European Journal of Operational Research 136 (2002) 181-189

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

www.elsevier.com/locate/dsw

Computing, Artificial Intelligence and Information Technology

Rough sets, decision algorithms and Bayes’ theorem

Zdzistaw Pawlak ™

Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Baltycka 5, 44 100 Gliwice, Poland

Received 14 September 1999; accepted 20 December 2000

Abstract

Rough set-based data analysis starts from a data table, called an information system. The information system
contains data about objects of interest characterized in terms of some attributes. Often we distinguish in the infor-
mation system condition and decision attributes. Such information system is called a decision table. The decision table
describes decisions in terms of conditions that must be satisfied in order to carry out the decision specified in the de-
cision table. With every decision table a set of decision rules, called a decision algorithm, can be associated. It is shown
that every decision algorithm reveals some well-known probabilistic properties, in particular it satisfies the total
probability theorem and Bayes’ theorem. These properties give a new method of drawing conclusions from data,
without referring to prior and posterior probabilities, inherently associated with Bayesian reasoning. © 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

The paper concerns a relationship between
rough sets and Bayes’ theorem. It reveals a new
look on Bayes’ theorem from the rough set per-
spective and is a continuation of ideas presented in
[4,5].

In the paper basic notions of the rough set
theory will be given, together with the notion of
the decision algorithm for which some properties
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will be shown. It is revealed, in particular, that
every decision table (decision algorithm) displays
well-known probabilistic features, in particular it
satisfies the total probability theorem and Bayes’
theorem. These properties give a new method of
drawing conclusions from data, without referring
to prior and posterior probabilities, inherently
associated with Bayesian reasoning.

The revealed relationship can be used to invert
decision rules, i.e., giving reasons (explanations)
for decisions, which can be very useful in decision
analysis.

Statistical inference based on Bayes’ theorem is
used to verify prior knowledge when the data be-
come available, whereas rough set inference based
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on Bayes’ theorem uses relationships in the data
revealed by Bayes’ theorem.

In other words, rough set view on Bayes’ the-
orem explains the relationship between conditions
and decisions in decision rules, without referring
either to prior or posterior probabilities.

Basis of the rough set theory can be found in
[3]- More advanced topics are discussed in [6,7].

2. Approximation of sets

A starting point of rough set-based data anal-
ysis is a data set, called an information system.

An information system is a data table, whose
columns are labeled by attributes, rows are labeled
by objects of interest and entries of the table are
attribute values.

Formally, by an information system we will
understand a pair S = (U, 4), where U and 4, are
finite, nonempty sets called the universe, and the
set of attributes, respectively. With every attribute
a € A we associate a set V,, of its values, called the
domain of a. Any subset B of A determines a bi-
nary relation /(B) on U, which will be called an
indiscernibility relation, and defined as follows:
(x,y) € I(B) if and only if a(x) = a(y) for every
a € A, where a(x) denotes the value of attribute a
for element x. Obviously, /(B) is an equivalence
relation. The family of all equivalence classes of
I(B), i.e., a partition determined by B, will be de-
noted by U/I(B), or simply by U/B; an equiva-
lence class of 7(B), i.e., block of the partition U/B,
containing x will be denoted by B(x).

If (x, y) belongs to I(B), we will say that x and y
are B-indiscernible (indiscernible with respect to B).
Equivalence classes of the relation /(B) (or blocks
of the partition U/B) are referred to as B-elemen-
tary sets or B-granules.

If we distinguish in an information system two
disjoint classes of attributes, called condition and
decision attributes, respectively, then the system
will be called a decision table and will be denoted
by § = (U, C,D), where C and D are disjoint sets
of condition and decision attributes, respectively.

Suppose we are given an information system
S=(U,4), X CU, and B C 4. Our task is to de-
scribe the set X in terms of attribute values from B.

