
Chapter 12

Rough Sets and Rough Logic: A KDD

Perspective

Zdzis law Pawlak1, Lech Polkowski2, and Andrzej Skowron3

1 Institute of Theoretical and Applied Informatics
Polish Academy of Sciences
Ba ltycka 5 44000 Gliwice Poland

2 Polish-Japanese Institute of Information Technology
Koszykowa 86 02008 Warszawa Poland
Department of Mathematics and Information Sciences
Warsaw University of Technology
Pl. Politechniki 1 00665 Warszawa Poland

3 Institute of Mathematics Warsaw University
Banacha 2 02097 Warszawa Poland
emails: zpw@ii.pw.edu.pl; polkow@pjwstk.waw.pl; skowron@mimuw.edu.pl

Abstract Basic ideas of rough set theory were proposed by Zdzis law Pawlak [85,
86] in the early 1980’s. In the ensuing years, we have witnessed a systematic,
world–wide growth of interest in rough sets and their applications.

The main goal of rough set analysis is induction of approximations of con-
cepts. This main goal is motivated by the basic fact, constituting also the main
problem of KDD, that languages we may choose for knowledge description are
incomplete. A fortiori, we have to describe concepts of interest (features, proper-
ties, relations etc.) not completely but by means of their reflections (i.e. approx-
imations) in the chosen language. The most important issues in this induction
process are:

– construction of relevant primitive concepts from which approximations of
more complex concepts are assembled,

– measures of inclusion and similarity (closeness) on concepts,

– construction of operations producing complex concepts from the primitive
ones.

Basic tools of rough set approach are related to concept approximations.
They are defined by approximation spaces. For many applications, in particular
for KDD problems, it is necessary to search for relevant approximation spaces
in the large space of parameterized approximation spaces. Strategies for tuning
parameters of approximation spaces are crucial for inducing concept approxima-
tions of high quality.

Methods proposed in rough set approach are kin to general methods used
to solve Knowledge Discovery and Data Mining (KDD) problems like feature
selection, feature extraction (e.g. discretization or grouping of symbolic value),



data reduction, decision rule generation, pattern extraction(templates, associa-
tion rules), or decomposition of large data tables. In this Chapter we examine
rough set contributions to Knowledge Discovery from the perspective of KDD
as a whole.

This Chapter shows how several aspects of the above problems are solved by
the classical rough set approach and how they are approached by some recent
extensions to the classical theory of rough sets. We point out the role of Boolean
reasoning in solving discussed problems. Rough sets induce via its methods a
specific logic, which we call rough logic. In the second part of this Chapter, we
discuss rough logic and related incomplete logics from a wider perspective of
logical approach in KDD.

Keywords: indiscernibility, lower and upper approximations, rough sets, bound-
ary region, positive region, rough membership function, decision rules, patterns,
dependencies in a degree, rough mereology, logic, propositional logic, predicate
logic, modal logic, belief and belief revision logics, default logic, para–consistent
logic, non-monotonic logic, fuzzy logic, rough logic.

1 Basic philosophy of rough set methods in KDD

Rough set tools for KDD are based on parameterized approximation spaces and
strategies for parameter tuning leading to approximations of (whole or parts of)
sets of objects called decision classes (or concepts).

Approximation spaces (cf. Chapter by STEPANIUK) consist of two main
constructs: sets of objects called neighborhoods and a measure of inclusion on sets.
Neighborhoods are described by some parameterized formulas. The inclusion
measure is indexed by some parameters describing a degree of set inclusion. By
parameter tuning the relevant neighborhoods as well as the relevant degree of
inclusion are chosen with respect to a given problem. In this section we explain
the main steps in inducing concept (or its part) description on the basis of rough
set methods.

We assume a finite universe U of objects, represented in an information
system A = (U, A) (see Chapter 1), being a subset of the whole universe U∞ of
objects. By a concept (decision class) in U∞ we understand any subset of U∞.

One of the main goals of such areas as Machine Learning, Pattern Recognition
as well as Knowledge Discovery and Data Mining is to develop methods for
approximate descriptions of concepts (or their interesting parts) on the basis
of partial information about them represented by information about objects
from the universe U . More formally, let X ⊆ U∞ be a concept and let A =
(U, A) be a given information system. (The information system together with
the characteristic function of X∩U are represented by so called decision systems.)
The problem is to induce an approximate description of U ∩X using attributes
from A so that its extension to U∞ will approximate X with sufficiently high
quality. One could formulate this by saying that the induced concept description
should estimate the real concept well.



Let us mention that there are some other factors due to which a concept
approximation can be induced rather than its exact description. Among them
are well known problems with missing values or noise in data.

Rough set approach allows to precisely define the notion of a concept approxi-
mation. It is based [86] on the indiscernibility (or, a weaker form viz. a similarity)
relation between objects defining a partition (or, covering) of the universe U of
objects. There are some issues to be discussed here.

The first one concerns the way in which inclusion of sets, in particular, of
neighborhoods is measured.

From the point of view of KDD, it is important to consider two notions related
to formulas, namely inclusion and closeness. Instead of classical crisp inclusion or
equivalence it is more appropriate to consider inclusion in a degree and closeness
in a degree. An example of such inclusion is used in case of association rules
[4]. Assuming a given set of formulas and a given finite universe of objects the
task is to search for pairs of formulas α, β such that α is sufficiently included in
β. The degree of inclusion for association rules is expressed by two thresholds
consisting of coefficients known as support and confidence.

The second issue concerns the definition of quality measure used to esti-
mate quality of concept description by neighborhoods from a given partition (or
covering) in U and in U∞.

To solve the first problem, i.e., approximation in U , rough sets are offering
the approximation operations on sets of objects (see Chapter 1). The classical
rough set approach [86] is using crisp inclusion and by taking the union of all
neighborhoods included in a given set it yields the lower approximation of this
set. One can also define the upper approximation of the given set of objects by
taking union of all objects having non-empty intersection with a given set. In
the complement of the upper approximation of a given set there are all objects
which can be with certainty classified as not belonging to the set (using available
neighborhoods). The difference between the upper and lower approximations is
called the boundary region of the approximated set and it is created by objects
which cannot be classified with certainty neither to the approximated set nor
to its complement (using given neighborhoods defining partition or covering).
Consequently, each rough set exhibits boundary-line cases, i.e., objects which
cannot be with certainty classified neither as members of the set nor of its
complement.

As a consequence vague concepts, in contrast to precise concepts, cannot be
characterized in terms of information about their elements. Therefore, in the
proposed approach, we assume that any vague concept is replaced by a pair of
precise concepts – the lower and the upper approximation of this vague concept.
The difference between the upper and the lower approximation constitutes the
boundary region of the vague concept.

For applications in KDD, a more relaxed approach has been developed: in-
stead of crisp inclusion it seems more appropriate to use inclusion in a degree and
to define set approximations on the basis of such inclusion [137], [112], [92], [88],
[113]. One can search for proper degrees in the sense that induced by their means
concept descriptions are showing better classification quality on new objects or,



more generally, they give better quality of concept description in U∞.
There are some other aspects of concept description which should be taken

into consideration when one would like to estimate its quality in U∞. One can fol-
low, e.g., the minimal description length principle [103] (cf. Chapter by ŚLȨZAK)
suggesting that more coarser partitions of U allow for better concept approxi-
mation assuming they describe the set X ∩U still with a sufficient quality (mea-
sured e.g. by the size of boundary region or other measures like entropy). Hence,
in particular, it follows that preprocessing methods, leading to partitions more
coarser yet still relevant for concept approximation, are important for rough
set approach. Moreover, it is necessary to develop methods for achieving an
appropriate tradeoff between coarseness of partitions and quality of concept ap-
proximation determined by the chosen partition (or covering). There are several
approaches, known in Machine Learning or Pattern Recognition realizing this
tradeoff. Among them one can distinguish the following ones:

1. Feature selection is realized by searching for relevant indiscernibility re-
lations in the family of all indiscernibility relations IND(B) where B ⊆ A
(see Chapter 1).

2. Feature extraction is realized by searching for relevant indiscernibility
relations in the family of all indiscernibility relations IND(B) where B ⊆ C
and C is a given set of attributes in A (see Chapter 1).

3. Discovery of a relevant subspace C of attributes definable by A.
Next, the relevant attributes are extracted within a given subspace C of
attributes definable by A. In this way the searching process for relevant at-
tributes can be made more efficient because the computational complexity of
the searching problem for relevant attributes in the whole space of attributes
definable by A makes the process of relevant feature extraction infeasible.

It is worth to mention that very little is known about how to discover relevant
subspaces C of attributes definable by A and this is still a challenge for knowledge
discovery and data mining.

The (described above) process of searching for appropriate (coarser yet rel-
evant) partitions (defined by C) is related in rough set theory to searching for
constructs called reducts and their approximations. Let us observe that in prac-
tice the generated models of partitions (coverings) are usually sub-optimal with
respect to the minimal description length principle. This is because of the com-
putational complexity of searching problems for the optimal models. Moreover,
it is necessary to tune the extracted models to receive satisfactory quality, e.g.
of classification or description of induced models.

The combination of rough set approach with Boolean Reasoning [13] has cre-
ated a powerful methodology allowing to formulate and efficiently solve searching
problems for different kinds of reducts and approximations to them.

The idea of Boolean reasoning consists in constructing – for a given problem
P – a corresponding Boolean function fP with the following property: solutions
for the problem P can be recovered from prime implicants 4 of the Boolean
function fP .

4 An implicant of a Boolean function f is any conjunction of literals (variables or



It is necessary to deal with Boolean functions of large size to solve real –
life problems. A successful methodology based on the discernibility of objects
and Boolean reasoning (see Chapter 1) has been developed for computing many
important for applications constructs like reducts and their approximations, de-
cision rules, association rules, discretization of real value attributes, symbolic
value grouping, searching for new features defined by oblique hyperplanes or
higher order surfaces, pattern extraction from data as well as conflict resolution
or negotiation. Reducts are also basic tools for extracting functional dependen-
cies or functional dependencies in a degree from data(for references see the papers
and bibliography in [110], [82], [94], [95]).

A great majority of problems related to generation of the above mentioned
constructs are of high computational complexity (i.e. they are NP-complete or
NP-hard). This is also showing that most problems related to e.g. feature se-
lection or pattern extraction from data have intrinsic high computational com-
plexity. However, using the methodology based on discernibility and Boolean
reasoning it has been possible to discover efficient heuristics returning subopti-
mal solutions to these problems. The reported results of experiments on many
data sets are very promising. They show very good quality of solutions (expressed
by the classification quality of unseen objects and time necessary for solution
construction) generated by proposed heuristics in comparison to other methods
reported in literature. Moreover, for large data sets the decomposition methods
based on patterns called templates have been developed (see e.g. [79], [76]) as
well as a method to deal with large relational databases (see e.g. [75]).

It is important to note that this methodology allows for constructing heuris-
tics having a very important approximation property which can be formulated as
follows: expressions generated by means of heuristics (i.e., implicants) and suf-
ficiently close to prime implicants define approximate solutions to the problem
[108].

Parameterized approximation spaces and strategies for parameter tuning are
basic tools for rough set approach in searching for data models under a given
partition of objects (see e.g. [79], [76],[110], [116], [117], [94], [95]). Parameters
to be tuned are thresholds used to select elements of partitions (coverings),
to measure degree of inclusion (or closeness) of sets, or parameters measuring
quality of approximation.

Rough sets offer methods for exploratory data analysis, i.e., methods for
hypothesis generation rather than hypothesis testing [39]. Data mining without
proper consideration of statistical nature of the inference problem is indeed to be
avoided. We now shortly discuss how statistical methods are used in combination
with rough set methods.

There is an important issue about the statistical validity and significance of
constructs generated using rough set methods. Rough set data analysis becomes

their negations) such that if the values of these literals are true under an arbitrary
valuation v of variables then the value of the function f under v is also true. A prime
implicant is a minimal implicant. Here we are interested in implicants of monotone
Boolean functions only, i.e. functions constructed without negation.



the most popular non–invasive method [24], [23] today. Non–invasive methods of
data analysis aim to derive conclusions by taking into account only the given data
without stringent additional model assumption. Using fewer model assumption
results in more generality, wider applicability, and reduced costs and time. Non–
invasive methods of data analysis use only few parameters which require only
simple statistical estimation procedures. However, the generated constructs, like
reducts or decision rules, should be controlled using statistical testing procedures.

Hence any non–invasive method needs to be complemented by methods for
statistical significance, statistical validation, estimation of errors and model se-
lection using only parameters supplied by the data at hand. This can be related
to the ideas of statisticians looking for methods which could weaken the assump-
tions necessary for good estimators [39], [49].

The reader can find in literature (e.g. in [23],[24], [10], [2]), [52], [94], [95])
such methods, together with discussion of results of their applications. Among
them are the following ones: data filtering based on classification error [23],[24],
methods for significance testing using randomization techniques (e.g. dynamic
reducts and rules [10]), model selection (e.g. by rough set entropy [23],[24]; by
rough modeling allowing for generation of compact and accurate models based
on, e.g., receiver operating characteristic analysis and rough modeling [2],[54] by
decision rule approximation [52] - with the quality described by entropy [52],
[23] and quality of classification of new objects, by reduct approximation [52]
- with the quality expressed by positive region [52] and quality of classification
of new objects, by boundary region thinning [52] using variable precision rough
set model [137]). For more details the reader is referred to the bibliography on
rough sets (see e.g. the bibliography in [94],[95]). Rough set approach backed
up by non–invasive methods becomes a fully fledged instrument for data mining
[24].

There are some other interesting current research topics which we can only
mention. Let us observe that when defining approximation of concepts, in most
cases we deal with concepts creating a partition of U∞. Classifying new objects
one should resolve conflicts between votes, coming from different approximations,
for or against particular concepts. Recently a hybrid rough–neuro method has
been applied for learning the strategy of conflict resolution for a given data
[120]. Other current research topic deals with more complex information granules
than discussed so far, defined by simple formulas, and methods for fusion of
information granules to induce complex information granule approximations.
The interested reader is referred to papers related to rough mereological approach
(see e.g. [92], [97]) and papers related to spatial data mining (see e.g. [91], [113]).

In what follows we discuss in more details rough set approach vs. a general
task of KDD and we refer to basic notions and examples of Chapter 1. For more
information the reader is referred to [82], [94], [95] and to bibliographies in these
books.



1.1 Data Representation

In the simplest case the data exploited by rough set analysis are represented
in the form of attribute–value tables, see Chapter 1. Such tables are also used
by Pattern Recognition, Machine Learning and KDD. These simple tables are
combined when forming hierarchical or distributed data structures.

A data set can be represented by a table where each row represents, for
instance, an object, a case, or an event. Every column represents an attribute,
or an observation, or a property that can be measured for each object; it can
also be supplied by a human expert or user. This table is called an information
system.

The choice of attributes is subjective (they are often called conditional at-
tributes) and reflects our intuition about factors that influence the classification
of objects in question. The chosen attributes determine in turn primitive de-
scriptors that provide intensions of primitive concepts.

In many cases the target of the classification, that is, the family of concepts
to be approximated is represented by an additional attribute d called decision.

Information systems of this kind are called decision systems and they are
written down as triples A = (U, A, d).

We try in this case to approximate concepts that are defined by the known
decision. This is known in Machine Learning as supervised learning.

In some applications it may be necessary to work with conditional attributes
which are compound in the sense that they depend on other simpler attributes
which in turn depend on other attributes, etc. (e.g. this happens when the val-
ues of attributes are complex structural objects, like images or algorithms to be
performed). In this case it is necessary to work with hierarchical data tables. A
still more general case occurs when the data is distributed between a number
of processing units (agents). We have to work then in a multi–agent environ-
ment. In such a case the process of induction of approximations to concepts is
more complicated. This is due to the necessity of adding interface mechanisms
that translate concepts and their similarity degrees from agent to agent. These
problems are addressed by rough mereology (for references see [93]).

1.2 Indiscernibility

A decision system expresses all currently available knowledge about the objects
in question. Such a table may be unnecessary large: some objects may be indis-
cernible or some attributes redundant.

Let A = (U, A) be an information system, then with any B ⊆ A there is
associated an equivalence relation INDA(B):

INDA(B) = {(x, x′) ∈ U2 | ∀a ∈ B a(x) = a(x′)}

INDA(B) is called the B-indiscernibility relation, its classes are denoted
by [x]B . By X/B we denote the partition of U defined by the indiscernibility
relation IND(B). See Chapter 1 for more details.



1.3 Lower and upper approximation of sets, boundary regions,
positive regions

We have already mentioned that vague concepts may be only approximated by
crisp concepts; these approximations are recalled now.

Let A = (U, A) be an information system, B ⊆ A, and X ⊆ U . We can
approximate X using only the information contained in B by constructing the
B-lower and B-upper approximations of X , denoted BX and BX respectively,
where BX = {x | [x]B ⊆ X} and BX = {x | [x]B ∩X 6= ∅}.

The lower approximation induces certain rules while the upper approxima-
tion induces possible rules (i.e. rules with confidence greater than 0). The set
BNB(X) = BX − BX is called the B-boundary region of X thus consisting
of those objects that on the basis of the attribute set B cannot be unambigu-
ously classified into X . The set U −BX is called the B-outside region of X and
consists of those objects which can be with certainty classified as not belonging
to X . A set is said to be rough (respectively, crisp) if the boundary region is
non–empty (respectively, empty).

The following properties of approximations can easily be verified:

(1) B(X) ⊆ X ⊆ B(X),
(2) B(∅) = B(∅) = ∅, B(U) = B(U) = U,
(3) B(X ∪ Y ) = B(X) ∪B(Y ),
(4) B(X ∩ Y ) = B(X) ∩B(Y ),
(5) X ⊆ Y implies B(X) ⊆ B(Y ) and B(X) ⊆ B(Y ),
(6) B(X ∪ Y ) ⊇ B(X) ∪B(Y ),
(7) B(X ∩ Y ) ⊆ B(X) ∩B(Y ),
(8) B(−X) = −B(X),
(9) B(−X) = −B(X),

(10) B(B(X)) = B(B(X)) = B(X),
(11) B(B(X)) = B(B(X)) = B(X),

where −X denotes U −X .
One can single out the following four basic classes of rough sets:

a) X is roughly B-definable iff B(X) 6= ∅ and B(X) 6= U,
b) X is internally B-undefinable iff B(X) = ∅ and B(X) 6= U,
c) X is externally B-definable iff B(X) 6= ∅ and B(X) = U,
d) X is totally B-undefinable iff B(X) = ∅ and B(X) = U .

These categories of vagueness have a clear intuitive meaning.

1.4 Measures of closeness of concepts

We now present some approaches to closeness measures. These are accuracy of
approximation, measure of positive region, rough membership functions and de-
pendencies in a degree. These notions are instrumental in evaluating the strength
of rules and closeness of concepts as well as being applicable in determining



plausible reasoning schemes [92], [97]. Important role is also played by entropy
measures (see e.g. [24] and Chapter by ŚLȨZAK ).
Accuracy of approximation. A rough set X can be characterized numerically
by the following coefficient

αB(X) =
|B(X)|

|B(X)|
,

called the accuracy of approximation, where |X | denotes the cardinality of X 6= ∅.
Obviously 0 ≤ αB(X) ≤ 1. If αB(X) = 1, X is crisp with respect to B (X is
exact with respect to B), and otherwise, if αB(X) < 1, X is rough with respect
to B (X is vague with respect to B).
Positive region and its measure. If X1, . . . , Xr(d) are decision classes of A,
then the set BX1 ∪ . . . ∪ BXr(d) is called the B–positive region of A and is
denoted by POSB(d). The number |P OSB(d)|/|U | measures closeness of the
partition defined by the decision to its approximation defined by attributes from
B.
Rough membership function. In classical set theory either an element be-
longs to a set or it does not. The corresponding membership function is the
characteristic function of the set, i.e. the function takes values 1 and 0, respec-
tively. In the case of rough sets the notion of membership is different. The rough
membership function quantifies the degree of relative overlap between the set X
and the equivalence class to which x belongs. It is defined as follows:

µB
X(x) : U −→ [0, 1] and µB

X(x) =
|[x]B ∩X |

|[x]B|

The rough membership function can be interpreted as a frequency–based esti-
mate of Pr(y ∈ X | u), the conditional probability that object y belongs to set
X , given knowledge of the information signature u = InfB(x) of x with respect
to attributes B. The value µB

X(x) measures closeness of {y ∈ U : InfB(x) =
InfB(y)} and X .

