (6) the certainty and coverage factors can be
computed employing only the strength of decision rules.

In Table 2 decision rules 3 and 5 are certain, whereas the remaining decision rules are uncertain.

This means that medium age male having the profession and young male not having the profession are
certainly healthy. Old males having the profession are most probably ill (probability = 0.69) and
medium age females not having the profession are most probably healthy (probability = 0.60).

The inverse decision rules say that healthy persons are most probably medium age males having the
profession (probability = 0.43) and ill persons are most probably old males having the profession
(probability = 0.87).

5. Decision tables and flow graphs
With every decision table we associate a flow graph, i.e., a directed acyclic graph defined as follows:
to every decision rule DC x→ we assign a directed branch x connecting the input node C(x) and the
output node D(x). Strength of the decision rule represents a throughflow of the corresponding branch.
The throughflow of the graph is governed by formulas (1),...,(6).

Fig. 1. Flow graph

Flow graph associated with decision table presented in Table 2 is shown in Fig. 1.

The application of flow graphs to represent decision tables gives a very clear insight into the decision
process. Classification of objects in this representation boils down to finding the maximal output flow
in the flow graph, whereas explanation of decisions is connected with the maximal input flow
associated with the given decision (see also [2] and [3]).
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6. Decision Space
With every decision table having one n-valued decision attribute we can associate n-dimensional
Euclidean space, where values of the decision attribute determine n axis of the space and condition
attribute values (equivalence classes) determine point of the space. Strengths of decision rules are to
be understood as coordinates of corresponding points.

Distance δ (x, y) between point x and y in an n-dimensional decision space is defined as

( ) ( )�
=

−=
n

i
ii yxyx

1

2,δ

where x = (x1,...,xn) and y = (y1,...,yn) are vectors of strengths of corresponding decision rules.

Decision space for Table 1 is shown in Figure 2

Fig. 2. Decision space

Distances between granules A, B, C and D are shown in Table 4.

A B C D
A
B 0.4511
C 0.4130 0.1523
D 0.4365 0.0849 0.2000

Table 4. Distance matrix

It follows from the above example that group of patients B, C and D are „close” and form a cluster
which is „distant” from group A.

7. Conclusions
Decision spaces associated with decision tables can be viewed as a generalization of discernibility
matrices. Besides, they enable us to get deeper insight in decision processes determined by decision
tables.
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