To this end we define two operations assigning to
every X C U two sets B.(X) and B*(X) called the
B-lower and the B-upper approximation of X, re-
spectively, and defined as follows:

B.(X) = | J{B(x) : B(x) C X},

xeU

B'(X) = | J{B(x) : B(x) N X # 0}.

xeU

Hence, the B-lower approximation of a set is the
union of all B-granules that are included in the set,
whereas the B-upper approximation of a set is the
union of all B-granules that have a nonempty in-
tersection with the set. The set

BN;(X) = B'(X) — B.(X)

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set,
i.e., BN3(X) =0, then X is crisp (exact) with re-
spect to B; in the opposite case, i.e., if BNg(X) # 0,
X is referred to as rough (inexact) with respect
to B.

3. Decision rules

In this section we will introduce a formal
language to describe approximations in logical
terms.

Let S = (U,4) be an information system. With
every B C A we associate a formal language, i.e., a
set of formulas For(B). Formulas of For(B) are
built up from attribute—value pairs (a,v) where
a € B and v € V, by means of logical connectives A
(and), V (or), ~ (not) in the standard way.

For any @ € For(B) by ||®||; we denote the set
of all objects x € U satisfying @ in S and refer to as
the meaning of @ in S.

The meaning ||®||; of @ in S is defined induc-
tively as follows:

[l(a,v)||s={x € U:alv)=x} VYaeB,vel,
|2V Plls = [[Plls UII¥]ls,

@A Pllg = |Dlls N [[¥]]s

|~ @lls = U —[|®]s-



Z. Pawlak | European Journal of Operational Research 136 (2002) 181-189 183

A decision rule in S is an expression @ — V¥,
read if @ then ¥, where ® € For(C), ¥ € For(D)
and C and D are condition and decision attributes,
respectively; @ and ¥ are referred to as conditions
and decisions of the rule, respectively.

The number suppy(®, V) = card(||® A P|l)
will be called the support of the rule & — ¥ in
S. We consider a probability distribution py(x) =
1/card(U) for x€ U where U is the (non-
empty) universe of objects of S; we have
pu(X) =card(X)/card(U) for X CU. For any
formula @ we associate its probability in S defined
by

ns(®) = pu(l[]s)-

With every decision rule ® — ¥ we associate a
conditional probability

ns(V | @) = pu([[Plls [ | 2l]s)

called the certainty factor of the decision rule, de-
noted cerg(®, V). This idea was used first by
Lukasiewicz [2] (see also [1]) to estimate the
probability of implications. We have

cerg(D, V) = ng(V | @)
= card(||® A ¥|[g)/card(||2[]),

where ||®|| # 0.

This coefficient is now widely used in data
mining and is called confidence coefficient.

Obviously, ng(¥ | @) = 1 if and only if & — ¥
is true in S.

If ng(¥ | ) =1, then & — ¥ will be called a
certain decision rule; if 0 < ng(¥ | @) < 1 the de-
cision rule will be referred to as a uncertain decision
rule.

Besides, we will also use a coverage factor of the
decision rule, denoted covg(®,¥) (used e.g. by
Tsumoto [9] for estimation of the quality of deci-
sion rules) defined by

ns(21¥) = pu([ P[5l ]l5)-
Obviously, we have
covs(P,¥) =ns(P | P)
= card(||® A P||y)/card(||P]]s)-

There are three possibilities to interpret the
certainty and the coverage factors: statistical (fre-
quency), logical (degree of truth) and mereological
(degree of inclusion).

We will stick here to the statistical interpreta-
tion, i.e., the certainty factors will be interpreted as
the frequency of objects having the property ¥ in
the set of objects having the property & and the
coverage factor — as the frequency of objects
having the property @ in the set of objects having
the property ¥. The number

os(P, V) = supps(®, ¥)/card(U)
= TC_S'('P | (p) ﬂs((p)

will be called the strength of the decision rule
®— ¥in S.

The certainty and the coverage factors of deci-
sion rules express how exact is our knowledge
(data) about the considered reality. Let us remain
that the factors are not assumed to be arbitrary
but are computed from the data, thus there are in a
certain sense objective.

The certainty factor reveals simply the fre-
quency of facts satisfying conditions, among the
facts satisfying decision of the decision rule,
whereas the interpretation of the coverage factor is
converse.