The formulae for the lower and upper set approximations can be generalized
to some arbitrary level of precision π ∈ (1

2 , 1] by means of the variable precision
rough membership function [137] (see below).

Note that the lower and upper approximations as originally formulated are
obtained as a special case with π = 1.0.

BπX = {x | µB
X(x) ≥ π}

BπX = {x | µB
X(x) > 1− π}

Sets of patients, events, outcomes, etc. can be approximated by variable pre-
cision rough sets with a varied precision that depends on the parameter π. As-
suming data influenced by noise, one can tune the threshold π to find the “best”
concept approximation. One can, e.g., start from π “close” to 1 and incremen-
tally decrease the value of π. In each step, e.g., lower approximations of decision



classes are calculated and corresponding decision rules are induced. As lower
approximations of decision classes are becoming larger when the parameter π is
decreasing, induced decision rules are becoming stronger, e.g., being supported
by more objects. Decrease in value of the parameter π should be stopped when
the quality of new object classification by induced rules starts to decrease.
Dependencies in a degree. Another important issue in data analysis is discov-
ering dependencies among attributes. Intuitively, a set of attributes D depends
totally on a set of attributes C, denoted C ⇒ D, if all values of attributes from
D are uniquely determined by values of attributes from C. In other words, D
depends totally on C, if there exists a functional dependency between values of
D and C. Dependency can be formally defined in the following way cf. Chapter
1.

Let D and C be subsets of A. We will say that D depends on C to a degree
k (0 ≤ k ≤ 1), denoted C ⇒k D, if

k = γ(C, D) =
|P OSC(D)|

|U |
,

where P OSC(D) = P OSC(dD).
Obviously

γ(C, D) =
∑

X∈U/D

|C(X)|

|U |
.

If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends
partially (to a degree k) on C. γ(C, D) describes the closeness of the partition
U/D and its approximation with respect to conditions in C.

The coefficient k expresses the ratio of all elements of the universe which can
be properly classified to blocks of the partition U/D by employing attributes C.
It will be called the degree of the dependency.

All the closeness measures mentioned above are constructed on the basis of
the available attributes. Two important problems are the extraction of relevant
parameterized closeness measures and methods of their tuning in the process of
concept approximation (see section 1).

1.5 Reduct and core

In the previous section we investigated one dimension of reducing data which
aimed at creating equivalence classes. The gain is apparent: only one element of
the equivalence class is needed to represent the entire class. The other dimen-
sion in reduction is to store only those attributes that suffice to preserve the
chosen indiscernibility relation and, consequently, the concept approximations.
The remaining attributes are redundant since their removal does not worsen the
classification.

Given an information system A = (U, A) a reduct is a minimal set of at-
tributes B ⊆ A such that INDA(B) = INDA(A), cf. Chapter 1. In other words,
a reduct is a minimal set of attributes from A that preserves the original classi-
fication defined by the set A of attributes. Finding a minimal reduct is NP-hard



[111]. One can also show that the number of reducts of an information system
with m attributes can be equal to

(

m
⌊m/2⌋

)

There exist fortunately good heuristics that compute sufficiently many reducts
in an often acceptable time. Boolean reasoning can be successfully applied in the
task of reduct finding, cf. Chapter 1. We recall this algorithmic procedure here.

For A with n objects, the discernibility matrix of A is a symmetric n × n
matrix with entries cij as given below. Each entry consists of the set of attributes
upon which objects xi and xj differ.

cij = {a ∈ A | a(xi) 6= a(xj)} i, j = 1, ..., n

A discernibility function fA for an information systemA is a Boolean function
of m Boolean variables a∗

1, ..., a∗
m (corresponding to the attributes a1, ..., am)

defined below, where c∗
ij = {a∗ | a ∈ cij}.

fA(a∗
1, ..., a∗

m) =
∧

{

∨

c∗
ij | 1 ≤ j ≤ i ≤ n, cij 6= ∅

}

The set of all prime implicants of fA determines the set of all reducts of A.
In the sequel we will write ai instead of a∗

i .
The intersection of all reducts is the so-called core (which may be empty).
In general, the decision is not constant on the indiscernibility classes. LetA =

(U, A ∪ {d}) be a decision system. The generalized decision in A is the function
∂A : U −→ P(Vd) defined by ∂A(x) = {i | ∃x′ ∈ U x′ IND(A) x and d(x′) = i}.
A decision system A is called consistent (deterministic), if |∂A(x)| = 1 for any
x ∈ U , otherwise A is inconsistent (non-deterministic). Any set consisting of all
objects with the same generalized decision value is called the generalized decision
class.

It is easy to see that a decision system A is consistent if, and only if,
POS A(d) = U . Moreover, if ∂B = ∂B′ , then POSB(d) = POSB′ (d) for any
pair of non-empty sets B, B′ ⊆ A. Hence the definition of a decision-relative
reduct: a subset B ⊆ A is a relative reduct if it is a minimal set such that
P OSA{d} = P OSB{d}. Decision-relative reducts may be found from a dis-
cernibility matrix: Md(A) = (cd

ij) assuming cd
ij = ∅ if d(xi) = d(xj) and

cd
ij = cij −{d}, otherwise. Matrix Md(A) is called the decision-relative discerni-

bility matrix of A. Construction of the decision-relative discernibility function
from this matrix follows the construction of the discernibility function from the
discernibility matrix. It has been shown [111] that the set of prime implicants of
fd

M (A) defines the set of all decision-relative reducts of A.
In some applications, instead of reducts we prefer to use their approximations

called α-reducts, where α ∈ [0, 1] is a real parameter. For a given information
system A = (U ,A), the set of attributes B ⊂ A is called an α-reduct in case B
has a non–empty intersection with at least α · 100% of non–empty entries ci,j in
the discernibility matrix of A.



Here, it will be important to make some remarks because the most methods
discussed later are based on generation of some kinds of reducts.

The discernibility matrix creates a kind of universal board game used to
develop efficient heuristics (see e.g. [110]). High computational complexity of
analyzed problems (like NP-hardness of minimal reduct computation problem
[111]) is not due to their formulation using Boolean reasoning framework but it
is the intrinsic property of these problems. In some sense one cannot expect that
by using other formalization the computational complexity of these problems
can be decreased.

One should take into account the fact that discernibility matrices are of large
size for large data sets. Nevertheless, it was possible to develop efficient and high
quality heuristics for quite large data sets (see e.g. papers and bibliography in
[94], [95]). This was possible due to the fact that in general it is not necessary to
store the whole discernibility matrix and analyze all of its entries. This follows
from reasons like: (i) only some short reducts should be computed; (ii) for some
kinds of reducts, like reducts relative to objects (see Section 1.6) only one column
of the matrix is important; (iii) in discretization of real value attributes, some
additional knowledge about the data can be used (see Section 2) in searching
for relevant (for computing reducts) Boolean variables. Let us also note that our
approach is strongly related to propositional reasoning [108] and further progress
in propositional reasoning will bring further progress in discussed methods.

For data sets too large to be analyzed by developed heuristics, several ap-
proaches have been developed. The first one is based on decomposition of large
data into regular sub-domains of size feasible for developed methods. We will
shortly discuss this method later. The second one, a statistical approach, is
based on different sampling strategies. Samples are analyzed using the devel-
oped strategies and stable constructs for sufficiently large number of samples are
considered as relevant for the whole table. This approach has been successfully
used for generating different kinds of so called dynamic reducts (see e.g. [10]).
It yields so called dynamic decision rules. Experiments with different data sets
have proved these methods to be promising in case of large data sets. Another
interesting method (see e.g. [75]) has shown that Boolean reasoning methodology
can be extended to large relational data bases. The main idea is based on obser-
vation that relevant Boolean variables for very large formula (corresponding to
analyzed relational data base) can be discovered by analyzing some statistical
information. This statistical information can be efficiently extracted from large
data bases.

1.6 Decision rules

Reducts serve the purpose of inducing minimal decision rules. Any such rule
contains the minimal number of descriptors in the conditional part so that their
conjunction defines the largest subset of a generalized decision class (decision
class, if the decision table is deterministic). Hence, information included in con-
ditional part of any minimal rule is sufficient for prediction of the generalized
decision value for all objects satisfying this part. Conditional parts of minimal



rules define neighborhoods relevant for generalized decision classes approxima-
tion. It turns out that conditional parts of minimal rules can be computed (by
means of Boolean reasoning) as so called reducts relative to objects (see e.g.
[109], [10]). Once these reducts have been computed, conditional parts of rules
are easily constructed by laying the reducts over the original decision system and
reading off the values. In the discussed case the generalized decision value is pre-
served during the reduction. One can consider stronger constraints which should
be preserved. For example, in [114] the constraints are described by probability
distributions corresponding to information signatures of objects cf. Chapter by
ŚLȨZAK. Again, the same methodology can be used to compute generalized
reducts corresponding to these constraints.

We recall, cf. Chapter 1, that rules are defined as follows.
Let A = (U, A, d) be a decision system. Atomic formulae over B ⊆ A ∪ {d}

and V are expressions of the form a = v; they are called descriptors over B
and V , where a ∈ B and v ∈ Va. The set F(B, V ) of formulae over B and V
is the least set containing all atomic formulae over B and V and closed under
propositional connectives ∧ (conjunction), ∨ (disjunction) and ¬ (negation).

The semantics (meaning) of the formulae is also defined recursively. For ϕ ∈
F(B, V ), the meaning of ϕ in the decision system A denoted [ϕ]A is the set of
all objects in U with the property ϕ:

1. if ϕ is of the form a = v then [ϕ]A = {x ∈ U | a(x) = v}
2. [ϕ ∧ ϕ′]A = [ϕ]A ∩ [ϕ′]A; [ϕ ∨ ϕ′]A = [ϕ]A ∪ [ϕ′]A; [¬ϕ]A = U − [ϕ]A

The set F(B, V ) is called the set of conditional formulae of A and is denoted
C (B, V ).

A decision rule for A is any expression of the form ϕ ⇒ d = v, where
ϕ ∈ C (B, V ), v ∈ Vd and [ϕ]A 6= ∅. Formulae ϕ and d = v are referred to as the
predecessor and the successor of the decision rule ϕ⇒ d = v.

A decision rule ϕ⇒ d = v is true in A if and only if [ϕ]A ⊆ [d = v]A.
For a systematic overview of rule induction see the bibliography in [95].
Several numerical factors can be associated with a synthesized rule. For ex-

ample, the support of a decision rule is the number of objects that match the
predecessor of the rule. Various frequency-related numerical quantities may be
computed from such counts.

The main challenge in inducing rules from decision systems lies in determin-
ing which attributes should be included in the conditional part of the rule. First,
one can compute minimal rules. Their conditional parts describe largest object
sets (definable by conjunctions of descriptors) with the same generalized deci-
sion value in a given decision system. Hence, (compare Section 1) they create
largest neighborhoods still relevant for defining the decision classes (or sets of
decision classes when the decision system is inconsistent). Although such mini-
mal decision rules can be computed, this approach may result in a set of rules of
not satisfactory classification quality. Such detailed rules might be over–fit and
they will poorly classify new cases. Rather, shorter rules should be synthesized.
Although they will not be perfect on the known cases (influenced by noise) there



is a good chance that they will be of high quality in classifying new cases. They
can be constructed by computing approximations in the above mentioned sense
to reducts. The quality of approximation is characterized by a degree α of ap-
proximation. This degree can be tuned to obtain relevant neighborhoods. This is
again related to our general discussion in Section 1. Using reduct approximations
in place of reducts, we can obtain larger neighborhoods still relevant for decision
classes description in the universe U∞. Approximations of reducts received by
dropping some descriptors from conditional parts of minimal rules define more
general neighboorhoods, not purely included in decision classes but included in
them in a satisfactory degree. It means that when the received neighborhood
descriptions are considered in U∞ they can be more relevant for decision class
(concept) approximation than neighborhoods described by exact reducts, e.g.
because all (or almost all) objects from the neighborhood not included in ap-
proximated decision class are those listed in U . Hence, one can expect that when
by dropping a descriptor from the conditional part we receive the description of
the neighborhood almost included in the approximated decision class than this
descriptor is a good candidate for dropping.

For estimation of the quality of decision classes approximation global mea-
sures based on the positive region [109] or entropy [24] are used. Methods of
boundary region thinning can be based e.g. on the idea of variable precision
rough set model [137] (see also Section 3.1). The idea is based on an observa-
tion that neighborhoods included in decision classes in satisfactory degree can
be treated as parts of the lower approximations of decision classes. Hence, lower
approximations of decision classes are enlarged and decision rules generated from
them are usually stronger (e.g. they are supported by more examples). The de-
gree of inclusion is tuned experimentally to achieve e.g. high classification quality
on new cases.

An other way of approaching reduct approximations is by computing reducts
for random subsets of the universe of a given decision system and selecting the
most stable reducts, i.e. reducts that occur in ”most” subsystems. These reducts,
called dynamic reducts, are usually inconsistent for the original table, but rules
synthesized from them are more tolerant to noise and other abnormalities; rules
synthesized from such reducts perform better on unseen cases since they cover
most general patterns in the data (for references see the bibliography in [95] and
[94]).

When a set of rules has been induced from a decision system containing a
set of training examples, they can be inspected to see if they reveal any novel
relationships between attributes that are worth further research. Furthermore,
the rules can be applied to a set of unseen cases in order to estimate their
classificatory power.

Several application schemes can be envisioned but a simple one that has
proved useful in practice is the following:

1. When a rough set classifier (i.e. a set of decision rules together with a method
for conflict resolving when they classify new cases) is confronted with a new
case, then the rule set is scanned to find applicable rules, i.e. rules whose



predecessors match the case.
2. If no rule is found (i.e. no rule ”fires”), the most frequent outcome in the

training data is chosen.
3. If more than one rule fires, these may in turn indicate more than one possible

outcome.
4. A voting process is then performed among the rules that fire in order to

resolve conflicts and to rank the predicted outcomes. All votes in favor of
the rule outcome are summed up and stored as its support count. Votes from
all the rules are then accumulated and divided by the total number of votes
in order to arrive at a numerical measure of certainty for each outcome. This
measure of certainty is not really a probability but may be interpreted as an
approximation to such if the model is well calibrated.

The above described strategy to resolve conflicts is the simplest one. For a
systematic overview of rule application see the bibliography in [94] and [95].
Rough set methods can be used to learn from data the strategy for conflict
resolving between decision rules when they are classifying new objects.

Several methods based on rough set methods have been developed to deal
with large data tables, e.g. to generate strong decision rules for them. We will
discuss one of these methods based on decomposition of tables by using patterns,
called templates, see Chapter 1, describing regular sub–domains of the universe
(e.g. they describe a large number of customers having a large number of common
features).

Let A = (U ,A) be an information system. The notion of a descriptor can be
generalized by using terms of the form (a ∈ S), where S ⊆ Va is a set of values.
By a template we mean the conjunction of descriptors, i.e. T = D1 ∧D2 ∧ ... ∧
Dm, where D1, ...Dm are either simple or generalized descriptors. We denote by
length(T) the number of descriptors in T.

An object u ∈ U is satisfying the template T = (ai1
= v1) ∧ ... ∧ (aim

= vm)
if and only if ∀jaij

(u) = vj . Hence the template T describes the set of objects
having the common property: ”the values of attributes aj1

, ..., ajm
on these objects

are equal to v1, ..., vm, respectively”.
The support of T is defined by support(T) = |{u ∈ U : u satisfies T}|. Long

templates with a large support are preferred in many Data Mining tasks. We
consider several quality functions which can be used to compare templates. The
first function is defined by quality1(T) = support(T) + length(T). The second
can be defined by quality2(T) = support(T)× length(T).

Let us consider the following problems [76], see Chapter by HOA SINH
NGUYEN:

1. Optimal Template Support (OTS) Problem:
Instance: Information system A = (A, U ), and a positive integer L.
Question: Find a template T with the length L and the maximal support.

2. Optimal Template Quality (OTQ) Problem:
Instance: An information system A = (U ,A),
Question: Find a template for A with optimal quality.



In [76] it has been proved that the optimal support problem (OPT) is NP-
hard. The second problem is NP-hard with respect to quality1(T) and it is not
known if this problem is NP-hard in case of quality2(T).

Large templates can be found quite efficiently by Aprori algorithms and its
modifications (see [4, 136]). Some other methods for large template generation
have been proposed (see e.g. [76]).

Templates extracted from data are used to decompose large data tables. In
consequence the decision tree is built with internal nodes labeled by (extracted
from data) templates, and edges outgoing from them labeled by 0 (false) and 1
(true). Any leaf is labeled by a sub–table (sub–domain) consisting of all objects
from the original table matching all templates or their complements appearing
on the path from the root of the tree to the leaf. The process of decomposition
is continued until sub–tables attached to leaves can be efficiently analyzed by
existing algorithms (e.g. decision rules for them can be generated efficiently)
based on rough set methods.The reported experiments are showing that such
decomposition returns many interesting regular sub–domains (patterns) of the
large data table in which the decision classes (concepts) can be approximated
with high quality (for references see [76], [79], [94] and [95]).

It is also possible to search for patterns that are almost included in the
decision classes defining default rules [71]. For a presentation of default rules see
the bibliography in [94] and [95].

2 Preprocessing

The rough set community have been committed to constructing efficient algo-
rithms for (new) feature extraction. Rough set methods combined with Boolean
reasoning [13] lead to several successful approaches to feature extraction. The
most successful methods are:

– discretization techniques,
– methods of partitioning of nominal attribute value sets and
– combinations of the above methods.

Searching for new features expressed by multi-modal formulae can be men-
tioned here. Structural objects can be interpreted as models (so called Kripke
models) of such formulas and the problem of searching for relevant features
reduces to construction of multi-modal formulas expressing properties of the
structural objects discerning objects or sets of objects [81].

For more details the reader is referred to the bibliography in [95].

2.1 Feature extraction: Discretization and symbolic attribute value
grouping

Non-categorical attributes must be discretized in a pre–processing step. The dis-
cretization step determines how coarsely we want to view the world. Discretiza-
tion, cf. Chapter 1, is a step that is not specific to the rough set approach.



A majority of rule or tree induction algorithms require it in order to perform
well. The search for appropriate cutoff points can be reduced to search for prime
implicants of an appropriately constructed Boolean function.

There are two reasons that we include the discussion on discretization here.
First of all it is related to the general methodology of rough sets discussed at the
beginning of this article. Discretization can be treated as a searching for more
coarser partitions of the universe still relevant for inducing concept description
of high quality. We will also show that this basic problem can be reduced to
computing reducts in some appropriately defined systems. It follows that we can
estimate the computational complexity of the discretization problem. Moreover,
heuristics for computing reducts and prime implicants can be used here. The
general heuristics can be modified to more optimal ones using a knowledge about
the problem e.g. the natural order on the set of reals, etc. Discretization is only
an illustrative example of many other problems with the same property.

Reported results show that discretization problems and symbolic value par-
tition problems are of high computational complexity (i.e. NP-complete or NP-
hard) which clearly justifies the importance of designing efficient heuristics. The
idea of discretization is illustrated with a simple example.

Example 1. Let us consider a (consistent) decision system (see Tab. 1(a)) with
two conditional attributes a and b and seven objects u1, ..., u7. Values of at-
tributes of these objects and values of the decision d are presented in Tab. 1.

A a b d

u1 0.8 2 1
u2 1 0.5 0
u3 1.3 3 0
u4 1.4 1 1
u5 1.4 2 0
u6 1.6 3 1
u7 1.3 1 1

(a)

=⇒

AP aP bP d

u1 0 2 1
u2 1 0 0
u3 1 2 0
u4 1 1 1
u5 1 2 0
u6 2 2 1
u7 1 1 1

(b)

Table 1. The discretization process: (a) The original decision system A. (b) The
P-discretization of A, where P = {(a, 0.9), (a, 1.5), (b, 0.75), (b, 1.5)}

Sets of possible values of a and b are defined by:

Va = [0, 2) ; Vb = [0, 4) .

Sets of values of a and b for objects from U are respectively given by:

a(U) = {0.8, 1, 1.3, 1.4, 1.6} and

b(U) = {0.5, 1, 2, 3}



Discretization process produces partitions of value sets of conditional at-
tributes into intervals in such a way that a new consistent decision system is
obtained from a given consistent decision system by replacing original value of
an attribute on an object in A with the (unique) name of the interval(s) in which
this value is contained. In this way, the size of value sets of attributes may be
reduced. In case a given decision system is not consistent, one can transform it
into a consistent one by taking the generalized decision instead of the original
decision. Discretization will then return cuts with the following property: regions
bounded by them consist of objects with the same generalized decision. One can
also consider soft (impure) cuts and induce the relevant cuts on their basis (see
the bibliography in [94]).

The following intervals are obtained in our example system:

[0.8, 1); [1, 1.3); [1.3, 1.4); [1.4, 1.6) for a);

[0.5, 1); [1, 2); [2, 3) for b).

The idea of cuts can be introduced now. Cuts are pairs (a, c) where c ∈ Va.
Our considerations are restricted to cuts defined by the middle points of the
above intervals. In our example the following cuts are obtained:

(a, 0.9); (a, 1.15); (a, 1.35); (a, 1.5);

(b, 0.75); (b, 1.5); (b, 2.5).

Any cut defines a new conditional attribute with binary values. For exam-
ple, the attribute corresponding to the cut (a, 1.2) is equal to 0 if a(x) < 1.2;
otherwise it is equal to 1.

By the same token, any set P of cuts defines a new conditional attribute aP

for any a. Given a partition of the value set of a by cuts from P put the unique
names for the elements of these partition.

Example 2. Let P = {(a, 0.9), (a, 1.5), (b, 0.75), (b, 1.5)} be the set of cuts. These
cuts glue together the values of a smaller then 0.9, all the values in interval
[0.9, 1.5) and all the values in interval [1.5, 4). A similar construction can be
repeated for b. The values of the new attributes aP and bP are shown in Tab. 1
(b).

The next natural step is to construct a set of cuts with a minimal number of
elements. This may be done using Boolean reasoning.

Let A = (U, A ∪ {d}) be a decision system where U = {x1, x2, . . . , xn}, A =
{a1, . . . , ak} and d : U −→ {1, . . . , r}. We assume Va = [la, ra) ⊂ ℜ to be
a real interval for any a ∈ A and A to be a consistent decision system. Any
pair (a, c) where a ∈ A and c ∈ ℜ will be called a cut on Va. Let Pa =
{[ca

0, ca
1), [ca

1 , ca
2), . . . , [ca

ka
, ca

ka+1)} be a partition of Va (for a ∈ A) into subin-
tervals for some integer ka, where la = ca

0 < ca
1 < ca

2 < . . . < ca
ka

< ca
ka+1 = ra

and Va = [ca
0 , ca

1)∪ [ca
1 , ca

2)∪ . . .∪ [ca
ka

, ca
ka+1). It follows that any partition Pa is

uniquely defined and is often identified with the set of cuts

{(a, ca
1), (a, ca

2), . . . , (a, ca
ka

)} ⊂ A×ℜ

.



Given A = (U, A ∪ {d}) any set of cuts P =
⋃

a∈A Pa defines a new decision
system AP = (U, AP ∪ {d}) called P-discretization of A, where AP = {aP :
a ∈ A} and aP(x) = i ⇔ a(x) ∈ [ca

i , ca
i+1) for x ∈ U and i ∈ {0, .., ka}.

Two sets of cuts P′ and P are equivalent, written P′≡AP, iff AP = AP
′

. The
equivalence relation ≡A has a finite number of equivalence classes. Equivalent
families of partitions will be not discerned in the sequel.

The set of cuts P is called A-consistent if ∂A = ∂AP , where ∂A and ∂AP are
generalized decisions of A and AP, respectively. An A-consistent set of cuts Pirr

is A-irreducible if P is not A-consistent for any P ⊂ Pirr. The A-consistent set
of cuts Popt is A-optimal if card (Popt) ≤ card (P) for any A-consistent set of
cuts P.

It can be shown that the decision problem of checking if for a given decision
system A and an integer k there exists an irreducible set of cuts P in A such that
card(P) < k (k−minimal partition problem) is NP -complete. The problem
of searching for an optimal set of cuts P in a given decision system A (optimal
partition problem) is NP -hard, see Chapter by HOA SINH NGUYEN.

Despite these complexity bounds it is possible to devise efficient heuristics
that return semi–minimal sets of cuts. Heuristics based on Johnson’s strategy
look for a cut discerning a maximal number of object pairs and eliminate all
already discerned object pairs. This procedure is repeated until all object pairs
to be discerned are discerned. It is interesting to note that this can be realized
by computing the minimal relative reduct of the corresponding decision sys-
tem. The “MD heuristic” searches for a cut with a maximal number of object
pairs discerned by this cut. The idea is analogous to Johnson’s approximation
algorithm. It may be formulated as follows:

ALGORITHM: MD-heuristics (A semi–optimal family of partitions )

Step 1. Construct table A∗ = (U∗, A∗∪{d}) from A = (U, A∪{d}) where U∗ is the
set of pairs (x, y) of objects to be discerned by d and A∗ consists of attribute
c∗ for any cut c and c∗ is defined by c∗(x, y) = 1 if and only if c discerns x
and y (i.e., x, y are in different half-spaces defined by c); set B= A∗;

Step 2. Choose a column from B with the maximal number of occurrences of 1’s;
Step 3. Delete from B the column chosen in Step 2 and all rows marked with 1 in

this column;
Step 4. If B is non-empty then go to Step 2 else Stop.

This algorithm searches for a cut which discerns the largest number of pairs
of objects (MD-heuristics). Then the cut c is moved from A∗ to the resulting
set of cuts P; and all pairs of objects discerned by c are removed from U∗. The
algorithm continues until U∗ becomes empty.

Let n be the number of objects and let k be the number of attributes of
decision system A. The following inequalities hold: card (A∗) ≤ (n− 1) k and

card (U∗) ≤ n(n−1)
2 . It is easy to observe that for any cut c ∈ A∗ O

(

n2
)

steps
are required in order to find the number of all pairs of objects discerned by
c. A straightforward realization of this algorithm therefore requires O

(

kn2
)

of



memory space and O(kn3) steps in order to determine one cut. This approach
is clearly impractical. However, it is possible to observe that in the process of
searching for the set of pairs of objects discerned by currently analyzed cut from
an increasing sequence of cuts one can use information about such set of pairs of
objects computed for the previously considered cut. The MD-heuristic using this
observation [74] determines the best cut in O (kn) steps using O (kn) space only.
This heuristic is reported to be very efficient with respect to the time necessary
for decision rules generation as well as with respect to the quality of unseen
object classification.

We report some results of experiments on data sets using MD–like heuristics.
We would like to comment for example on the result of classification received
by an application to Shuttle data (Table 3). The result concerning classification
quality is the same as the best result reported in [69] but the time is of order
better than for the best result from [69]. In this table we present also the results of
experiments with heuristic searching for features defined by oblique hyperplanes.
This has been developed using genetic algorithm allowing to tune the position
of the hyperplane to get an optimal one [74]. In this way one can implement
propositional reasoning using some background knowledge about the problem.

In experiments we have chosen several data tables with real value attributes
from the U.C. Irvine repository. For some tables, taking into account the small
number of their objects, we have adopted the approach based on five-fold cross-
validation (CV −5). The obtained results (Table 3) can be compared with those
reported in [21, 69] (Table 2). For predicting decisions on new cases we apply
only decision rules generated either by the decision tree (using hyperplanes) or
by rules generated in parallel with discretization.

Names Nr of Train. Test. Best
class. table table results

Australian 2 690×14 CV5 85.65%

Glass 7 214×9 CV5 69.62%

Heart 2 270×13 CV5 82.59%

Iris 3 150×4 CV5 96.00%

Vehicle 4 846×19 CV5 69.86%

Diabetes 2 768×8 CV5 76.04%

SatImage 6 4436×36 2000 90.06%

Shuttle 6 43500×7 14500 99.99%

Table 2. Data tables stored in the UC Irvine Repository

For some tables the classification quality of our algorithm is better than that
of the C4.5 or Naive–Bayes induction algorithms [100] even when used with
different discretization methods [21, 69, 15].

Comparing this method with the other methods reported in [69], we can
conclude that our algorithms have the shortest runtime and a good overall clas-
sification quality (in many cases our results were the best in comparison to many



Data Diagonal cuts Hyperplanes
tables #cuts quality #cuts quality

Australian 18 79.71% 16 82.46%

Glass 14±1 67.89% 12 70.06%

Heart 11±1 79.25% 11±1 80.37%

Iris 7±2 92.70% 6±2 96.7%

Vehicle 25 59.70% 20±2 64.42%

Diabetes 20 74.24% 19 76.08%

SatImage 47 81.73% 43 82.90%

Shuttle 15 99.99% 15 99.99%

Table 3. Results of experiments on Machine Learning data.

other methods reported in literature).
We would like to stress that inducing the minimal number of the relevant cuts

is equivalent to computing the minimal reduct in a decision system constructed
from the discussed above system A∗ [74]. This in turn, as we have shown, is
equivalent to the problem of computing a minimal prime implicant of Boolean
function. This is only illustration of a wide class of basic problems of Machine
Learning, Pattern Recognition and KDD which can be reduced to problems of
relevant reduct computation.

The presented approach may be extended to the case of symbolic (nominal,
qualitative) attributes as well as to the case of mixed nominal and numeric
attributes.

In case of symbolic value attribute (i.e. without pre–assumed order on values
of given attributes) the problem of searching for new features of the form a ∈ V
is, in a sense, from practical point of view more complicated than the for real
value attributes. However, it is possible to develop efficient heuristics for this
case using Boolean reasoning.

Any function Pa : Va → {1, . . . , ma} (where ma ≤ card(Va)) is called a
partition on Vai

. The rank of Pai
is the value rank (Pi) = card (Pai

(Vai
)). The

family of partitions {Pa}a∈B is consistent with B (B − consistent) if the condi-
tion [(u, u′) /∈ IND(B/{d}) implies ∃a∈B[Pa(a(u)) 6= Pa(a(u′))]] holds for any
(u, u′) ∈ U. It means that if two objects u, u′ are discerned by B and d, then
they must be discerned by partition attributes defined by {Pa}a∈B. We consider
the following optimization problem

PARTITION PROBLEM: symbolic value partition problem:

Given a decision table A and a set of attributes B ⊆ A, search for the minimal
B− consistent family of partitions (i.e. such B− consistent family {Pa}a∈B

that
∑

a∈B rank (Pa) is minimal).

To discern between pairs of objects, we will use new binary features av′

v

(for v 6= v′) defined by av′

v (x, y) = 1 if a(x) = v 6= v′ = a(y). One can apply
Johnson’s heuristics for the new decision table with these attributes to search for
a minimal set of new attributes that discerns all pairs of objects from different



decision classes. After extracting these sets, for each attribute ai we construct
a graph Γai

= 〈Vai
, Eai
〉 where Eai

is defined as the set of all new attributes
(propositional variables) found for the attribute ai. Any vertex coloring of Γai

defines a partition of Vai
. The colorability problem is solvable in polynomial time

for k = 2, but remains NP-complete for all k ≥ 3. But, similarly to discretization,
one can apply some efficient heuristics searching for an optimal partition.

Let us consider an example of a decision table presented in Table 1 and (a
reduced form) of its discernibility matrix (Table 1).

Fig. 1. The decision table and the discernibility matrix

A a b d

u1 a1 b1 0

u2 a1 b2 0

u3 a2 b3 0

u4 a3 b1 0

u5 a1 b4 1

u6 a2 b2 1

u7 a2 b1 1

u8 a4 b2 1

u9 a3 b4 1

u10 a2 b5 1

=⇒

M(A) u1 u2 u3 u4

u5 b
b1

b4
b

b2

b4
a

a1
a2

, b
b3

b4
a

a1
a3

, b
b1

b4

u6 a
a1
a2

, b
b1

b2
a

a1
a2

b
b2

b3
a

a2
a3

, b
b1

b2

u7 a
a1
a2

a
a1
a2

, b
b1

b2
b

b1

b3
a

a2
a3

u8 a
a1
a4

, b
b1

b2
a

a1
a4

a
a2
a4

, b
b2

b3
a

a3
a4

, b
b1

b2

u9 a
a1
a3

, b
b1

b4
a

a1
a3

, b
b2

b4
a

a2
a3

, b
b3

b4
b

b1

b4

u10 a
a1
a2

, b
b1

b5
a

a1
a2

, b
b2

b5
b

b3

b5
a

a2
a3

, b
b1

b5

Fig. 2. Coloring of attribute value graphs and the reduced table.

r

r b

b@
@

@ �
�

� b

b

r

r ra1

a3

a2

a4
b5

b1 b2

b3

b4

B
BB

Q
Q

QQ
B
B
BB

�
�
��

a b =⇒

a
Pa b

Pb d

1 1 0
2 2 0
1 2 1
2 1 1

From the Boolean function fA with Boolean variables of the form av2

v1
one can

find the shortest prime implicant: aa1

a2
∧aa2

a3
∧aa1

a4
∧aa3

a4
∧bb1

b4
∧bb2

b4
∧bb2

b3
∧bb1

b3
∧bb3

b5

which can be treated as graphs presented in the Figure 2.

We can color vertices of those graphs as shown in Figure 2. Colors are corre-
sponding to partitions:

Pa (a1) = Pa (a3) = 1; Pa (a2) = Pa (a4) = 2

Pb (b1) = Pb (b2) = Pb (b5) = 1; Pb (b3) = Pb (b4) = 2.

At the same time one can construct the new decision table (Table 2).

One can extend the presented approach (see e.g. [77]) to the case when in
a given decision system nominal and numeric attribute appear. The received
heuristics are of very good quality.



Experiments for classification methods (see [77]) have been carried over
decision systems using two techniques called train-and-test and n-fold-cross-
validation. In Table 4 some results of experiments obtained by testing the pro-
posed methods MD (using only discretization based on MD-heurisctics using the
Johnson approximation strategy) and MD-G (using discretization and symbolic
value grouping) for classification quality on well known data tables from the
“UC Irvine repository” are shown. The results reported in [30] are summarized
in columns labeled by S-ID3 and C4.5 in Table 4). It is interesting to compare
those results with regard both to the classification quality. Let us note that
the heuristics MD and MD-G are also very efficient with respect to the time
complexity.

Names of Classification accuracies
Tables S-ID3 C4.5 MD MD-G

Australian 78.26 85.36 83.69 84.49

Breast (L) 62.07 71.00 69.95 69.95

Diabetes 66.23 70.84 71.09 76.17

Glass 62.79 65.89 66.41 69.79

Heart 77.78 77.04 77.04 81.11

Iris 96.67 94.67 95.33 96.67

Lympho 73.33 77.01 71.93 82.02

Monk-1 81.25 75.70 100 93.05

Monk-2 69.91 65.00 99.07 99.07

Monk-3 90.28 97.20 93.51 94.00

Soybean 100 95.56 100 100

TicTacToe 84.38 84.02 97.7 97.70

Average 78.58 79.94 85.48 87.00

Table 4. Quality comparison of various decision tree methods. Abbreviations: MD:
MD-heuristics; MD-G: MD-heuristics with symbolic value partition

In the case of real value attributes one can search for features in the feature
set that contains the characteristic functions of half–spaces determined by hyper-
planes or parts of spaces defined by more complex surfaces in multi–dimensional
spaces.

Genetic algorithms have been applied in searching for semi–optimal hyper-
planes. The reported results are showing substantial increase in the quality of
classification of unseen objects but at the cost of increased time for searching
for the semi-optimal hyperplane.

2.2 Feature selection

Selection of relevant features is an important problem and has been extensively
studied in Machine Learning and Pattern Recognition (see e.g. [70]). It is also a
very active research area in the rough set community.



One of the first ideas [86] was to consider the core of the reduct set of the
information system A as the source of relevant features. One can observe that
relevant feature sets, in a sense used by the machine learning community, can
be interpreted in most cases as the decision–relative reducts of decision systems
obtained by adding appropriately constructed decisions to a given information
system.

Another approach is related to dynamic reducts (for references see e.g. [94])cf.
Chapter by BAZAN et AL. Attributes are considered relevant if they belong to
dynamic reducts with a sufficiently high stability coefficient, i.e., they appear
with sufficiently high frequency in random samples of a given information system.
Several experiments (see [94]) show that the set of decision rules based on such
attributes is much smaller than the set of all decision rules. At the same time
the quality of classification of new objects increases or does not change if one
only considers rules constructed over such relevant features.

Another possibility is to consider as relevant the features that come from
approximate reducts of sufficiently high quality.

The idea of attribute reduction can be generalized by introducing a concept
of significance of attributes which enables to evaluate attributes not only in the
two–valued scale dispensable – indispensable but also in the multi–value case by
assigning to an attribute a real number from the interval [0,1] that expresses the
importance of an attribute in the information table.

Significance of an attribute can be evaluated by measuring the effect of re-
moving the attribute from an information table.

Let C and D be sets of condition and decision attributes, respectively, and let
a ∈ C be a condition attribute. It was shown previously that the number γ(C, D)
expresses the degree of dependency between attributes C and D, or the accuracy
of the approximation of U/D by C. It may be now checked how the coefficient
γ(C, D) changes when attribute a is removed i.e. what is the difference between
γ(C, D) and γ((C−{a}, D). The difference is normalized and the significance of
attribute a is defined as

σ(C,D)(a) =
(γ(C, D) − γ(C − {a}, D))

γ(C, D)
= 1−

γ(C − {a}, D)

γ(C, D)
,

Coefficient σC,D(a) can be understood as a classification error which occurs
when attribute a is dropped. The significance coefficient can be extended to sets
of attributes as follows:

σ(C,D)(B) =
(γ(C, D)− γ(C −B, D))

γ(C, D)
= 1−

γ(C −B, D)

γ(C, D)
.

Any subset B of C is called an approximate reduct of C and the number

ε(C,D)(B) =
(γ(C, D) − γ(B, D))

γ(C, D)
= 1−

γ(B, D)

γ(C, D)
,

is called an error of reduct approximation. It expresses how exactly the set of
attributes B approximates the set of condition attributes C with respect to
determining D.



The following equations are obvious: ε(B) = 1− σ(B) and ε(B) = 1− ε(C −
B). For any subset B of C, we have ε(B) ≤ ε(C). If B is a reduct of C, then
ε(B) = 0.

The concept of an approximate reduct (with respect to the positive region)
is a generalization of the concept of a reduct that was considered previously.
A minimal subset B of condition attributes C, such that γ(C, D) = γ(B, D),
or ε(C,D)(B) = 0 is a reduct in the previous sense. The idea of an approximate
reduct can be useful in these cases where a smaller number of condition attributes
is preferred over the accuracy of classification.

Several other methods of reduct approximation based on measures different
from positive region have been developed. All experiments confirm the hypothesis
that by tuning the level of approximation the quality of the classification of new
objects may be increased in most cases. It is important to note that it is once
again possible to use Boolean reasoning to compute different types of reducts
and to extract from them relevant approximations.

2.3 α-reducts and association rules

In this section we discuss the relationship between association rules [4] and
approximations of reducts [109], [110], [78].

Association rules can be defined in many ways (see [4]). Here, according to our
notation, association rules can be defined as implications of the form (P⇒ Q),
where P and Q are different simple templates, i.e. formulas of the form

(ai1
= vi1

) ∧ . . . ∧ (aik
= vik

)⇒ (aj1
= vj1

) ∧ . . . ∧ (ajl
= vjl

) (1)

These implications can be called generalized association rules, because associ-
ation rules were originally defined by formulas of the form P⇒ Q where P and Q
were sets of items (e.g. goods or articles in stock market) e.g. {A, B} ⇒ {C, D, E}
(see [4]). One can see that this form can be obtained from 1 by replacing values
of descriptors by 1 i.e.: (A = 1) ∧ (B = 1)⇒ (C = 1) ∧ (D = 1) ∧ (E = 1).