Finally, let us briefly comment on the concept
of the strength of a decision rule. This number
simply expresses the ratio of all facts which can be
classified by the decision rule to all facts in the data
table. It will be shown in the next sections that this
coefficient plays an essential role in further con-
siderations, and will be used in the new formula-
tion of Bayes’ theorem.

4. Decision algorithms

In this section we define the notion of a decision
algorithm, which is a logical counterpart of a de-
cision table.

Let Dec(S) = {®; — ¥}, m =2, be a set of
decision rules in a decision table S = (U, C, D).

(1) If for every @ — ¥, & — ¥’ € Dec(S) we

have @ =@ or [|PAP|[g=0, and ¥ =¥ or
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|| AP =0, then we will say that Dec(S) is
the set of pairwise mutually exclusive (indepen-
dent) decision rules in S.

(2) If
\m/dii =U,
=1 |lg

and
\m/‘Pi =U,
i=1

N

we will say that the set of decision rules Dec(S)
covers U.

(3) If & — ¥ € Dec(S) and suppg(P, ¥) # 0,
we will say that the decision rule ® — ¥ is ad-
missible in S.

4) If

U cw) = V9.

XeU/D ®d—PeDect (S)

where Dec™(S) is the set of all certain decision

rules from Dec(S), we will say that the set of

decision rules Dec(S) preserves the consistency

of the decision table S = (U, C, D).

The set of decision rules Dec(S) that satisfies
(1)-(4), i.e., is independent, covers U, preserves
the consistency of S and all decision rules
¢ — ¥ € Dec(S) are admissible in S — will be
called a decision algorithm in S.

Hence, if Dec(S) is a decision algorithm in S
then the conditions of rules from Dec(S) define in

S a partition of U. Moreover, the positive region of

D with respect to C, i.c., the set

U cx)

XeU/D

is partitioned by the conditions of some of these
rules, which are certain in S.

If ® — ¥ is a decision rule, then the decision
rule ¥ — @ will be called an inverse decision rule
of  — V.

Let Dec*(S) denote the set of all inverse deci-
sion rules of Dec(S).

It can be shown that Dec*(S) satisfies (1)—(4),
i.e., it is a decision algorithm in S.

If Dec(S) is a decision algorithm, then Dec*(S)
will be called an inverse decision algorithm of
Dec(S).

The inverse decision algorithm gives reasons
(explanations) for decisions pointed out by the
decision algorithms. The number

n(Dec(s) = 3

P—PeDec(S)

max {as(, lp)}lPeD(d))’

where D(@) = {¥ : ® — ¥ € Dec(S)} will be re-
ferred to as the efficiency of the decision algorithm
Dec(S) in S, and the sum is stretching over all
decision rules in the algorithm.

The efficiency of a decision algorithm is the
probability (ratio) of all objects of the universe,
that are classified to decision classes, by means of
decision rules ¢ — ¥ with maximal strength
os(®, V) among rules @ — ¥ € Dec(S) with sat-
isfied @ on these objects. In other words, the effi-
ciency says how well the decision algorithm
classifies objects from S when the decision rules
with maximal strength are used only.

As mentioned at the beginning of this section
decision algorithm is a counterpart of a decision
table. The properties (1)-(4) have been chosen in
such a way that the decision algorithm preserves
the basic properties of the data in the decision
table, in particular approximations and boundary
regions of decisions.

Crucial issue in the rough set-based data anal-
ysis is the generation of decision algorithms from
the data. This is a complex task, particularly when
large databases are concerned. Many methods and
algorithms have been proposed to deal with this
problem but we will not dwell upon this issue here,
for we intend to restrict this paper to rudiments of
the rough set theory only. The interested reader is
advised to consult the Refs. [6,7] and the web.

5. Decision algorithms and approximations

Decision algorithms can be used as a formal
language for describing approximations.
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Let Dec(S) be a decision algorithm in S and let
& — ¥ € Dec(S). By C(¥) we denote the set of all
conditions of ¥ in Dec(S) and by D(®) — the set of
all decisions of @ in Dec(S).