Usually, for a given information table A, the quality of the association rule
R = P ⇒ Q can be evaluated by two measures called support and confidence
with respect to A. Support of the rule R is defined by the number of objects
from A satisfying the condition (P ∧Q) i.e.

support(R) = support(P ∧Q)

The second measure – confidence of R – is the ratio between the support of
(P ∧Q) and the support of P i.e.

confidence(R) =
support(P ∧Q)

support(P)

The following problem has been investigated by many authors (see e.g. [4, 136])

For a given information table A, an integer s, and a real

number c ∈ [0, 1], find as many as possible association rules

R = (P⇒ Q) such that support(R) ≥ s and confidence(R) ≥ c

All existing association rule generation methods consist of two main steps:



1. Generate as many as possible templates T = D1 ∧ D2... ∧ Dk such that
support(T) ≥ s and support(T ∧D) < s for any descriptor D (i.e. maximal
templates among those which are supported by more than s objects).

2. For any template T, search for a partition T = P ∧Q such that:

(a) support(P) < support(T)
c

(b) P is the smallest template satisfying the previous condition

We show that the second step can be solved using rough set methods and
Boolean reasoning approach.

Let us assume that a template T = D1 ∧ D2 ∧ . . . ∧ Dm supported by at
least s objects, has been found. For the given confidence threshold c ∈ (0; 1),
the decomposition T = P ∧Q is called c-irreducible if confidence(P⇒ Q) ≥ c
and for any decomposition T = P′ ∧Q′ such that P′ is a sub–template of P,
confidence(P′ ⇒ Q′) < c.

We show that the problem of searching for c-irreducible association rules from
the given template is equivalent to the problem of searching for local α-reducts
(for some α) from a decision table.

Let us define a new decision table A|T = (U, A|T ∪ d) from the original
information table A and the template T by

1. A|T = {aD1
, aD2

, ..., aDm
} is a set of attributes corresponding to the descrip-

tors of T such that aDi
(u) =

{

1 if the object u satisfies Di,
0 otherwise.

2. the decision attribute d determines if the object satisfies template T i.e.

d(u) =

{

1 if the object u satisfies T,
0 otherwise.

The following facts [110], [78] describe the relationship between association
rules and approximations of reducts.

For a given information table A = (U ,A), a template T, and a set of descrip-

tors P, an implication
(

∧

Di∈P
Di ⇒

∧

Dj /∈P
Dj

)

is

1. an 100%-irreducible association rule from T if and only if P is a reduct in
AT.

2. a c-irreducible association rule from T if and only if P is an α-reduct in AT,
where α = 1− (1

c − 1)/(n
s − 1), n is the total number of objects from U , and

s = support(T).

Searching for minimal α-reducts is a well known problem in rough set theory.
One can show, that the problem of searching for the shortest α-reduct is NP-
hard.

The following example illustrates the main idea of our method. Let us con-
sider the following information table A with 18 objects and 9 attributes.

Assume that the template

T = (a1 = 0) ∧ (a3 = 2) ∧ (a4 = 1) ∧ (a6 = 0) ∧ (a8 = 1)



Table 5. The example of information table A and template T support by 10 objects
and the new decision table A|T constructed from A and template T

A a1 a2 a3 a4 a5 a6 a7 a8 a9

u1 0 1 1 1 80 2 2 2 3

u2 0 1 2 1 81 0 aa 1 aa

u3 0 2 2 1 82 0 aa 1 aa

u4 0 1 2 1 80 0 aa 1 aa

u5 1 1 2 2 81 1 aa 1 aa

u6 0 2 1 2 81 1 aa 1 aa

u7 1 2 1 2 83 1 aa 1 aa

u8 0 2 2 1 81 0 aa 1 aa

u9 0 1 2 1 82 0 aa 1 aa

u10 0 3 2 1 84 0 aa 1 aa

u11 0 1 3 1 80 0 aa 2 aa

u12 0 2 2 2 82 0 aa 2 aa

u13 0 2 2 1 81 0 aa 1 aa

u14 0 3 2 2 81 2 aa 2 aa

u15 0 4 2 1 82 0 aa 1 aa

u16 0 3 2 1 83 0 aa 1 aa

u17 0 1 2 1 84 0 aa 1 aa

u18 1 2 2 1 82 0 aa 2 aa

A|T D1 D2 D3 D4 D5 d
a1 = 0 a3 = 2 a4 = 1 a6 = 0 a8 = 1

u1 1 0 1 0 0

u2 1 1 1 1 1 1

u3 1 1 1 1 1 1

u4 1 1 1 1 1 1

u5 0 1 0 0 1

u6 1 0 0 0 1

u7 0 0 0 0 1

u8 1 1 1 1 1 1

u9 1 1 1 1 1 1

u10 1 1 1 1 1 1

u11 1 0 1 1 0

u12 1 0 0 1 0

u13 1 1 1 1 1 1

u14 1 1 0 0 0

u15 1 1 1 1 1 1

u16 1 1 1 1 1 1

u17 1 1 1 1 1 1

u18 0 1 1 1 0

has been extracted from the information table A. One can see that support(T) =
10 and length(T) = 5. The new constructed decision table A|T is presented in
Table 6. The discernibility function for A|T can be explained as follows

f(D1, D2, D3, D4, D5) = (D2 ∨D4 ∨D5) ∧ (D1 ∨D3 ∨D4) ∧ (D2 ∨D3 ∨D4)

∧(D1 ∨D2 ∨D3 ∨D4) ∧ (D1 ∨D3 ∨D5)

∧(D2 ∨D3 ∨D5) ∧ (D3 ∨D4 ∨D5) ∧ (D1 ∨D5)

After simplification the condition presented in Table 6 we obtain six reducts:
f(D1, D2, D3, D4, D5) = (D3 ∧D5) ∨ (D4 ∧D5) ∨ (D1 ∧D2 ∧D3) ∨ (D1 ∧D2 ∧
D4)∨ (D1∧D2∧D5)∨ (D1∧D3∧D4) for the decision table A|T. Thus, we have
found from T six association rules with (100%)-confidence.

For c = 90%, we would like to find α-reducts for the decision table AT, where

α = 1−
1

c
−1

n
s

−1 = 0.86. Hence we would like to search for a set of descriptors that

covers at least ⌈(n − s)(α)⌉ = ⌈8 · 0.86⌉ = 7 elements of discernibility matrix
M(A|T). One can see that the following sets of descriptors: {D1, D2}, {D1, D3},
{D1, D4}, {D1, D5}, {D2, D3}, {D2, D5}, {D3, D4} have nonempty intersection
with exactly 7 entries of the discernibility matrixM(A|T). In Table 6 we present
all association rules induced from those sets. Heuristics searching for α-reducts
are discussed e.g. in [78].

3 Extensions of rough sets

We discuss in this section shortly two extensions of rough sets: variable preci-
sion rough set model and rough set approach based on tolerance relations but we
would like to mention that many other generalizations have been investigated



Table 6. The simplified version of discernibility matrix M(A|T) and association rules

M(A|T) u2, u3, u4, u8, u9

u10, u13, u15, u16, u17

u1 D2 ∨ D4 ∨ D5

u5 D1 ∨ D3 ∨ D4

u6 D2 ∨ D3 ∨ D4

u7 D1 ∨ D2 ∨ D3 ∨ D4

u11 D1 ∨ D3 ∨ D5

u12 D2 ∨ D3 ∨ D5

u14 D3 ∨ D4 ∨ D5

u18 D1 ∨ D5

= 100% =⇒

= 90% =⇒

D3 ∧ D5 ⇒ D1 ∧ D2 ∧ D4

D4 ∧ D5 ⇒ D1 ∧ D2 ∧ D3

D1 ∧ D2 ∧ D3 ⇒ D4 ∧ D5

D1 ∧ D2 ∧ D4 ⇒ D3 ∧ D5

D1 ∧ D2 ∧ D5 ⇒ D3 ∧ D4

D1 ∧ D3 ∧ D4 ⇒ D2 ∧ D5

D1 ∧ D2 ⇒ D3 ∧ D4 ∧ D5

D1 ∧ D3 ⇒ D3 ∧ D4 ∧ D5

D1 ∧ D4 ⇒ D2 ∧ D3 ∧ D5

D1 ∧ D5 ⇒ D2 ∧ D3 ∧ D4

D2 ∧ D3 ⇒ D1 ∧ D4 ∧ D5

D2 ∧ D5 ⇒ D1 ∧ D3 ∧ D4

D3 ∧ D4 ⇒ D1 ∧ D2 ∧ D5

and some of them have been used for real – life data analysis. Among them
are: abstract approximation spaces (see e.g. [14]); nondeterministic information
systems (see e.g. [84]); extensions of rough set approach to deal with preferential
ordering on attributes (criteria) in multi–criteria decision making (see e.g. [43]);
extensions of rough set methods for incomplete information systems (see e.g [57]
cf. Chapter by KRYSZKIEWICZ and RYBINSKI); formal languages approxima-
tions (see e.g. [83]); neighboorhood systems (see e.g. [60]); distributed systems
(see e.g. [101]). For discussion of other possible extensions see [93].

3.1 The variable precision rough set model

The lower and upper approximations are just one example of possible approx-
imations. In the terminology of Machine Learning they are approximations of
subsets of objects known from the training sample. It is also desirable to approx-
imate subsets of all objects (including also new unseen objects). The best known
technique for such applications is the so–called boundary region thinning. It is
related to the variable precision rough set approach [137]. Another technique
is used in tuning of decision rules. For instance, better quality of new objects
classification may be achieved by introducing some degree of inconsistency of the
rules on the training objects. This technique is an analogue of the well-known
techniques for decision tree pruning. These approaches can be characterized in
the following way: parameterized approximations of sets are defined and better
approximations of sets (or decision rules) are obtained by tuning the parameters.

3.2 Tolerance based rough set model

Tolerance relations provide an attractive and general tool for studying indis-
cernibility phenomena. The importance of investigations of tolerance relations
had been noticed by Poincaré and Carnap.

Any tolerance relation defines a covering of the universe of objects (by neigh-
borhoods defined by so called tolerance classes). Tolerance relation for objects



can be defined by similarity relation on feature (attribute) value vectors of ob-
jects cf. Chapter 1, Chapter by STEPANIUK.

A relation τ ⊆ X × U is called a tolerance relation on U if (i) τ is reflexive:
xτx for any x ∈ U and (ii) τ is symmetric: xτy implies yτx for any pair x, y of
elements of U . The pair (U, τ) is called a tolerance space. It leads to a metric
space with the distance function

dτ (x, y) = min{k : ∃x0,x1,...,xk
x0 = x∧xk = y ∧ (xiτxi+1 for i = 0, 1, . . . , k− 1)}

Sets of the form τ(x) = {y ∈ U : xτ y} are called tolerance sets . These sets as
well as the metric above can be used to define more general approximations and
their clusters. This is done by substituting tolerance classes for indiscernibility
classes.

Definitions of the lower and upper approximations of sets can be easily
generalized. [14] defines approximations of sets which are in some sense closer
to X than the classical ones. They are defined as follows: τ∗X = {x ∈ U :
∃y(xτy&τ(y)) ⊆ X)} and τ∗X = {x ∈ U : ∀y(xτy ⇒ τ(y) ∩X 6= ∅)}. It is easy
to check that τXτ∗X ⊆ X ⊆ τ∗X ⊆ τX.

It follows that in the process of learning a proper concept approximation
there are more possibilities when using tolerance relations but at a greater com-
putational cost that is due to a larger search space.

Tolerance relations can be defined for information systems or decision sys-
tems: by a tolerance information system we understand a triple A′ = (U, A, τ)
where A′ = (U, A) is an information system and τ is a tolerance relation on
information signatures InfB(x) = {(a, a(x)) : a ∈ B} where x ∈ U , B ⊆ A.

Tolerance reducts and tolerance–based decision rules can be generated by
standard methods adapted to the tolerance case.

Some efficient techniques for discovery of relevant tolerances from data have
been developed cf. Chapter by HOA SINH NGUYEN. For references see the
bibliography in [94, 95].

3.3 Rough mereology

The approach based on inclusion in a degree has been generalized to the rough
mereological approach (see e.g. [97], [92]) cf. Chapter 3 by POLKOWSKI and
SKOWRON. The inclusion relation xµry with the intended meaning x is a part
of y in a degree r has been taken as the basic notion of the rough mereology
being a generalization of the Leśniewski mereology. Rough mereology offers a
methodology for synthesis and analysis of objects in distributed environment of
intelligent agents, in particular, for synthesis of objects satisfying a given speci-
fication in satisfactory degree, i.e., objects sufficiently close to standard objects
(prototypes) satisfying the specification. Moreover, rough mereology has been
recently used for developing foundations of the information granule calculus, an
attempt towards formalization of the Computing with Words paradigm, recently
formulated by Lotfi Zadeh.



Let us also note that one of the prospects for rough mereological applications
is to look for algorithmic methods of extracting logical structures from data such
as, for instance, finding relational structures corresponding to relevant feature
extraction, synthesizing default rules (approximate decision rules), constructing
connectives for uncertainty coefficients propagation and synthesizing schemes of
approximate reasoning. A progress in this direction is crucial for further devel-
opment of applications, in particular, we believe it is one of the central issues for
KDD [28]. Rough set approach combined with rough mereology can be treated
as an inference engine for computing with words and granular computing [133],
[134], [93].

4 Algebraic and Logical Aspects of Rough Sets

For any information system A = (U, A) one can define a family RS(A) of rough
set representations, i.e., pairs (AX, AX), where X ⊆ U. Two questions arise
immediately: (i) How to characterize the set of all rough set representations in a
given information system? and (ii) What are “natural” algebraic operations on
rough set representations?

A pair (AX, U −AX) can be assigned to any rough set (AX, AX) in A. The
following “natural” operations on those pairs of sets are: (X1, X2) ∧ (Y1, Y2) =
(X1∩Y1, X2∪Y2), (X1, X2)∨(Y1, Y2) = (X1∪Y1, X2∩Y2) ,∼ (X1, X2) = (X2, X1)
or ¬(X1, X2) = (U −X1, X1), or ÷(X1, X2) = (X2, U −X2). The defined oper-
ations are not accidental: we are now very close (still the implication operation
should be defined properly!) to basic varieties of abstract algebras, such as Nel-
son or Heyting algebras, extensively studied in connection with different logical
systems. The reader can find formal analysis of the relationships of rough sets
with Nelson, Heyting,  Lukasiewicz, Post or double Stone algebras, in particular
the representation theorems for rough sets in different classes of algebras in [94].
Let us also note that the properties of the negation operations defined above
show that they correspond to the well–known negations studied in logic: strong
(constructive) negation or weak (intuitionistic) negation.

Rough algebras can be derived from rough equality. Some relationships of
rough algebras with many–valued logics have been shown such as, for example,
soundness and completeness of  Lukasiewicz’s 3-valued logic with respect to rough
semantics have been proven. The rough semantics defined by rough algebras is
a special kind of a topological quasi–boolean algebra; relationships of rough sets
with 4–valued logic have been found.

There is a number of results on logics, both propositional and predicate, that
touch upon various rough set aspects. They have some new connectives (usually
modal ones) reflecting different aspects of the approximations. On the semantical
level they allow to express, among other possibilities, how the indiscernibility
classes (or tolerance classes) are “matching” the interpretations of formulae in
a given model M . For example, in the case of necessity connective the meaning
(2α)M of the formula α in the model M is the lower approximation of αM , in case
of possibility connective (3α)M it is the upper approximation of αM . Many other



connectives have been introduced and logical systems with these connectives have
been characterized. For example, rough quantifiers can be defined for predicate
logic. Results related to the completeness of axiomatization, decidability as well
as expressibility of these logical systems are typical. The reader can find more
information on rough logic in [81] and in the bibliography in [95].

It is finally worth mentioning a research direction related to the so-called
rough mereological approach for an approximate synthesis of objects satisfying
a given specification to a satisfactory degree. Let us note here that an interesting
prospect for applied logic is to look for algorithmic methods of extracting logical
structures from data. This goal is related to aims of rough mereology, several
aspects in the KDD research and to the calculi on information granules and to
computing with words [133] and [134]. For further references see [81], [94] and
[95].

5 Applications, Case Studies, and Software Systems

There are numerous areas of successful applications of rough set software sys-
tems. Many interesting case studies are reported (for references see e.g. [94, 95],
[82] and the bibliography in these books, in particular [18], [44], [54], [125], [139]).

This section lists in the alphabetical order some of the software systems for
rough sets. More details can be found in [95].

– Datalogic/R, http:/ourworld.compuserve.com/homepages/reduct
– Grobian (Roughian), e-mail: I.Duentsch@ulst.ac.uk, ggediga@luce.psycho.-

Uni-Osnabrueck.DE
– KDD-R: Rough Sets-Based Data Mining System, e-mail: ziarko@cs.uregi-

na.ca
– LERS—A Knowledge Discovery System , e-mail: jerzy@eecs.ukans.edu
– PRIMEROSE, e-mail: tsumoto@computer.org
– ProbRough — A System for Probabilistic Rough Classifiers Generation, e-

mail: {zpiasta,lenarcik}@sabat.tu.kielce.pl
– Rosetta Software System, http:/www.idi.ntnu.no/˜aleks/rosetta/
– Rough Family - Software Implementation of the Rough Set Theory, e-mail:

Roman.Slowinski@cs.put.poznan.pl, Jerzy.Stefanowski@cs.put.poznan.pl
– RSDM: Rough Sets Data Miner, e-mail: {cfbaizan, emenasalvas}@.fi.upm.es
– RoughFuzzyLab - a System for Data Mining and Rough and Fuzzy Sets

Based Classification, e-mail: rswiniar@saturn.sdsu.edu
– RSL – The Rough Set Library, ftp:/ftp.ii.pw.edu.pl/pub/Rough/
– TAS: Tools for Analysis and Synthesis of Concurrent Processes using Rough

Set Methods, e-mail: zsuraj@univ.rzeszow.pl
– Trance: a Tool for Rough Data Analysis, Classification, and Clustering, e-

mail:wojtek@cs.vu.nl

5.1 Conclusions

Rough set theory has proved to be useful in Data Mining and Knowledge Dis-
covery. It constitutes a sound basis for Data Mining and Knowledge Discovery



applications. The theory offers mathematical tools to discover hidden patterns
in data. It identifies partial or total dependencies (i.e. cause–effect relations) in
data bases, eliminates redundant data, gives approach to deal with missing data,
dynamic data and others. Also methods of data mining in very large data bases
using rough sets recently have been proposed and investigated.

There have been done a substantial progress in developing rough set methods
for Data Mining and Knowledge Discovery (see methods and cases reported in
e.g. in [16], [18], [20], [44], [51], [59], [71], [74], [82], [94], [95], [96], [139]).

New methods for extracting patterns from data (see e.g. [55], [79], [71]),
[54], [90]), decomposition of decision systems (see e.g. [79]) as well as a new
methodology for data mining in distributed and multi–agent systems (see e.g.
[93]) have been developed.

6 Rough Logic: A Perspective on Logic in KDD

Logic understood as a study of mechanisms of inference, involving inference
about knowledge from data, has evolved into many deductive schemes differ-
ing by understanding of semantics of inference p ⊢ q. In this Chapter, basic
schemes are outlined: classical calculi, many–valued logics, modal logics along
with deductive mechanisms: axiomatized schemes, natural deduction, resolution,
sequent calculus. Also outlined are various approaches to reasoning in inconsis-
tent situations: belief revision, non–monotonic logics. In complex tasks of AI
and KDD like pattern recognition or machine learning, inductive reasoning is
more frequent in applications aimed at defining relevant concepts and depen-
dencies among them. Examples of fuzzy logic, rough logic, mereological logic are
presented.

Perception, description and analysis of real life phenomena has been a dom-
inant feature in intellectual activity of a human being; a fortiori, this activity
has been assigned to machine systems exploiting various computing paradigms.
Observation of a real life phenomenon may be passive or active: by the former
we mean perceiving the phenomenon and possibly rendering its impression while
by the latter we mean the process in which we create tools for a quantitative
description of the phenomenon in terms of measurements, recordings, expert’s
knowledge etc. This latter process leads to the record of the phenomenon in the
form of data. Data may therefore be of many various types: numerical data, sym-
bolic data, pattern data including time series data, etc. These types of data may
be further made into more complex types e.g. arrays of numerical data or audio
or video series (e.g. documentary films). The choice of a way of data collecting
as well as a type of data depends on a particular problem which we are going
to solve about the given phenomenon; this data elicitation process may have a
great complexity and it is thoroughly studied by many authors [40]. Data elicited
from a phenomenon should undergo a representation process in which they are
modeled by a certain structure. This structure allows for efficient knowledge rep-
resentation and reasoning about it in order to solve some queries or problems.
The relationship of data and knowledge, in particular how knowledge can be



acquired from data, has attracted attention of many philosophers and logicians
cf. e.g. [106].

From logical point of view, data represent a model of a phenomenon i.e.
a set of entities arranged in a certain space - time structure. Clearly, a real
phenomenon may have associated with it many distinct data structures.

Usually, the nature of the phenomenon suggests us certain primitive con-
cepts i.e. sets of entities in data structure in terms of which we build more
complex concepts and we carry reasoning about the phenomenon. The proper-
ties of data structures, concepts and their relationships or actions were found to
be abstracted best by means of logics. A logic involves a set of formulas (well-
formed expressions in a symbolic language) along with a family of relational
structures (models) in which formulas are interpreted as concepts (i.e. sets of
entities) of various relational complexities as well as a mechanism allowing us to
reason about properties of models. The choice of the language of formulas may
be critical: on one hand, this language should be expressive enough to render
all essential concepts in data structures. On the other hand too expressive a
language may cause too high complexity of inference process (the phenomenon
of language bias in Machine Learning, Pattern Recognition, KDD [40], [68], [73],
[28]). The primitive data structures constructed according to a selected way(s)
of recording a phenomenon present itself as possible models for various logics.
Strategies for discovery of a particular logic, relevant for problems to be solved,
present a challenge for KDD.

Let us recall here a well–known logical language DATALOG used in relational
databases (cf.[17], [126]).

Example: DATALOG

In relational databases, data are represented in two–dimensional tables called
relations. Each row of the data table defines an instance of the relation among
items occurring in this row. In DATALOG, relations are represented as predi-
cates: for a relation R of arity n, we may introduce a predicate symbol P n

R (often
written down simply as R also) and we may define an atom (an elementary
formula) P n

R(x1, x2, .., xn). From atoms, more complex formulas may be con-
structed by means of propositional connectives : ∧ (AND), ∨ (OR), ¬ (NOT )
e.g. P n

R(x1, x2, .., xn) ∧ P n
S (x1, x2, .., xn). In this way algebraic operations on re-

lations are rendered in DATALOG in symbolic, logical form. We may have other
atoms, e.g. arithmetic, like x+y > 1 etc. In DATALOG, we may also define rules
as implications of the form P n

R(x1, x2, .., xn)←− ∧k
i=1P ni

Si
(xi

i1
, ..., xi

iki
); rules al-

low for symbolical rendering of a mechanism of new relation formation.

The above aspect of DATALOG refers to its syntax i.e. mechanisms of for-
mula formation. The next aspect is its semantics i.e. meaning, interpretation
of formulas. To interpret formulas, we must evaluate variables x1, x2, ...; to this
end, we introduce a valuation v as a function which assigns to each variable xi an
element ai = v(xi) in a specified set D called the domain of interpretation (for
instance, D may be the set of objects occurring in data tables defining relations
in our relational database). We have to select truth values, usually as T (True),



F (False). Then we may define the meaning [α]v of the atom α: P n
R(x1, x2, .., xn)

under the valuation v: [α]v=T in case R(a1, ..., an) holds i.e. a1, ..., an is a row
in the data table representing R, and [α]v=F , otherwise. Semantic rules as-
sign meanings to complex formulas e.g. [α ∧ β]v=T if and only if [α]v=T =[β]v;
[α ∨ β]v=T if and only if [α]v=T or [β]v=T ; [¬α]v=T if and only if [α]v = F .

Logical structure of DATALOG allows for procedures not allowed by the
original structure of data tables by e.g. a possibility to define new concepts.

In this example the two facets of a logical system: syntax and semantics are
clearly visible and the relation of the original data structure to the choice of
logical language is clearly stressed.

In fitting a logic to a data structure, some important intermediate steps are
to be taken:

– in the data structure certain sets of entities (concepts) and relationships
among them are selected giving admissible relational structures in data;

– mechanisms of inference about properties of these admissible structures are
selected (e.g. some deductive systems (see below)).

Inference mechanisms of a logic may provide us with descriptors of complex
concepts hidden in data structures; for various reasons, the formulas of logic
may not describe concepts in data structures exactly but approximatively only:
one of reasons is that we may not know exactly the concept in question (we
usually know some positive or negative examples of this concept - this is typical
for Machine Learning, Data Mining and Knowledge Discovery). This makes it
necessary to invoke in addition to deductive systems also inductive ones allowing
us to build inference models from sets of examples. This leads to new logical
systems for approximate reasoning allowing us to carry out reasoning about
properties of data structures on basis of uncertain, incomplete or insufficient
data [logics for reasoning under uncertainty]. In these logics we encounter various
phenomena not experienced by classical logics like non-monotonicity, necessity
of belief revision etc. (see below). When a logic is selected which approximately
fits a data structure, this logic becomes an inference engine for using knowledge
about a given phenomenon.

6.1 Concepts

In general, the idea of a concept is associated with a set of entities; given a set
U of entities, we call a concept any subset of the (universe set) U . For instance,
in Example on DATALOG, a concept may be any subset of the domain D of
objects listed in data table. This notion of a concept is what may be called a
crisp (theoretical) concept: the subset is understood here in the classical sense i.e.
for each element of U we can decide whether it is in X or not. However, concepts
in data structures are often non-crisp (vague): there are elements about which
we cannot determine their membership in X with certainty. A typical example is
provided by concepts expressed in natural language e.g. high: it may be a matter
of dispute whether a man of height 175 cm is high or not. Also concepts known
by examples only (observational concepts) are such. To cope with such concepts



various theories have been proposed e.g. fuzzy set theory [131], rough set theory
[86], multi-valued logics [102] etc.

Concept description may be twofold: syntactical as well as semantical. In
classical case, syntactical description of a concept is provided by a formula of
a logic. Semantical description relative to a model (the concept meaning) is
provided by the meaning of this formula i.e. a set of entities in a model which
satisfy this formula. This becomes more complex in non-classical cases e.g. for
fuzzy or rough concepts where models learned from training data have to be
tested against new cases.

A concept may be also characterized with respect to a set of formulas: given
a crisp concept X and a set F of formulas, the intension of X with respect to
F is the subset F ′ of F consisting of those formulas which are satisfied by each
of elements of X ; assigning to a subset F ′ of F the family of all elements which
satisfy each formula in F ′, we obtain a set (concept) called the extension of F ′

(in particular, we may start with X and find the extension X ′ of the intension F ′

of X ; here we work in the frame of Galois connections [129]. This idea becomes
more complicated in case of non-crisp concepts where a formula is satisfied by
an object in a degree usually less than 1.

In many applications there is need for analyzing dynamic structures involving
changes of situations (concepts) by actions; from our point of view, actions are
binary relations on concepts i.e. sets of pairs (pre-condition, post-condition)
[107].

Reasoning about crisp concepts may be carried out by means of classical
deductive systems. In non-classical cases, where observational concepts are only
approximated by theoretical concepts, an important additional ingredient in rea-
soning is provided by some measures of similarity (distance) among the concept
and its approximation as well as by some mechanisms for propagation of these
closeness measures or uncertainty coefficients [132]. In many applications one
uses commonsense non-deductive reasoning [65] and proper knowledge repre-
sentation involves ingredients from logic as well as other tools like procedural
representation schemes, semantic networks or frames for representing common-
sense knowledge [106].

General view on logic

In spite of many views, often contradictory, on logic and its usefulness in
Artificial Intelligence, in particular in Knowledge Discovery and Data Mining,
it seems that every one should agree with the statement that logic gives us
a mechanism for creating aggregates (collections) of statements (regardless for
now of language in which these statements are expressed) in which one statement
(called the conclusion) is the consequence of all the remaining (called premises)
in the sense that whenever we believe the premises we should also believe the
conclusion (no matter now what we do understand by belief). The conclusion
and the premises are then in the consequence relation. The process of passing
from believed premises to the believed conclusion (inference process) is at heart
of reasoning. Inference processes may be composed leading to chains of infer-



ences and the overall inference mechanism may be very complex. Formal logic
attempts at capturing essential features and properties of inferential mechanisms
applied in many various contexts. Various logics differ with respect to the lan-
guage in which they construct their statements, the way in which they construct
their consequence relations, and the way in which they understand the notion of
belief. For instance, in classical logics (like in DATALOG, 4.1), the belief is un-
derstood as the (absolute) truth therefore consequence relations in these logics
lead from true premises to the true conclusion. On the contrary, in non-classical
logics, belief is understood e.g. as the probability of a statement to be true, the
possibility of a statement to be true, the degree of belief in a statement to be true
etc. therefore consequence relations express the degree of belief in the conclusion
as a function of degrees of belief in premises.

In order to illustrate these aspects, we begin with a description of basic
classical logical systems. The reader may use DATALOG as an example in the
introductory part below.

Syntax, semantics

Any logic needs a language in which its statements are constructed and its
inference mechanisms are represented. Hence we should define an alphabet of
symbols over which well-formed expressions (formulas) of logic are to be con-
structed. Usually, the process of constructing formulas is of a generative char-
acter: one starts with simple (elementary, atomic) formulas and applies some
generative rules for producing more complex formulas. Syntactic characteristics
of a logic involves a specification of an alphabet, a class of atomic formulas as
well as rules for generating formulas. This purely syntactic aspect of logic has
its counterpart in the semantic aspect dealing with the meaning of formulas and
the semantic aspect of consequence relations. Building semantics for a logic in-
volves therefore a certain world (or worlds) external to the set of formulas of
the logic in which we interpret formulas assigning to each of them its meaning
usually being relations in this world (worlds); a good example is a relational
database providing a semantic frame for logic (e.g. DATALOG). With respect
to this world (worlds), we can define truth values (in general, belief degrees)
of formulas. When this is done, we can study semantically acceptable conse-
quence relations as these inference mechanisms which lead from true premises to
true conclusions (respectively, from premises in which we believe in satisfactory
degree to the conclusions in which we believe sufficiently) (in both cases with
respect to a chosen set of worlds).

With a logic we associate therefore two basic relations: the relation of syntac-
tic consequence denoted ⊢, and the relation of semantic consequence (entailment)
denoted |=.

Exemplary classical logical systems (calculi)

We review now some basic logical systems. We begin with propositional logic
which deals with declarative statements. In this logic we may see in the simplest
form all aspects discussed above.



Propositional logic

In this logic we consider propositions i.e. declarative statements like London is
the capital of Great Britain or 2 + 2 = 3 about which we can establish with
certainty whether they are true or false. The calculus of propositions is effected
by means of propositional connectives which allow for constructions of complex
propositions from simpler ones. Formally, we begin with the alphabet consisting
of a countably many propositional symbols p1, p2, ...., pk, ...., functor symbols
¬,⇒ and auxiliary symbols: parentheses ),(,],[. An expression is any word over
this alphabet. The set of formulas of propositional logic is defined as the set X
such that (i) X contains all propositional symbols (ii) X with all expressions u,v
contains expressions ¬u and u⇒ v (iii) if a set Y satisfies (i), (ii) then X ⊆ Y .
To describe X , a generative approach is also used: one sets a set A ⊂ X of
formulas called axioms and one specifies derivation rules for generating formulas
from axioms. Axioms may be chosen in many distinct ways; a simple axiomatics
[66] consists of the following axiom schemes (meaning that in each of these
expressions we may substitute for p, q, r, ... any formula and we obtain an axiom
formula):

(Ax1) (p⇒ (q ⇒ p));
(Ax2) (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r));
(Ax3) ((¬p⇒ ¬q)⇒ ((¬p⇒ q)⇒ r)).

The set of derivation rules consists of a single relation on expressions called
modus ponens MP being the set of triples of the form (p, p⇒ q, q) meaning that:
if p, p ⇒ q are already derived from axioms, then q is regarded also as derived.
The set of theorems is the set of formulas which can be obtained from instances
of axioms by means of applying MP a finite number of times. The basic tool in
investigating syntactic properties of propositional logic is the Herbrand deduction
theorem: For any set of formulas Γ from Γ, p ⊢ q it follows that Γ ⊢ p⇒ q.

Now, we discuss semantics of propositional logic. We evaluate formulas with
respect to their truth values: truth (denoted by T ) and falsity (denoted by F ) as-
suming that functors are truth-functional i.e. they are functions on truth values
and they do not depend on particular type of a formula. Under these assump-
tions one can characterize functors semantically by means of tables. We give the
tables for ¬,⇒.

p ¬p
0 1
1 0

Table 1. The negation functor ¬

p q p⇒ q
0 0 1
0 1 1
1 0 0
1 1 1



Table 2. The implication functor ⇒

Semantics of propositional logic is defined with respect to a model being the
set of all boolean (i.e. 0, 1 - valued) functions (called valuations) on the set of
propositional symbols: given a formula α(pi1

, pi2
, ..., pik

) (which means that the
propositional symbols pi1

, pi2
, ..., pik

are the only variable symbols in α) and a
valuation v we define the value v(α) with respect to α. An admissible state in
the model is any valuation v such that v(α) = 1. A formula α is true when all
states are admissible i.e. v(α) = 1 for every valuation v.

Two important properties of this deductive system are: soundness (meaning
that every theorem is true) and completeness (meaning that every true formula
is a theorem). It is straightforward to check the soundness of propositional logic
by induction on the formula length. Less obvious is the completeness of propo-
sitional logic established first by Gödel [66]. Propositional logic is decidable: for
each formula it is sufficient to check finitely many partial valuations restricted
to the finite set of propositional symbols occurring in this formula to decide
whether the formula is true. It is also effectively axiomatizable: for each formula
one can decide in a finite number of steps whether the formula is an instance
of an axiom scheme. Completeness implies consistency: for no formula α both α
and ¬α can be theorems.

Let us add finally that in practical usage additional functors are introduced,
familiar from DATALOG : the conjunction functor ∧ defined by taking α ∧ β
as a shortcut for ¬(α⇒ ¬β), the disjunction functor ∨ defined by taking α ∨ β
as the shortcut for ¬α ⇒ β and the logical equivalence functor ↔ defined by
taking α ↔ β as the shortcut for (α ⇒ β) ∧ (β ⇐ α). Truth tables for these
functors follow immediately from these definitions and tables 1,2.

Propositional reasoning turned out to be very effective for solutions of many
KDD problems (see Boolean reasoning in Sections 1,2) despite of the high com-
putational complexity of the satisfiability problem of propositional calculus (it
is NP-complete problem [35]).

Predicate logic

Propositional logic renders us good service by formalizing the calculus of propo-
sitions; however, in many practical situations, KDD applications including, we
are concerned with properties of objects expressed as concepts i.e. sets of objects
and with relations among these properties. In order to ensure the expressibility
of relations e.g. inclusions (like every ripe tomato is red) we need to quantify
statements involving object descriptors over concepts. The predicate logic is an
extension of propositional logic enabling us to manipulate concept descriptors.
We will write P (x) to denote that the object denoted x has the property denoted
P ; the symbol P is a (unary) predicate symbol (cf. DATALOG). With the ex-
pression P (x) we associate two expressions: ∀xP (x) and ∃xP (x); the symbol ∀x
is called the universal quantifier and ∀xP (x) is read for each object x the property
P holds and the symbol ∃x is called the existential quantifier and ∃xP (x) is read
there exists an object x such that P holds for x. Predicate calculus formalizes
such utterances. It will be useful to keep generality of our discussion, hence we



will give a formal analysis of deductive systems known as first order theories of
which predicate calculus is a specialization. To give a formal description of first
order logical calculi on lines of deductive systems, we begin with an alphabet
which in general case consists of few types of symbols:

(i) individual variables x1, x2, ..., xk, ....;
(ii) individual constants c1, c2, ..., ck, ....;
(iii) predicate symbols P 1

1 , P 1
2 , ..., P k

ik
, .... where the upper index gives the arity

of the predicate denoted thus;
(iv) functional symbols f1

1 , f1
2 , ..., fk

ik
, ....;

(v) symbols ¬, ⇒, ∀x (where x is a variable) , ) , (.

First we define the set of terms by requiring it to be the set X with the
properties that (i) each individual variable or constant is in X (ii) if t1, .., tk are
elements of X and fk

ik
is a functional symbol of arity k then fk

ik
(t1, t2, ..., tk) is

in X (iii) if Y satisfies (i), (ii) then X ⊆ Y .
Next, the set of formulas is defined as the set Z with the properties (i) for

each predicate symbol P k
ik

and any set {t1, t2, .., tk} of terms, the expression

P k
ik

(t1, t2, ..., tk) is in Z (ii) for each pair α, β of elements of Z, the expressions
¬α, α⇒ β, ∀xα are in Z for each variable x (iii) if Y satisfies (i), (ii) then Z ⊆ Y .

The existential quantifier is defined by duality clear on intuitive basis: ∃xP (x)
is the shortcut for ¬∀x¬P (x). A standard distinction on occurrences of a variable
x in a formula α is between free and bound occurrences which informally means
that an occurrence is bound when this occurrence happens in a part of the
formula (sub–formula) preceded by the quantifier sign; otherwise the occurrence
is free. It is intuitively clear that a formula in which all occurrences are bound
is a proposition i.e. either true or false in a given model.

To define the syntax on generative lines, one should specify the axioms of
logic. Axioms of T can be divided into two groups: the first group consists of
general logical axioms, the second group consists of specific axioms; when the
second group is present, we speak of a first order theory. The axiom schemes of
the first group may be chosen as follows:

– (Ax1), (Ax2), (Ax3) are axiom schemes for propositional logic.
– (Ax4) ∀xα(x) ⇒ α(t) where x is a variable, t is a term and t contains no

variable such that x occurs in a sub–formula quantified with respect to that
variable;

– (Ax5) ∀x(α ⇒ β)⇒ (α⇒ ∀xβ) where the variable x is not free in α.

Specific axioms depend on T ; for instance the theory of equivalence relation
may be expressed by means of a binary predicate symbol P 2

1 and axioms
(1) ∀xP 2

1 (x, x);
(2) ∀x∀y(P 2

1 (x, y)⇒ P 2
1 (y, x));

(3) ∀x∀y∀z(P 2
1 (x, y)⇒ (P 2

1 (y, z)⇒ P 2
1 (x, z))).

The set of derivation rules consists of two rules: modus ponens (MP ) known
from propositional logic and quantification (generalization) rule Q which is the
binary relation on expressions consisting of pairs of the form (α, ∀xα) where x is



any variable. A theorem of predicate logic is any formula which may be obtained
from an instance of an axiom by applying a derivation rule a finite number of
times. Semantics of a first order theory T is defined according to Tarski [122] as
follows.

A model M for the theory T is a pair (D, f) where D is a set and f is an
interpretation of T in D i.e. f assigns to each individual constant c an element
f(c) ∈ D, to each predicate symbol P k

i a relation f(P k
i ) on D of arity k and to

each functional symbol fk
i a function f(fk

i ) from Dk to D. Truth of a formula,
relative to M , is defined inductively on complexity of the formula. To this end,
we consider the states of the model M as sequences σ = (ai)i of elements of
D. Given a formula α and a state σ, we need to declare when the formula α is
satisfied by σ, in symbols, σ |= α. We define a map Fσ which assigns an element
of D to each term of T . Individual variables are interpreted via a given state σ:
Fσ(xi) = ai. The mapping Fσ is equal to f on individual constants. The inductive
condition is as follows: if Fσ is already defined on terms t1, t2, ..., tk and fk

i is a
functional symbol then Fσ(fk

i (t1, t2, ..., tk)) = f(fk
i )(Fσ(t1), Fσ(t2), .., Fσ(tk)).

The satisfiability |= is defined inductively as follows:
(i) σ |= P k

i (t1, t2, ..., tk) if and only if f(P k
i )(Fσ(t1), .., Fσ(tk)) holds;

(ii) σ |= ¬α if and only if it is not true that σ |= α;
(iii) σ |= (α⇒ β) if and only if σ |= α implies that σ |= β;
(iv) σ |= ∀xα(x) if and only if σx |= α for each state σx where (letting x to

be the variable xi) σx is like σ except that the i-th member of σx need not be
equal to ai.