Then we have the following relationships:

(@) C.([¥lls) = V |,
' eC(P).n(¥|0)=1
N
(b) C(lI¥lls) = V Al
¥ eC(P)0<n(P|P) < 1 s
(©) BNc(|[¥lls) = V @'
'eC(¥),0<n(¥|P)<1 s

From the above properties we can get the follow-

ing definitions:

1. If ||®@||g = C.(]|P||s), then formula ¢ will be
called the C-lower approximation of the formula
¥ and will be denoted by C.(¥);

2. It ||?||s = C*(||P||5), then the formula ¢ will be
called the C-upper approximation of the formula
@ and will be denoted by C*(¥P);

3. If ||@||s = BNc(||?]|5), then @ will be called the
C-boundary of the formula ¥ and will be de-
noted by BN¢(P).

The above properties say that any decision

¥ € Dec(S) can be uniquely described by the fol-

lowing certain and uncertain decision rules, re-
spectively:

BNc(¥?) — V.

This property is an extension of some ideas given
by Ziarko [10].

6. Some properties of decision algorithms

Decision algorithms have interesting pro-
babilistic properties which are discussed in this
section.

Let Dec(S) be a decision algorithm and let
& — ¥ € Dec(S). Then the following properties
are valid:

(1) > cers(¢,¥) =1,

eC(P)

(2) Z covg(®,¥') =1,

Y'eD(P)

3) ms(¥)= Y cers(®,¥) ns(®)

& eC(P)

= > os(9, ),

' eC(¥)

4) ms(®)= > covs(®, V) ms(¥)

V' eD(®)

= ) os(d,7),

V' eD(®)

(5) cers(®,¥) = covs(P, ¥) ﬂs('ly)/ Z

¥Y'eD(P)
x covg(®, V') mg(P')

/ > os(, ¥

V' eD(®)

= O'S(l}/, ¢)/7T5(¢),

= Js(dj, 'II)

(6) covs(®, V) = cerg(®, V) ﬂs(‘l’)/ Z
& eC(P)

x cers(®', V) ns(P')

/ > os(9, )

o eC(¥)

= g5(P, V) /ns(P).

= 65(¢, q/)

That is, any decision algorithm, and conse-
quently any decision table, satisfies (1)—(6). Ob-
serve that (3) and (4) refer to the well-known total
probability theorem, whereas (5) and (6) refer to
Bayes’ theorem. Note that we are not using prior
and posterior probabilities — fundamental in the
Bayesian data analysis philosophy.

Thus in order to compute the certainty and
coverage factors of decision rules according to
formula (5) and (6) it is enough to know the
strength (support) of all decision rules in the de-
cision algorithm only. The strength of decision
rules can be computed from the data or can be a
subjective assessment.
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In other words, if we know the ratio of @5 in ¥,
thanks to Bayes’ theorem, we can compute the
ratio of ¥y in 9.

7. Total probability theorem and inference rules

It is interesting to observe that the total prob-
ability theorem is closely related with modus pon-
ens (MP) and modus tollens (MT) inference rules.

MP has the following form:

if oY is true
and (0] is true
then 14 is true

If we replace truth values by corresponding
probabilities we can generalize the inference rule as
rough modus ponens (RMP), which has the form

if & — ¥ is true with probability cers(P, )
and @ is true with probability 7s(®P)

then ¥

is true with probability

ns(W) = Y cers(¥, V) ns(@)
deC(¥)

= ) os(¥, ).

@' cC(P)

RMP enables us to calculate the probability of
conclusion ¥ of a decision rule @ — ¥ in terms of
strengths of all decision rules in the form
O — W, cC(P).

MT inference rule is as follows:

if (4 1S true
and ~ Y is true
then ~ @ is true

Similarly, if we replace truth values by proba-
bilities we get the following rough modus tollens
(RMT) inference rule

if ¢ — ¥ is true with probability covs(®, V)
and ¥ is true with probability 7s('P)

then ¥

is true with probability

ns(®)= Y covs(®,V)ms(P)= D os(¥,P).

V' eD(d) ¥'eD(P)

RMT enables us to compute the probability of
condition @ of the decision rule ® — ¥ in terms of
strengths of all decision rules in the form @ — ¥,
¥ € D(P).

Let us notice that RMP and RMT are rather
formal generalizations of MP and MT, respec-
tively, because the role of inference rules in logic is
different from that of decision rules in data anal-
ysis.