These conditions allow to check for each formula whether it is satisfied by
a given state. A formula is true in the model M if and only if it is satisfied
by every state σ. A formula is true (tautology) if and only if it is true in every
model M . Observe that a formula α(x1, ..., xn) is true if and only if its closure
∀x1...∀xnα(x1, ..., xn) is true.

The first order theory P C without specific axioms is called the predicate
calculus. It is obvious that properties of first order theories depend on specific
axioms so we here recapitulate the facts about the predicate calculus. The sound-
ness of predicate calculus can be easily established by structural induction: each
theorem of P C is true as all instances of axiom schemes (Ax1)-(Ax3) are true
and truth is preserved by derivation rules MP and Q. The important Gödel
completeness theorem [41], [66] states that predicate calculus is complete: each
true formula is a theorem. Decidability problems for first order theories involve
questions about the formalizations of the intuitive notion of a finite procedure
and can be best discussed in the frame of the fundamentally important first order
theory of Arithmetic (cf. [66]): a predicate calculus without functional symbols
and individual constants is called pure predicate calculus P P while predicate cal-
culus with infinite sets of functional symbols and individual constants is called
functional calculus P F . The classical theorem of Church [19], [66] states that
both P P, P F are recursively undecidable (algorithmically unsolvable). On the
other hand, many problems are recursively decidable (algorithmically solvable)
however their time– or space–complexity makes them not feasible e.g. satisfi-
ability problem for propositional calculus is NP-complete [35]. Many problems



in logic and applications in KDD are computationally hard: for those problems
efficient heuristics have to be found.

6.2 Deductive systems (DS)

Here we sum up the features of deductive systems like propositional logic or
predicate calculus. By a deductive system, we understand a tuple (Ax, Gen,⊢)
where Ax is a set of axioms (meaning by an axiom a formula which is assumed
to be well-formed and desirably true), Gen is a set of inference (derivation)
rules, each rule R being a relation on the set of formulas and ⊢ is a relation on
formulas such that whenever Γ ⊢ α holds this means that there exists a formal
proof of α from Γ (α is derivable from Γ ) i.e. there exists a finite sequence (the
formal proof) α1, ..., αk such that (i) α1 is either an axiom or an element of Γ
(ii) αk is α (iii) each αi (i = 2, ..., k) is either an axiom or is in Γ or satisfies
R(αj1

, ..., αjm
, αi) for some R ∈ Gen and a subset {αj1

, ..., αjm
} of {α1, ..., αi−1}.

Any formula α such that ⊢ α (meaning ∅ ⊢ α) is said to be a theorem of the
deductive system. From these definitions, the properties of ⊢ follow: (a) Γ ⊆
Cn(Γ ) where Cn(Γ ) = {α : Γ ⊢ α}; (b) Cn(Γ ) = Cn(Cn(Γ )); (c) Cn(Γ ) ⊆
Cn(Γ ′) whenever Γ ⊆ Γ ′ (the Tarski axioms for syntactic consequence [121]).
Semantics of a deductive system is defined with respect to a class of specified
structures called models: there exists a mechanism which for each model and
each formula assigns to this formula a subset of the model domain (called the
interpretation of the formula in the model). A formula is true with respect to a
given model in case its interpretation in the model equals the model domain. A
formula is true (is a tautology) in case it is true with respect to all models (in
the assumed class of models).

The semantic consequence |= (entailment) is defined on sets of formulas as
follows: Γ |= Γ ′ if for any model M the truth of each formula in Γ in M implies
the truth of each formula from Γ ′ in M .

Properties of DS: soundness, consistency, completeness, decidability,
expressiveness, complexity

Among properties of deductive systems there are some whose importance de-
serves them to be mentioned separately. The first of them is soundness (of ax-
iomatization) which means that all theorems of the system are true. The dual
property of completeness means that each true formula has a formal proof in the
system. As a rule verification of soundness is straightforward while the complete-
ness proofs are usually non-trivial. Another important property often intervening
in completeness proofs is consistency: a set Γ of formulas is consistent if there is
no formula α such that both α and its negation are derivable from Γ . Another
important question is whether there exists an algorithm which for each formula
can decide if this formula is a theorem; if yes, we say that the deductive system
is decidable. In this case we may ask about the time - , space - complexity of the
decidability problem. We may study complexity of other problems like satisfia-
bility (whether the interpretation of the formula is non-empty). From the point
of view of knowledge representation, it is important to decide what properties



can be expressed by means of formulas of the deductive system. A useful meta–
rule is that the greater expressibility the greater complexity of problems about
the deductive system.

Semantic tableaux, natural deduction, sequent calculus

Semantic tableaux method provides a method of determining validity in propo-
sitional or predicate calculus. A tableaux proof of Γ |= α begins with Γ ∪ {¬α}.
A tableaux proof of Γ |= α is a binary tree labeled by formulae and constructed
from Γ ∪{¬α} by using rules for each logical connective specifying how the tree
branches. A branch of the tree closes if it contains some sentence and its nega-
tion; the tableau closes if all branches close. If the tableau closes then Γ |= α is
valid. If tableau does not close and none of the rules can be applied to extend it,
then Γ ∪{¬α} is satisfiable and Γ |= α does not hold. For the propositional cal-
culus, semantic tableau gives a decision procedure. In case of predicate calculus
if the set Γ ∪ {¬α} is satisfiable i.e. Γ |= α is not true the method may never
terminate (the rules for the universal quantifier can be applied repeatedly). It
terminates if and only if the set Γ ∪ {¬α} is unsatisfiable i.e. Γ |= α holds. We
say that predicate calculus is semi–decidable.

Let us mention that deduction may be formalized as so called natural deduc-
tion [38] and its form known as sequent calculus. A sequent calculus is a set of
rules for transforming sequents i.e. expressions of the form Γ ⊢ ∆ where Γ, ∆
are sets of formulas. Gentzen proposed [38] a set of sequent rules for classical
predicate calculus.

The tableaux method can be treated as another way of writing sequent cal-
culus derivations.

Resolution and logic programming

It is desirable from computing view point to have systems for automated deduc-
tion; the widely accepted technique for this is resolution due to J.A.Robinson
[26]. It requires clausal form of formulas i.e. a conjunction of disjunctions of
literals (a literal is a variable or its negation). Symbol like {p, q} means a dis-
junction of literals p, q and a symbol like {.}; {..}; ...; {...} means a conjunctions
of disjunctions i.e. a clause. Resolution uses refutational proof technique: instead
of checking validity of α it checks unsatisfiability of ¬α; to this end ¬α is repre-
sented in clausal form and the resolution rule:

from clauses a ∪ p and b ∪ ¬p the clause a ∪ b is derived

is applied a finite number of times. Final appearance of the empty clause 2 wit-
nesses unsatisfiability of ¬α hence validity of α. The resolution calculus is sound
and complete with respect to entailment |=. Resolution in predicate calculus
involves unification i.e. the process of finding substitutions making two terms
containing free variable identical. For extensions and refinements see [26].

Particularly important from computational point of view is Horn clausal logic
[48] based on Horn clauses of which Horn facts are of the form

∀x1...∀xmP k
ik

(τ1, ..., τk)

and Horn rules are of the form



∀x1...∀xkα1(x) ∧ .... ∧ αn(x)⇒ β(x).

A set of Horn clauses is a Horn clausal theory T . Inferences for T are based on
inference rules of the form: α1(c)∧ ....∧αn(c)/β(c) where c is a ground term i.e.
term without variables corresponding to Horn rules in T . A proof T ⊢ γ is a finite
sequence of inferences starting from an inference based on a fact and ending with
γ. This calculus is sound and complete. Horn clausal logic can be considered as
a generative device for incremental buildup of a set from Horn facts (alphabet)
and Horn rules (generating rules). It has been applied in implementations of
PROLOG and DATALOG in particular in logic programming [62].

The idea behind logic programming is that the logic program is a specifi-
cation written as a formula in a logical language and the inference engine for
the construction solution consists of a deduction system for this language. The
system of deduction in logic programming is resolution. The logic programs can
be of the form known as definite clause programs (a definite clause is a univer-
sally quantified disjunction of one or more literals, only one of which is negated).
They are executed by adding a goal being a clause in a special form.

Semantics for logic programs can be defined by Herbrand interpretations.
A Herbrand interpretation is based on the Herbrand universe i.e. the set of all
ground atoms constructed from constants, function and predicate symbols in the
program. The least Herbrand model of a logic program can be defined as the least
fixed point of a certain function from Herbrand universe into Herbrand universe.
Any predicate calculus sentence can be transformed into a set of clauses and next
resolution, like in the tableau method, can be used to test, by refutation, the
validity of entailment in predicate calculus.

An example of logic programming system is PROLOG (Colmerauer, 1972).
More details can be found in [62]. These systems may be regarded as engines for
constructing knowledge bases from data.

One of the main tasks of inference is to obtain a description of a target
object satisfying (exactly or in satisfactory degree) a given specification (formu-
lated in some logical language). In the constraint programming logic [124] the
construction schemes of such objects can be extracted from logical proofs.

Theorem provers

Automated theorem proving was initiated in 1950’s and by 1960 various com-
puter programs for theorem proving were implemented (Newell, Davis and Put-
nam, Gilmore, Prawitz, Hao Wang) and able to prove very simple theorems.
Resolution technique (J.A. Robinson, 1965) proved to be much more powerful
and by now most theorem provers use resolution. In spite of progress much still
remains to be done in first place in discovering proof strategies. This will need
in particular to introduce some similarity measures on proofs. Moreover, KDD
stimulates research towards revision of exact formal proofs by introducing in-
stead of them schemes of approximate reasoning extracted from data [97] (see
also Section 3).

Modal logic



In many applications in KDD, when our knowledge is incomplete or uncertain,
e.g. in mining association rules in databases with inconsistent decision [3], we
cannot have exact logical statements, but only we may express certain modalities
like property P is possible.

Modal propositional logics deal with formalizations of phrases like it is pos-
sible that ..., it is necessary that .... These modalities are formally rendered as
generalized quantifiers: [α] is read as it is necessary that α, 〈α〉 is read as it is
possible that α. These operators are related by duality: 〈α〉 is the shortcut for
¬[¬α]. The syntax of modal calculus is defined over an alphabet much like that
of propositional logic: the only addition is the introduction of modal operator
symbols [.] and 〈.〉. The set of formulas of modal logic is defined as the smallest
set X such that (i) X contains all propositional variables (ii) with each pair α, β,
X contains ¬α, α⇒ β and [α].

The axiomatics of modal logics depends essentially on properties of necessity
which we intuitively deem as desirable; their rendering in axioms leads to various
systems of modal calculi. We will briefly review the most important ones.

The simplest modal system K is obtained by adding to the axiom schemes
(Ax1)-(Ax3) of propositional logic the axiom scheme (K) of the following form:

(K) [α⇒ β]⇒ ([α]⇒ [β]).
(K) expresses our basic intuition about necessity: if both an implication and

its precedent are necessarily true then the consequent should be necessarily true
also. The derivation rules of modal propositional logic are: modus ponens MP
and the necessity rule N which is the relation on formulas consisting of pairs of
the form (α, [α]). This calculus is consistent [50]: to see it it suffices to collapse
formulas of K onto formulas of propositional calculus by omitting all modal op-
erator symbols. Then theorems of modal logic are in one–to–one correspondence
with theorems of propositional calculus.

Among syntactic properties of necessity valid in K we may mention the
following expressed by theorems of K: (i) (α⇒ β)⇒ ([α]⇒ [β]); (ii) [α ∨ β]⇒
([α] ∨ [β]); (iii) [α ∧ β]⇔ ([α] ∧ [β]).

Semantics of modal logic is defined as the possible worlds (Kripke) semantics
[29]. A model for a modal logic system is a triple M = (W, R, v) where W is a
collection of states (worlds) and R is a binary relation on W (called accessibility
relation); the symbol v denotes a state of the model (a valuation) i.e. the boolean
function on the set of all pairs of the form (w, p) where w ∈W is a world and p
is a propositional variable. The notion of satisfiability M, v, w |= α is defined by
structural induction: (i) M, v, w |= p if and only if v(w, p) = 1; (ii) M, v, w |= ¬α
if and only if it is not true that M, v, w |= α; (iii) M, v, w |= α ⇒ β if and
only if either it is not true that M, v, w |= α or it is true that M, v, w |= β; (iv)
M, v, w |= [α] if and only if M, v, w1 |= α for each world w1 such that R(w, w1).

A formula α is true in the model M if and only if M, v, w |= α for each world
w ∈W and every state v; a formula is true if and only if it is true in each model.

It is straightforward to check that the system K is sound: all instances of
axioms are true and derivation rules MP , N preserve truth of formulas. Com-
pleteness of K can be proved by e.g. the Lemmon-Scott extension of Henkin’s
technique of canonical models [29], [50]. Decidability of K follows from com-



pleteness and the collapse property mentioned above along with decidability of
propositional calculus.

Properties of necessity axiomatized in K are by no means the only desirable;
one may ask e.g. whether the property [α]⇒ α holds in K. It is easy to see that
by completeness, truth of this formula requires the relation R be reflexive hence
this formula is not true in general system K.

Adding to the axiom schemes of K the axiom scheme
(T) [p]⇒ p

we obtain a new modal system T . The completeness of T can be now expressed
as follows: a formula of T is a theorem of T if and only if this formula is true in
all models where the accessibility relation is reflexive.

Another property of necessity is the following :
(S4) [p]⇒ [[p]].
Adding to axiom schemes of T the axiom scheme (S4), we obtain a new

system called S4. Theorems of S4 are those formulas of K which are true in all
models with the accessibility relation R reflexive and transitive.

Finally, we may consider the formula
(S5) 〈[p]〉 ⇒ [p].
The formula (S5) is true in all models with the accessibility relation R being

an equivalence relation. As (S5) implies syntactically (S4), the system S5 ob-
tained from T by adding the axiom scheme (S5) contains the system S4. Com-
pleteness of S5 is expressed as follows: theorems of S5 are those formulas which
are true in all models with the accessibility relation R being an equivalence.

We have therefore a strictly increasing hierarchy K, T, S4, S5 of modal logic
systems; these systems do not exhaust all possibilities [50]. Recently modal log-
ics play an important role in many theoretical branches of Computer Science
and Artificial Intelligence e.g. in formalization of reasoning by groups of intel-
ligent agents [27]; in applicational domain, we may mention hand–written digit
recognition [9] where modal formulas are used to express properties discerning
between structural objects.

Temporal and dynamic logics

There are some particular contexts in which formulas of modal logic may be
specialized and tailored to specific usage’s. Let us mention two such cases i.e.
temporal as well as dynamic logics. These logics are useful to express knowledge
in a changing environment e.g. in geographic information systems (GIS’) [25].

In temporal logics, the set W of possible worlds is interpreted as the set of
time instants and the accessibility relation R is the precedence in time relation
i.e. wRw1 means that w precedes w1 in time (in particular, it may happen that
w = w1). Clearly, R is reflexive and transitive hence this logic is of S4 type [11].

Dynamic logic is applied in the context of properties of programs [46]. In this
case the set W is the set of states of an abstract computing machine. Given a
program P , the modality [.]P acts on formulas describing states of the machine
and its semantics is defined by the accessibility relation RP which holds on a
pair (w, w1) if and only if an execution of P starting at w terminates at w1;
specifically, a state w satisfies the formula [α]P if and only if each state w1 such



that RP (w, w1) satisfies α. This means that the state in which P terminates
necessarily satisfies α.

Epistemic and doxastic logics

These are logics of knowledge and belief. Logics for reasoning about knowledge,
belief, obligations, norms etc. have to deal with statements which are not merely
true or false but which are known or believed etc. to be true at a moment; an
additional complication is of pragmatic character: knowledge, belief etc. may
be relativized to particular intelligent reasoners (agents) hence we may need
also to express statements about group or common knowledge, belief etc. Modal
logics have proved suitable as a general vehicle for carrying out the task of
constructing such logics. These logics are useful in KDD in e.g. tasks of describing
problems of distributed/many–agent nature, in building networks of reasoning
agents (e.g. belief networks) etc. Epistemic logics for reasoning about knowledge
[47], [130], [45] are built as modal logics with a family Ki : i = 1, 2, ..., n of
necessity operators, Ki interpreted as the modal operator the agent i knows
that.... Syntax of such logic is like that of modal propositional logic except for
the above family Ki instead of a single [.] modal operator symbol. Formulas
are defined as usual, in particular given a formula α, the expression Kiα is
a formula, each i. We have therefore formulas like KiKjα read as the agent i
knows that the agent j knows that α etc. Semantics is the usual Kripke semantics
of possible worlds except that to accomodate all K ′

is, a model is now a tuple
M = (W, v, R1, ..., Rn) where Ri is an accessibility relation of Ki i.e. v, w |= Kiα
if and only if v, w′ |= α for every w′ with Ri(w, w′). One may want to express also
in this logic statements like every agent in a group G knows that... or it is common
knowledge among agents in G that.... This may be done by introducing additional
symbols EG, CG for each subset G ⊆ {1, 2, ..., n}, requiring that for each formula
α and each G, expressions EGα, CGα be formulas and defining semantics of these
formulas as follows: v, w |= EGα if and only if v, w |= Kiα for each i ∈ G and
v, w |= CGα if and only if v, w |= Ki1

Ki2
, ..., Kij

α for each sequence i1i2...ij over
G. In other words, the accessibility relation for EG is ∩{Ri : i ∈ G} and the
accessibility relation for CG is the transitive closure of {Ri : i ∈ G}. These logics
are axiomatized soundly and completely exactly as modal logics of respective
types; additional axiom schemes for logics endowed with operators EG, CG may
be chosen as follows [45]: EGp ↔ ∧Kip; CGp ↔ EG(p ∧ CGp) along with the
additional derivation rule (p ⇒ EG(α ∧ β)) ⇒ (α ⇒ CGβ). These logics are
decidable (to check validity it is sufficient to examine at most 2n worlds where
n is the formula length).

Belief logics (doxastic logics) [36] may model belief states either as consistent
sets of formulas or as sets of possible worlds. To introduce the former approach,
assume that a propositional logic L is given along with its consequence relation
Cn about which one usually requires monotonicity (Γ ⊆ ∆ implies Cn(Γ ) ⊆
Cn(∆), compactness (α ∈ Cn(Γ ) implies α ∈ Cn(∆) for a finite ∆ ⊆ Γ ), cut
property (α ∈ Cn(Γ∪{β}) and β ∈ Cn(Γ ) imply α ∈ Cn(Γ )), deduction property
(α ∈ Cn(Γ ∪ {β} implies β ⇒ α ∈ Cn(Γ )). Belief states are represented by sets



of formulas of L; a principal assumption may be that believing in a formula
should imply believing in all consequences of this formula hence representing
sets should be closed under consequence Cn. In this approach calculus of beliefs
is reduced to calculus on closed sets of formulas of L. The latter approach in
which belief states are represented as sets of possible worlds in which a formula
is believed to be true may be shown to be equivalent to the former.

Deontic logics i.e. logics of normative concepts like obligations, prohibitions,
permissions, commitments [8] are also built as modal logics. A deontic logic has
an alphabet of propositional logic endowed with modal operators O, P (obliga-
tion, permission) modeled as necessity, resp. possibility. Axiomatics depends on
type of modal logic one wants to obtain and it is sound and complete. These
logics are decidable for reasons as above.

Para–consistent and relevant logics

Investigations on para–consistent logics [5], [6] have been initiated in order to
challenge the logical principle saying that for any two formulas α, β it follows
from {α,¬α} (syntactically or semantically) that β. Para–consistent logics are
motivated by philosophical considerations as well as by computer science applica-
tions. It is quite often necessary for information systems to deal with inconsistent
information because of multiple sources of information or noisy data. Another
area of applications is related to belief revision. Mechanisms of belief revision
should work on inconsistent sets of beliefs. Other applications of para–consistent
logics concern theories of mathematical significance. Among systems of para–
consistent logics are non–adjunctive systems (initiated by Jaśkowski’s discussive
or discursive logic); non-truth functional systems (initiated by da Costa); para–
consistent logic generated by multi-valued logic (introduced by Asenjo).

Relevant (relevance) logics are developed as systems to avoid the so-called
paradoxes of material and strict implications. In addition relevance logic is trying
to avoid to infer conclusions having to do nothing with the premise. These logics
were pioneered by Anderson and Belnap. Relevant logics have been used in
computer science and in philosophy e.g. linear logic (discovered by Girard) is a
weak relevant logic with the addition of two operators.

Conditional logics

Conditional logics [80] investigate logical properties of declarative conditional
phrases of natural language : if.... then.... The problem studied in these logics
is whether material (propositional) implication ⇒ represents adequately such
phrases especially in case of counterfactual conditionals where the premise as
well as the consequent are false. Negative answers to this question lead to various
systems of conditional logic. Denoting by 〉 the conditional if... then..., one may
exploit modal logic and interpret α〉β as true when β is true in a world closest
to world(s) in which α is true (with respect to some closeness measure) where
worlds may be also constructed as closed sets of propositional logic. Accordingly,
a conditional logic may be built over propositional logic by adding a new symbol
〉, requiring that α〉β be a formula in case α, β are formulas and adding a new



derivation rule: (R1) from α⇒ β, γ〉α derive γ〉β. Axiom schemes of this logic are
(Ax1)-(Ax3) of propositional logic plus (Ax4) α〉α; (Ax5) α〉β ⇒ (α⇒ β); (Ax6)
¬α〉α⇒ (β〉α); (Ax7) α〉β ∧ β〉α⇒ (α〉γ ⇔ β〉γ); (Ax8) α〉β ∧ ¬(α〉¬γ)⇒ (α ∧
γ〉β); (Ax9) α〉β ∨ ¬α〉β. This is the syntax of conditional logic C2 of Stalnaker
[119]. Models of C2 are of the form of a quadruple M = (W, R, S, E) where W
is a set of possible worlds, R is an accessibility relation, S is a selector assigning
to any formula α and any world w a world S(α, w) such that S(α, w) |= α and
S(α, w) is closest to w and E assigns to any formula its extension i.e the set of
worlds in which the formula is true. There may be additional postulates on S
e.g. R(w, S(α, w)) etc. One obtains a sound and complete axiomatization of C2.
Replacing (Ax9) by (Ax9′): α ∧ β ⇒ α〉β one obtains conditional logic VC of
Lewis [80].

Logics for dealing with inconsistent situations

When we apply logic to reason in real situations we often face the problem of
dealing with inconsistencies: statements we encounter at a given moment may
be inconsistent with our current knowledge. A way out of this problem has been
proposed as belief revision: we have to modify our knowledge in order to remove
inconsistency. A guiding principle may be the economy principle of minimal
changes: when modifying our knowledge we should make changes as small as
possible. Doxastic logics offer a convenient playground for treating inconsistent
statements by means of logics for belief revision [22]. Main operations on belief
sets (i.e. closed under Cn sets of formulas) are: -expansion: adding α to a set Γ
results in Cn(Γ ∪ {α}); -revision: when an inconsistent α is added, a maximal
consistent subset ∆ ⊆ Γ ∪ {α} is selected resulting in Cn(∆); -contraction:
removing a set ∆ ⊆ Γ results in a closed set Ψ ⊆ Γ − ∆. Some postulates
have been proposed [36]: denoting by Γ rα resp. Γ cα the result of revision resp.
contraction of Γ relative to α, we may require that: (r1) Γ rα be closed; (r2)
α ∈ Γ rα; (r3) Γ rα ⊆ Cn(Γ ∪α); (r4) if not ¬α ∈ Γ then Cn(Γ ∪α) ⊆ Γ rα; (r5)
Γ rα is the set of all formulas if and only if ⊢ ¬α; (r6) α ↔ β ⇒ Γ rα = Γ rβ.
The Levi and Harper identities: Γ rcα = Cn(Γ c(¬α)∪α) resp. Γ crα = Γ ∩Γ rα
allow for defining one of these operations from the other and establish a duality:
Γ crc

α = Γ cα, Γ rcr
α = Γ rα.

Various heuristics have been proposed for these operations e.g. -choice con-
traction function: given Γ, α, define Max(Γ, α) as the set of maximal closed sets
M such that not α ∈ Γ and next select a member of Max(Γ, α) as Γ cα; -meet
contraction function: take ∪Max(Γ, α) as Γ cα; - epistemic entrenchment: as-
sign various degrees of importance to formulas in Γ and contract starting with
formulas of lowest degrees.

Belief revision logics may be perceived in a wider perspective as tools for
reasoning in situations when the standard consequence fails: in presence of in-
consistencies non-monotonicity may arise i.e. a greater set of premises may lead
to a smaller set of consequents because of need for revision of our knowledge.
Attempts at formal rendering of this phenomenon has led to non-monotonic log-
ics [65]. Non-monotonic reasoning is central for intelligent systems dealing with



commonsense reasoning being non-monotonic.

The non-monotonic logics deal with non-monotonic consequence ⊢nm; a gen-
eral idea for rendering ⊢nm may be as follows: try to define α ⊢nm β as holding
when there exists a belief set Γ of formulas, α ⊢ β and α ⊢ γ for sufficiently
many γ ∈ Γ .

This idea is realized in various ways: in default logic [98], probabilistic logic
[1], circumscription [53], auto–epistemic logic [58]. Reiter’s default logic is built
over predicate calculus L by enriching it with inference rules (called defaults)
of the form α(x); β(x)/γ(x) where α(x), β(x), γ(x) are formulas called resp. the
precondition, the test condition and the consequent of the default. For a constant
a, the default permits to derive γ(a) from α(a) under the condition that not
⊢ ¬β(a); we denote this consequence by ⊢d. Formally, a default theory T may
be represented as a pair (K, E) where K, a background context, contains rules
and E, the evidence set, contains facts. Rules in K are of two kinds: rules of L
and defaults D.

Let us consider one example of characterization of non-monotonic inference
⊢K,E from given (K, E). It may be done by a set of postulates of which we
mention: (Defaults) p ⊢d q ∈ D implies p ⊢K,E q; (Deduction) ⊢ p implies
⊢K,E p; (Augmentation) ⊢K,E p and ⊢K,E q imply ⊢K,E∪{p} q; (Reduction)
⊢K,E p and ⊢K,E∪{p} q imply ⊢K,E q; (Disjunction) ⊢K,E∪{p} r and ⊢K,E∪{q}

r imply ⊢K,E∪{p∨q} r. As shown in [37], these rules are sound and complete
under a probabilistic interpretation of ǫ – entailment [1]. In this interpretation,
probability distributions PK ǫ-consistent with K in the sense of ǫ-entailment i.e.
such that PK(α) = 1 for each α ∈ L, PK(β|α) ≥ 1 − ǫ and PK(α) ≥ 0 for each
rule α ⊢d β in D (where ǫ is a fixed parameter) are considered. A proposition p
is ǫ-entailed by T when for each ǫ there exists a δ such that PK(p|E) ≥ 1− ǫ for
each δ-consistent probability distribution PK .

One of the main problems for non-monotonic logics is to define for a given set
A of sentences a family E(A) of all its extensions i.e. sets of sentences acceptable
by an intelligent agent as a description of the world. Different formal attempts to
solve this problem are known. Some of them are trying to implement the principle
called Closed World Assumption (facts which are not known are false). Having
the set of extensions E(A) one can define the skeptical consequence relation by
taking the intersection of all possible extensions of A.

Let us finally observe that e.g. classification problems can be treated as prob-
lems of constraints satisfaction with constraints specified by discernibility con-
ditions and some optimality measures (see also Section B6). Two consistent sets
describing situations (objects) are satisfying the discernibility relation if their
union creates an inconsistent (or inconsistent in some degree) set.

Many valued logics

Yet another treatment of inference was proposed by Jan  Lukasiewicz [64] by
assigning to propositions other - than truth and falsity – logical values. In the first
3–valued logic  L3 propositions were assigned additionally the value 1/2 (possible);
the meaning of implication p⇒ q was determined as min(1, 1−v(p)+v(q)) where



v(p) is the logical value of the proposition p; similarly negation was determined
by the condition v(¬p) = 1− v(p).

The same formulas were used to define semantics of n− valued  Lukasiewicz
logic  Ln and infinite-valued logic  Lω (where logical values are rational numbers
from the interval [0,1]). A complete axiomatization for these logics was proposed
by Wajsberg [105]. Other systems for many-valued logic were proposed by Post,
Kleene and others [105], [127].

In general, one may consider e.g.  Lukasiewicz implication, negation etc. as
interpreted as functions of suitable arity on the interval [0,1] a fortiori truth
values may be regarded as real numbers from the interval [0,1]. In real-valued
logics, truth-functional definitions of propositional functors rely on real functions
on [0,1] in particular on so-called t − norms and t − co − norms which resp.
define semantics of conjunction and disjunction. Implications are usually defined
by  Lukasiewicz or Kleene implications or so-called residuated implications and
negations are interpreted as decreasing idempotent functions on [0,1] [56]. The
interest in many-valued logics grew rapidly after introduction of fuzzy logic by
Lotfi A. Zadeh (see below).

Constructive approach, Intuitionism

The above logics were developed on classical principles in which one admits non-
constructive proofs. This point of view has been contested by many in first place
by L.E.J. Brouwer who put forth an idea of intuitionistic logic; in this logic, proof
is understood as a effective construction and the inference α ⇒ β is true when
we have a construction which transform any proof of α into a proof of β. The
law of excluded middle (that any sentence is either true or false) does not hold
as we may have neither any constructive proof of α nor any constructive proof of
¬α. Accepting this point of view leads to parallel intuitionistic variants of above
logics. However, the notion of constructive is vague; it seems that intuitionistic
calculi are forms of algorithmic systems [123]. Let us note that topological se-
mantics for intuitionistic logic has been first proposed by Tarski and Stone and
another approach has been proposed by Kripke.

6.3 Inductive reasoning

Inductive reasoning (inference) can be described as an art of hypothesizing a
set of premises P for a given set C of consequences with respect to a given
background knowledge BK i.e. P ∪BK |= C [67].

In the above scheme, the unknown element is a set P of premises but also the
semantic inference |= has to be specified. Contrary to logical deductive semantic
consequence, the inductive inference |= is not concerned with absolute truth -
preserving but deals with approximations of concepts and along with mechanisms
for concept approximations it should also possess mechanisms for generating
degrees of closeness between any concept approximated and its approximation.
These degrees may be expressed as numerical values or logical expressions. It
is hardly expected that the inductive inference |= may be defined abstracting
from the specific background knowledge BK i.e. from the applicational context;



one should rather expect a variety of inference mechanisms dependent on the
context and extracted from data by using appropriate algorithmic tools. This
seems to be a challenge for further development of logic.

A general scheme for inductive reasoning may thus consist of a mechanism
for primitive concept formation and a mechanism for construction of complex
concepts from primitives. All concepts are of approximative character and mech-
anisms for their construction must rely on some measures of closeness among
concepts. It is important to realize that concepts may be defined in various lan-
guages and their comparison is effected by imposing measures of closeness on
their extensions.

Particular areas of importance for inductive reasoning are Machine Learn-
ing, Pattern Recognition and Knowledge Discovery in Data. Various specific
approaches have been proposed for inductive (approximative) inference in these
areas. In addition some universal paradigms for inductive reasoning like inductive
logic programming [72] have been developed e.g. fuzzy inference, rough inference,
probabilistic and statistical reasoning. In what follows we will outline the basic
ideas of these approaches.

General view: experimental concepts and approximate definability

Background knowledge is often expressed by means of data tables (e.g. training
and test examples in Machine Learning, Pattern Recognition, Inductive Logic
Programming). These data tables contain positive as well as negative exam-
ples for concepts to be learned or recognized; most often, the given examples
form a relatively small part of the concept extension so we may not learn these
concepts exactly but approximatively only. In constructing approximations to
concepts, the choice of a language for concept description (e.g. a language of
logical (boolean) formulas) involving the choice of primitive formulas as well as
inference mechanisms is very important. Finding a suitable language is itself a
challenging problem in scientific discovery. Approximate definability is effected
by means of some measure µ of closeness (similarity) on concept extensions;
one of oftener applied measures is the  Lukasiewicz measure µL [63] based on
frequency count, µL(A, B) = card(A ∩ B)/card(A) where A, B are concept ex-
tensions, rediscovered by Machine Learning and KDD communities recently.

Some natural constraints can be put on concept approximations (i) the exten-
sion of concept approximation should be consistent with the concept extension
or, at least almost consistent i.e. consistent on training examples and having
small error on test examples; (ii) some minimality (economy) conditions e.g.
minimal length of concept description, universality of description or best adapt-
ability. These conditions are applied in Machine Learning, Pattern Recognition
and KDD. Satisfying (i) as well as (ii) may be computationally hard (finding a
minimal consistent description is NP-hard for propositional logic [7], [70]) hence
there are strategies for suboptimal approximations. Hence as a solution to con-
cept approximation problem we obtain as a rule a family of concept descriptions
parameterized by languages chosen or strategies applied for particular solutions.
Choice of a particular solution may be motivated by ease of adaptivity, compu-



tational complexity of procedures of parameter tuning etc. Let us observe that
the choice of primitive concepts is actually a choice of an initial model (rela-
tional structure) which itself is to be discovered; an essential criterium is its
expresiveness for concept approximations (see also Section 1).

Relationships with Machine Learning, Pattern Recognition, Inductive
Logic Programming

To illustrate the general scheme, we borrow an example from KDD. A decision
rule may be expressed in the form: a1 = v1∧a2 = v2∧ ∧ak = vk ⇒ d = v where
a1, a2, ..., ak are features (predicates) used to build formulas expressing approx-
imating concepts and d is a (vector of) feature(s) used in formulas discerning
concepts (decisions) approximated. An association rule [3], [28] is a decision rule
in which the concept defined by the premise of the rule approximates the con-
cept defined by the consequent of the rule in high degree (high confidence) i.e.
sufficient fraction of examples satisfying the premise satisfy the consequent as
well and there is a sufficient (defined by a set threshold) number of examples
supporting both the premise and the consequent. Similar ideas are exploited in
Machine Learning and Pattern Recognition for estimating a strength of a rule.

The problem of selecting relevant features [73], [70] involves some search-
ing procedures like discretization, grouping of symbolic values, clusterization,
morphological filtering. These preliminary procedures define primitive concepts
(features) for a given problem of concept approximation. This process leads from
primitive features (variables) (e.g. real-valued features, pixel-valued features to
new intrinsic features (variables) at the gain being a more compact and a more
general description of concepts. Another alternative in search for features is to
search for hidden features (variables) - possibly better suited for concept ap-
proximation - in terms of which one may define (possibly near-to-functionally)
the existing features (variables).

6.4 Reasoning about Knowledge

Approximate reasoning about knowledge

Logics for approximate reasoning about knowledge attempt using symbolic cal-
culi to express concepts by their approximations being extensions of formulas of
these logics.

Fuzzy logic

Fuzzy logic [132] is a logic of vague concepts whose descriptors (very often in
natural language) are familiar to everyone but whose extensions are subjective
due to distinct understanding; Lotfi Zadeh proposed to interpret such concepts
as fuzzy sets. A subset X ⊆ U is a fuzzy set in U when the membership in X
is not crisp (binary) but it is subject to gradation; formally, this is expressed
by requiring the characteristic function µX of X to be a function from U into



the interval [0,1] (not into {0, 1} as in classical set theory); usually, a fuzzy set
X is identified with its fuzzy membership function µX . A model for a concept
X is a domain DX of this concept along with a finite set A1, A2, ..., Ak of its
values (features) interpreted as fuzzy subsets µAi

of DX . Fuzzy logic is built
over an alphabet consisting of propositional logic symbols along with symbols
for concepts and their features and a symbol ι. Elementary formulas are of the
form XιA (read X is A) where X is a concept symbol and A is a feature symbol
of that concept. Formulas are formed from elementary formulas by means of
propositional functors. Models for fuzzy logics consist of a family of domains for
concepts, fuzzy membership functions of concept features and certain operations
for building complex domains from the simple ones. To illustrate the workings
of this mechanism, consider e.g. a formula α : XιA ∨ Y ιB. Interpretations of
elementary formulas XιA, Y ιB are resp. fuzzy membership functions µA on DX

and µB on DY . These functions have first to be lifted to the cartesian product
DX x DY by cylindrical extensions. The resulting functions µ′

A, µ′
B may be com-

pared and for a chosen t -co-norm T , the meaning of α is T (µ′
A(x, y), µ′

B(x, y)).
Inferences in fuzzy logic are of the form of implications: if XιA then Y ιB inter-
preted as functions of the form I((µ′

A(x, y), µ′
B(x, y)) where I is a many-valued

logic implication. Fuzzy logic is the underlying logic of input-output signals in
fuzzy controllers [56].

Rough logic

Logic of ambiguous concepts whose extensions are defined only approximatively
due to the incompleteness of knowledge was proposed by Zdzis law Pawlak [86] as
rough logic. This logic is built over data structures known as information systems
or data tables formalized as pairs (U, A) where U is a universe of objects and A is
a finite set of attributes (features) where any attribute a is modelled as a mapping
on U with values in a value set Va. Rough logic is built from elementary formulas
(descriptors) of the form (a, v) where v ∈ Va and propositional connectives. The
model for this logic is the universe U and the meaning of an elementary formula
(a, v) is [(a, v)] = {x ∈ U : a(x) = v}. Letting [α∨β] = [α]∪[β] , [α∧β] = [α]∩[β]
and [¬α] = U − [α] extends the meaning to all formulas. Inference rules in rough
logic are of the form : if α then β (decision rules, dependencies). True inference
rules are those whose meaning is the universe U ; in general, one may assign
to an inference rule its truth degree defined e.g. as the  Lukasiewicz measure of
closeness of the extension of the premise and the extension of the consequent.
Definable (exact, crisp) concepts are extensions of formulas of rough logic; other
concepts are inexact (rough). Their description is approximative: for each such
concept X there exist two formulas: α−X , α+X such that [α−X ] ⊆ X ⊆ [α+X ]
and [α−X ], [α+X ] are resp. the maximal and the minimal exact concepts with
this property; these approximating concepts are called resp. the lower and the
upper approximation of X . Reasoning in terms of exact concepts is carried out
on lines of classical logic while reasoning with and about general concepts is
approximative but degrees of approximation can be found from data. Several
attempts has been made to built formal deductive systems for rough logic [81].



Probabilistic logic

A number of logics for approximative reasoning employ probabilistic seman-
tics [1], [89]. It is based on evaluating evidence based probabilities of infer-
ences p ⇒ q. In these evaluations often one applies Bayesian reasoning: in
many applications e.g. in medicine it is relatively easy to establish probabili-
ties P (q ⇒ p), P (p), P (q); from those, P (p⇒ q) is found via the Bayes formula
as P (q ⇒ p)P (p). Complex inferences may be carried out in semantic networks
known as Bayesian belief networks i.e. graphical representations of causal rela-
tions in a domain. Having joint probability table P (U) where U = {A1, ..., An}
one can calculate P (Ai) or P (Ai | E) where E is an evidence. However the size
of P (U) grows exponentially with the number of variables. Therefore we look for
compact representation of P (U) from which P (U) can be calculated if needed.
Bayesian network over U is such a representation. If the conditional indepen-
dence’s in the Bayesian network hold for U then P (U) can be calculated from
the conditions specified in the network.

Inductive Reasoning about Knowledge

Inductive reasoning about knowledge presented above aims at evaluating the
degree of assurance in validity of inferences p ⊢ q. In this process, the seman-
tics of inference is established relative to a parameterized family of connectives.
The next step consists in finding approximations to connectives making infer-
ences conforming with reality. Tasks of finding those approximations are often
local, From these, elementary inference schemes are built and mechanisms for
composing these schemes are found. Inference schemes are often desirable to
be distributed (autonomous or hierarchical) due to high complexity of inference
problems. On these schemes autoepistemic modalities may be superposed per-
mitting the system to evaluate its knowledge and express metastatements about
it. We include an example on constructing such schemes.

Localization (mereological logics)

 Lukasiewicz measure µ L of concept closeness may be generalized to a notion of
rough inclusion [92] i.e. a predicate µ(X, Y ) which for concepts X, Y returns the
value of degree in which X is a part of Y . This predicate allows for approximate
reasoning based on the notion of a partial containment: the inference p ⇒ q
is true in the degree µ([p], [q]) where [p] is the extension of the statement p.
It seems that the understanding of µ should be local i.e. each intelligent agent
should have its own collection of specific forms of rough inclusion and apply
them locally again i.e. in distinct data substructures different rough inclusions
may be valid. This idea involves necessity of a calculus for fusion of local rough
inclusions at any agent as well as for propagation of rough inclusions among
agents.