MP and MT are used to draw conclusions from
logical axioms, whereas RMP and RMT are used
to compute probabilities of decisions (conditions)
in decision tables (decision algorithms).

Discussion of the relationship between logic
and probability can be also found in [1,2].

8. Illustrative examples

In this section we will illustrate the concepts
introduced previously by means of simple exam-
ples.

Example 1. In Table 1 information about nine-
hundred people is represented. The population is
characterized by the following attributes: Height,
Hair, Eyes and Nationality.

Suppose that Height, Hair and Eyes are con-
dition attributes and Nationality is the decision
attribute, i.e., we want to find description of each
nationality in terms of condition attributes.

Below a decision algorithm associated with
Table 1 is given:

Table 1

Characterization of nationalities

U  Height Hair Eyes Nationality ~ Support
1 tall blond  blue Swede 270

2 medium dark hazel German 90

3 medium  blond  blue Swede 90

4 tall blond  blue German 360

5 short red blue German 45

6 medium dark hazel Swede 45
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(1) if (Height, tall) then (Nationality, Swede),
(2) if (Height, medium) and (Hair, dark) then
(Nationality, German),
(3) if (Height, medium) and (Hair, blond) then
(Nationality, Swede),
(4) if (Height, tall) then (Nationality, German),
(5) if (Height, short) then (Nationality, German),
(6) if (Height, medium) and (Hair, dark) then
(Nationality, Swede).
The certainty and coverage factors for the decision
rules are shown in Table 2.
From the certainty factors of the decision rules
we can conclude that:
o 43% tall people are Swede,
o 57% tall people are German,
o 33% medium and dark-haired people are Swede,
e 67% medium and dark-haired people are Ger-
man,
100% medium and blond people are Swede,
o 100% short people are German.
Summing up:
e tall people are most probably German,
o medium and dark-haired people are most proba-
bly German,
o medium and blond people are for certain Swede,
e short people are for certain German.
The efficiency of the above decision algorithm is
0.65.
The inverse algorithm is as follows
(1) if (Nationality, Swede) then (Height, tall),
(2) if (Nationality, German) then (Height, me-
dium) and (Hair, dark),
(3') if (Nationality, Swede) then (Height, me-
dium) and (Hair, blond),
(&) if (Nationality, German) then (Height, tall),
(5) if (Nationality, German) then (Height,
short),

Table 2
Certainty and coverage factors

Rule Certainty Coverage Support Strength
number

1 043 0.67 270 0.3

2 0.67 0.18 90 0.1

3 1.00 0.22 90 0.1

4 0.57 0.73 360 0.4

5 1.00 0.09 45 0.05

6 0.33 0.11 45 0.05

(6') if (Nationality, Swede) then (Height, me-

dium) and (Hair, dark).

The certainty and the coverage factors for the
decision rules are shown in Table 2.

From the coverage factors we get the following
characterization of nationalities:

11% Swede are medium and dark-haired,
22% Swede are medium and blond,

67% Swede are tall,

9% German are short,

18% German are medium and dark-haired,
73% German are tall.

Hence we have that:

o Swede are most probably tall,

e German are most probably rall.

The efficiency of the inverse decision algorithm
is 0.7.

Observe that there are no certain decision rules
in the inverse decision algorithm nevertheless it
can properly classify 70% objects.

Of course it is possible to find another decision
algorithm from Table 1.

The obtained results are valid for the data only.
In the case of another bigger data set the results
may not be valid anymore.

Whether they are valid or not it depends if
Table 1 is a representative sample of a bigger
population or not.

Example 2. Now we will consider an example ta-
ken from [8], which will show clearly the difference
between the Bayesian and rough set approach to
data analysis.

We will start from the data table presented
below:

Remark. In the paper [§8] wrongly 1 = low and
3 = high instead of 1 = high and 3 = low.

We have to classify voters according to their
voting intentions on the basis of Sex and Social
Class.

First we create from Table 3 a decision table
shown in Table 4.

Next we simplify the decision table by em-
ploying only the decision rules with maximal
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Table 3 Table 5
Voting intentions® Simplified decision table
Y, Y; " U Y, Y3 Y Support Strength
1 2 3 4 1 1 1 1 28 0.07
1 1 o8 8 7 0 2 1 2 1 153 0.35
2 153 114 53 14 3 1 3 2 3 0.07
3 20 31 17 1 4 2 2 1 165 0.38
5 2 3 2 57 0.13
2 1 1 1 0 1
2 165 86 54 6
3 30 57 18 4 Table 6
%Y, represents voting intentions (1 = Conservatives, 2= Labour, Reduced decision table
3 = Liberal Democrat, 4 = Others), Y, represents Sex (1 =male, U Y; Y Strength Certainty ~ Coverage
2 = female) and Y; represents Social Class (1 = high, 2 = middle, 1 1 1 0.07 (0.03)  1.00 (0.60) 0.10(0.07)
3=low). 2 2 1 0.73 (0.37)  1.00 (0.49) 0.90 (0.82)
3 3 2 0.20 (0.11)  1.00 (0.55) 1.00 (0.31)

Table 4
Decision table
U Y, Y; N Support Strength
1 1 1 1 28 0.03
2 1 1 2 8 0.01
3 1 1 3 7 0.01
4 1 2 1 153 0.18
5 1 2 2 114 0.13
6 1 2 3 53 0.06
7 1 2 4 14 0.02
8 1 3 1 20 0.02
9 1 3 2 31 0.04
10 1 3 3 17 0.02
11 1 3 4 1 0.00
12 2 1 1 1 0.00
13 2 1 2 1 0.00
14 2 1 4 1 0.00
15 2 2 1 165 0.19
16 2 2 2 86 0.10
17 2 2 3 54 0.06
18 2 2 4 6 0.01
19 2 3 1 30 0.03
20 2 3 2 57 0.07
21 2 3 3 18 0.02
22 2 3 4 4 0.00

strength, and we get the decision table presented in
Table 5.

It can be easily seen that the set of condition
attributes can be reduced (see [3]) and the only
reduced is the attribute ¥; (Social Class).

Thus Table 5 can be replaced by Table 6. The
numbers in parentheses refer to Table 4.

From this decision table we get the following
decision algorithm:

Certainty
(1) high class — Conservative party 0.60
(2) middle class — Conservative party 0.49
(3) lower class — Labour party 0.55

The efficiency of the decision algorithm is 0.51.
The inverse decision algorithm is given below:

Certainty
(1) Conservative party — high class ~ 0.07
(2)) Conservative party — middle class 0.82
(3') Labour party — lower class 0.31

The efficiency of the inverse decision algorithm is

0.48.
From the decision algorithm we can conclude

the following:

o 60% high class and 49% middle class intend to
vote for the Conservative party,

® 55% lower class intend to vote for the Labour
party.
The inverse decision algorithm leads to the

following explanations of voters’ intentions.

e 7% intend to vote for the Conservative party be-
long to the high class,

e 82% intend to vote for the Comnservative party
belong to the middle class,

e 31% intend to vote for the Labour party belong
to the lower class.
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In short, high and middle class most probably
intend to vote for the Conservative party, whereas
lower class most probably intend to vote for the
Labour party. Voters of the Conservative party
most probably belong to the middle class and
voters for the Labour party most probably belong
to the lower class.

We advise the reader to examine the approach
and results presented in [8] and compare them with
that shown here.

Clearly, the rough set approach is much simpler
and gives better results than that discussed in [§].

9. Conclusions

From the rough set view Bayes’ theorem reveals
probabilistic structure of a data set (i.e., any deci-
sion table or decision algorithm) without referring
to either prior or posterior probabilities, inherently
associated with the Bayesian statistical inference
methodology. In other words, it identifies proba-
bilistic relationships between conditions and deci-
sions in decision algorithms, in contrast to classical
Bayesian reasoning, where data are employed to
verify prior probabilities. This property can be used
to give explanation (reasons) for decisions.

Let us also stress that Bayes’ theorem in the
rough set approach has a new mathematical form
based on strength of decision rules, which simpli-
fies essentially computations and gives a new look
on the theorem.
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