In search of a proper framework we turn to mereological theory of St. Leś -
niewski [61]. This set theory has as the primitive notion the notion of a (proper)
part predicate: XpartY is required to be irreflexive and transitive; the improper



part predicate ipart is defined as follows: XipartY if XpartY or X = Y . The
notion of a set is relativized to non-void properties: for any such property P , an
object X is a set of objects with the property P (XsetP ) if and only if given any
Y with Y ipartX there exist objects Q, R with QipartY, QipartR, RipartX, R
having P . A universal set for P is a class of P ; one requires the uniqueness of
class for each P . In this theory X is said to be an element of Y if for some
property P , X has P and Y is class of P . The notion of a subset is extensional:
X is a subset of Y if for each Z: Z element of X implies Z element of Y . It turns
out that to be an element, to be a subset, and to be an improper part are all
equivalent.

One may want to define a rough inclusion µ in such a way that a hierarchy
of partial relations created by it contains a hierarchy of objects according to
a part relation in the sense of Leśniewski. A set of postulates to this end may
be as follows [92]: (1) µ(x, x) = ω; (2) µ(x, y) = ω ⇒ (µ(z, y) ≥ µ(z, x)); (3)
(µ(x, y) = ω ∧ µ(y, x) = ω) ⇒ (µ(x, z) ≥ µ(y, z)); (4) (µ(z, x) = ω) ⇒ ∃w :
(µ(w, z) = ω ∧ µ(w, y) = ω) ⇒ (µ(x, y) = ω). An additional set of axiom
schemes may guarantee class uniqueness. A model is a set M along with a 2
-ary function F from M into a lattice L (let us set L = [0, 1]) and the constant
ω interpreted as maxL (in our case, 1); in this interpretation µ(x, y) becomes
F (v(x), v(y)) i.e. degree in which the element v(x) of D is a part of v(y). Letting
in D: v(x)partv(y) if F (v(x), v(y)) = 1 gives a relation of part in the sense of
Leśniewski. Hence, a model for µ is also a model for fuzzy inference.

Reasoning on basis of µ requires a calculus for fusion of local inclusions at
any agent reasoning about the world as well as a calculus for propagation of
uncertainty among agents in order to ensure the correctness of inference over
a scheme of agents. Logical calculus for an agent ag may be defined over a
predicate calculus L(ag): elementary formulas are of the form 〈ag, Φ(ag), ǫ(ag)〉
where Φ(ag) is a predicate of L(ag) and ǫ(ag) ∈ [0, 1]. Fusion of local calculi is
achieved by selecting a subset St(ag) ⊆ D(ag) of standards: to each standard st
a local rough inclusion µst is attached. Then we say that an object x ∈ D(ag)
satisfies 〈ag, Φ(ag), ǫ(ag)〉 if and only if there exists a standard st such that :
(i) st satisfies Φ(ag) (ii) µst(x, st) ≥ 1 − ǫ(ag). Propagation of uncertainty is
achieved by means of mereological connectives f extracted from data; their role
is to state that when children of ag submit objects satisfying their formulas in
degrees say ǫ1, ..., ǫn then the object composed them satisfies a formula at ag in
degree at least f(ǫ1, ..., ǫn) [92]. Schemes of agents may be composed to create
inference engines for approximate proofs of complex formulas from atomic ones.

As with fuzzy logic and bayesian reasoning, application of this logic is ana-
lytical: first, the necessary ingredients have to be learned on training data and
then tested on test data.

KDD as a logical process

Data mining can be described as searching from data for relevant structures
(semantical models of logics) and their primitive properties i.e. patterns. These
relevant constructs are used to discover knowledge. The process of knowledge



discovery can be treated as a kind of inference process (classical, commonsense
etc.) based on the constructs found in data mining stage leading to efficient so-
lutions of tasks like classification, prediction, etc. The solutions provide us with
approximate descriptions of concepts of interest having satisfactory quality. The
inference process has its own logic: in some cases it may be based on classical
logic but in many cases, due to uncertainty, the logic of inference should be ex-
tracted from data as schemes for approximate reasoning [92], [132]. In this latter
case a very important issue is knowledge granulation and reasoning with infor-
mation granules [133, 134], [97] making feasible the reasoning process in case of
complex problems like spatial reasoning [118] where the perception mechanisms
play important role. Finally, let us mention that the inference process should
be dynamically adapted to changing data. This causes the necessity to develop
adaptive reasoning strategies tuning parameters of logical models (structures)
and formulas to induce the optimal (sub-optimal) concept approximations.

KDD faces currently problems related to cognitive and information aspects
of perception and reasoning [104]. This certainly stimulates investigations on
foundations of logic towards the revision and redefining of its traditional notions
[12]. For example, the notion of a proof seems to evolve towards the notion of
an approximate scheme of reasoning (extracted from data) due to uncertainty
or complexity of search in possible proof space.

Acknowledgement. This work has been supported by the grant No. 8T11C-
02417 from the State Committee for Scientific Research (KBN) of the Republic
of Poland and by the ESPRIT-CRIT 2 project #20288. Andrzej Skowron has
also been partially supported by a grant of the Wallenberg Foundation and by a
grant from the State Committee for Scientific Research (KBN) of the Republic
of Poland.

References

1. Adams, E.W.: The Logic of Conditionals, An Application of Probability to De-
ductive Logic. D. Reidel Publishing Company, Dordrecht, 1975.

2. T. Agotnes, J. Komorowski, T. Loken : Taming large rule models in rough set
approaches. Proceedings of the 3rd European Conference of Principles and Prac-
tice of Knowledge Discovery in Databases, September 15-18, 1999, Prague, Czech
Republic, Lecture Notes in Artificial Intelligence 1704, Springer-Verlag, Berlin,
1999, pp. 193-203.

3. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings ACM SIGMOD Conference on Manage-
ment of Data, Washington, 1993, pp. 207-213.

4. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. Verkano(1996): Fast discovery
of association rules. Fayyad U.M., Piatetsky-Shapiro G., Smyth P., Uthurusamy R.
(Eds.): Advances in Knowledge Discovery and Data Mining, The AAAI Press/The
MIT Press 1996, pp. 307-328.

5. Anderson, A.R., Belnap. N.D.: Entailment: The Logic of Relevance and Necessity.
Princeton University Press, Vol.1, 1975.

6. Anderson, A.R., Belnap. N.D., Dunn, J.M: Entailment: Vol.2. Oxford University
Press, 1992.



7. Anthony, M., Biggs, N.: Computational Learning Theory. Cambridge University
Press, Cambridge, 1992.

8. Aquist, L.: Deontic logic.In: [31], pp. 605-714.
9. Bazan, J.G., Nguyen,Son Hung, Nguyen, Tuan Trung, Skowron, A., Stepaniuk, J.:

Decision rules synthesis for object classification. In: E. Orlowska (ed.), Incomplete
Information: Rough Set Analysis, Physica - Verlag, Heidelberg, 1998, pp. 23–57.

10. J. G. Bazan: A comparison of dynamic and non-dynamic rough set methods for
extracting laws from decision system. In: [94], 1998, pp. 321–365.

11. van Bentham, J.: Temporal logic. In: [34],1995, pp. 241-350.
12. van Bentham, J.: Logic after the Golden Age. IILC Magazine, December 1999,

Institute for Logic, Language and Computation, Amsterdam University, p. 12.
13. F. M. Brown: Boolean Reasoning. Kluwer Academic Publishers, Dordrecht, 1990.
14. G. Cattaneo: Abstract approximation spaces for rough theories. In: Polkowski and

Skowron [94], 1998, pp. 59–98.
15. M. R. Chmielewski, J. W. Grzymala-Busse: Global discretization of attributes

as preprocessing for machine learning. In: Proceedings of the Third International
Workshop on Rough Sets and Soft Computing (RSSC’94),San Jose State Univer-
sity, San Jose, California, USA, November 10–12, 1994, pp. 294–301.

16. J. Cios, W. Pedrycz, and R.W. Swiniarski: Data Mining in Knowledge Discovery.
Kluwer Academic Publishers, Dordrecht, 1998.

17. E. F. Codd: A relational model for large shared data banks. Comm. ACM. Vol.13,
No 6, 1970, pp. 377-382.

18. A. Czyżewski: Soft processing of audio signals. In: Polkowski and Skowron [95],
1998, pp. 147–165.

19. Davis, M.: Computability and Unsolvability. Mc Graw-Hill, New York, 1958.
20. J. Deogun, V. Raghavan, A. Sarkar, and H. Sever: Data mining: Trends in research

and development. In: Lin and Cercone [59], 1997, pp. 9–45.
21. Dougherty J., Kohavi R., and Sahami M.: Supervised and unsupervised discretiza-

tion of continuous features. In: Proceedings of the Twelfth International Confer-
ence on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1995..

22. Dubois, D., Prade, H.: Belief Change. Vol. 3 in: Gabbay, D.M., Smets Ph. (eds.),
Handbook of Defeasible Reasoning and Uncertainty Management Systems. Kluwer
Academic Publishers, Dordrecht, 1998.

23. I. Duentsch, G. Gediga: Statistical evaluation of rough set dependency analysis.
International Journal of Human-Computer Studies 46, 1997, pp. 589-604.

24. I. Duentsch, G. Gediga: Rough set data analysis. In: Encyclopedia of Computer
Science and Technology, Marcel Dekker (to appear).

25. M. J. Egenhofer, R. G. Golledge (eds.): Spatial and Temporal Reasoning in Geo-
graphic Information Systems. Oxford University Press, Oxford, 1997.

26. Eisinger, M., Ohlbach, H. J.: Deduction systems based on resolution. In: [32], pp.
183-271.

27. Fagin, R., Halpern. J.Y., Moses, Y., and Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge MA, 1995.

28. Fayyad, U., Piatetsky-Shapiro, G. (eds.): Advances in Knowledge Discovery and
Data Mining. MIT and AAAI Press, Cambridge MA, 1996.

29. Fitting, M.: Basic modal logic. In: [33], pp. 368-438.
30. J. Friedman, R. Kohavi, and Y. Yun: Lazy Decision Trees. In: Proc. of AAAI-96,

1996, pp. 717–724.
31. Gabbay, D., Guenthner, F. (eds.): Handbook of Philosophical Logic Vol.2. Kluwer

Academic Publishers, Dordrecht, 1994.



32. Gabbay, D.M., Hogger, C.J., and Robinson, J.A. (eds.): Handbook of Logic in
Artificial Intelligence and Logic Programming Vol.1. Oxford University Press, New
York, 1993.

33. Gabbay, D.M., Hogger, C.J., and Robinson, J.A. (eds.): Handbook of Logic in
Artificial Intelligence and Logic Programming vol.3. Oxford University Press, New
York, 1993.

34. Gabbay, D.M., Hogger, C.J., and Robinson, J.A. (eds.): Handbook of Logic in
Artificial Intelligence and Logic Programming Vol.4. Oxford University Press, New
York, 1995.

35. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-completeness. W.H. Freeman and Company, New York, 1979.

36. Gärdenfors, P., Rott, H.: Belief revision. In: [34], 1995, pp. 35-132.
37. Geffner, H.: Default Reasoning: Causal and Conditional theories. MIT Press, Cam-

bridge, MA, 1992.
38. Gentzen, G.: Untersuchungen über das logische Schliessen, Math. Zeitschrift 39,

1934, pp. 176-210, 405-431.
39. C. Glymour, D. Madigan, D. Pregibon, and P. Smyth: Statistical themes and

lessons for data mining. Data Mining and Knowledge Discovery 1, 1996, pp. 25-
42.

40. Gonzalez. A.J., Dankel, D.D.: The Engineering of Knowledge Based Systems: The-
ory and Practice. Prentice Hall, Englewood Cliffs, NJ, 1993.

41. Gödel, K.: die Vollständigkeit der Axiome des Logischen Funktionenkalküls,
Monatshefte für Mathematik und Physik 37, 1930, pp. 349-360.

42. Gödel, K.: Über formal unetscheidbare Sätze der Principia Mathematica und Ver-
wandtersysteme I, Monatshefte für Mathematik und Physik 38, 1931, pp. 173-198.

43. S. Greco, B. Matarazzo, and R. S lowinski: Rough Approximation of a Preference
Relation in a Pairwise Comparison Table. In: Polkowski and Skowron [95], 1998,
pp. 13–36.

44. J.W. Grzyma la–Busse: Applications of the rule induction system LERS. In:
Polkowski and Skowron [94], 1998, pp. 366–375.

45. Halpern, J.Y.: Reasoning about knowledge: a survey. In: [34], 1995, pp. 1–34.
46. Harel D.: Dynamic logic. In: [31], 1994, pp. 497–604.
47. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca, N.Y., 1962.
48. Hodges, W.: Logical features of Horn clauses. In: [32], 449-503.
49. P. J. Huber: Robust statistics. Wiley, New York, 1981.
50. Hughes, G.E., Creswell, M.J.: An Introduction to Modal Logic. Methuen, London,

1968.
51. J. Komorowski, J. Żytkow (Eds.): The First European Symposium on Principles

of Data Mining and Knowledge Discovery (PKDD’97). June 25–27, Trondheim,
Norway. Lecture Notes in Artificial Intelligence 1263, Springer-Verlag, Berlin,
1997, pp. 1–396.

52. J. Komorowski, Z. Pawlak, L. Polkowski, and A. Skowron Rough sets: A tutorial.
In: S.K. Pal and A. Skowron (eds.), Rough fuzzy hybridization: A new trend in
decision–making. Springer-Verlag, Singapore, 1997, pp. 3-98.

53. Konolige, K.: Autoepistemic logic. In: [33], 1994, 217-295.
54. W. Kowalczyk: Rough data modelling, A new technique for analyzing data. In:

Polkowski and Skowron [94], 1998, pp. 400–421.
55. K. Krawiec, R. S lowiński, and D. Vanderpooten: Learning decision rules from

similarity based rough approximations. In: Polkowski and Skowron [95], 1998, pp.
37–54.



56. Kruse, R., Gebhardt, J., and Klawonn, F.: Foundations of Fuzzy Systems. J. Wiley,
New York, 1994.

57. M. Kryszkiewicz: Generation of rules from incomplete information systems. In:
Komorowski and Żytkow [51], 1997, pp. 156–166.

58. Lifschitz, V.: Circumscription. In: [33], 297-352.

59. T. Y. Lin, N. Cercone (Eds.): Rough Sets and Data Mining. Analysis of Imprecise
Data. Kluwer Academic Publishers, Boston, 1997.

60. T.Y. Lin: Granular computing on binary relations I, II. In: Polkowski and Skowron
[94], 1998, pp. 107–140.

61. Leśniewski, S.: On the foundations of mathematics. In: Surma, S., Srzednicki,J.T.,
Barnett, D.I., Rickey, F.V. (eds), Stanislaw Leśniewski. Collected Works. Kluwer
Academic Publishers, Dordrecht (1992), pp. 174-382.

62. Lloyd, J. W.: Foundations of Logic Programming. Springer- Verlag, Berlin, 1984.

63.  Lukasiewicz, J.: Die logischen Grundlagen der Wahrscheinchkeitsrechnung.
Kraków, 1913.

64.  Lukasiewicz, J.: Philosophische Bemerkungen zu mehrwertigen Systemen des Aus-
sagenkalküls. Comptes rendus de la Société des Sciences et des Lettres de Varsovie
23, 1930, pp. 57-77.

65. Makinson, D.: General patterns in non-monotonic reasoning. In: [33], 35-110.

66. Mendelson, E.: Introduction to Mathematical Logic. Van Nostrand, New York,
1960.

67. Michalski, R.: Inferential theory of learning as a conceptual basis for multistrategy.
Machine Learning 11, 1993, pp. 111-151.

68. Michalski R., Tecuci G.: Machine Learning. A Multistrategy Approach Vol.4. Mor-
gan Kaufmann, San Francisco, 1994.

69. D. Michie, D.J. Spiegelhalter, C.C. Taylor (Eds.): Machine Learning, Neural and
Statistical Classification. Ellis Horwood, New York, 1994.

70. T.M. Mitchell: Machine Learning. Mc Graw-Hill, Portland, 1997.

71. T. Mollestad and J. Komorowski: A Rough Set Framework for Propositional De-
fault Rules Data Mining. In: S.K. Pal and A. Skowron (Eds.): Rough – Fuzzy
Hybridization: New Trend in Decision Making. Springer–Verlag, Singapore, 1999.

72. Muggleton, S.: Foundations of Inductive Logic Programming. Prentice Hall, En-
glewood Cliffs, 1995.

73. Nadler M., Smith E.P.: Pattern Recognition Engineering. Wiley, New York, 1993.

74. H. S. Nguyen: Discretization of Real Value Attributes, Boolean Reasoning Ap-
proach. Ph.D. Dissertation, Warsaw University, 1997, pp. 1–90.

75. H. S. Nguyen: Efficient SQL-learning method for data mining in large data bases.
In: Proceedings of the Sixteenth International Joint Conference on Artificial In-
telligence (IJCAI’99), 1999, pp. 806–811.

76. S. H. Nguyen: Data Regularity Analysis and Applications in Data Mining. Ph.D.
Dissertation, Warsaw University, 1999.

77. H.S. Nguyen, S.H. Nguyen: Pattern extraction from data. Fundamenta Informat-
icae 34, 1998, pp. 129–144.

78. H.S. Nguyen, S.H. Nguyen: Rough sets and association rule generation. Funda-
menta Informaticae 40/4 (in print).

79. S. H. Nguyen, A. Skowron, and P. Synak: Discovery of data patterns with appli-
cations to decomposition and classification problems. In: Polkowski and Skowron
[95], 1998, pp. 55–97.

80. Nute, D.: Conditional logic. In: [31], 387-440.



81. E. Or lowska (ed.): Incomplete Information: Rough Set Analysis. Physica–Verlag,
Heidelberg, 1998.

82. S. K. Pal, A. Skowron (1999), Rough–fuzzy Hybridization: A New Trend in Deci-
sion Making. Springer–Verlag, Singapore, 1999.

83. G. Paun, L. Polkowski, and A. Skowron: Parallel communicating grammar systems
with negotiations. Fundamenta Informaticae 28/3-4, 1996, pp. 315–330.

84. Z. Pawlak: Information systems – theoretical foundations. Information Systems 6,
1981, pp. 205–218.

85. Z. Pawlak: Rough sets. International Journal of Computer and Information Sci-
ences 11, 1982, pp. 341–356.

86. Z. Pawlak: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht, 1992.

87. Z. Pawlak, Z. Ras, (Eds.): Proceedings: Ninth International Symposium on
Methodologies for Intelligent Systems (ISMIS’96),Springer–Verlag, Berlin, 1996.

88. Z. Pawlak, A. Skowron: Rough set rudiments. Bulletin of the International Rough
Set Society 3/4, 1999, pp. 181-185.

89. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, 1988.

90. Z. Piasta, A. Lenarcik: Rule induction with probabilistic rough classifiers. Machine
Learning (to appear).

91. L. Polkowski: On synthesis of constructs for spatial reasoning via rough mereology.
Fundamenta Informaticae (to appear).

92. L. Polkowski, A. Skowron: Rough mereology: A new paradigm for approximate
reasoning. International Journal of Approximate Reasoning 15/4,1994, pp. 333–
365.

93. L. Polkowski, A. Skowron: Rough sets: A perspective. In: Polkowski and Skowron
[94], 1998, pp. 31–58.

94. L. Polkowski, A. Skowron (Eds.): Rough Sets in Knowledge Discovery 1: Method-
ology and Applications. Physica-Verlag, Heidelberg, 1998.

95. L. Polkowski, A. Skowron (Eds.: Rough Sets in Knowledge Discovery 2: Applica-
tions, Case Studies and Software Systems. Physica-Verlag, Heidelberg, 1998.

96. L. Polkowski, A. Skowron (Eds.): Proc. First International Conference on Rough
Sets and Soft Computing, RSCTC’98, Warszawa, Poland, LNAI 1424, Springer-
Verlag, Berlin, 1998.

97. L. Polkowski, A. Skowron: Towards adaptive calculus of granules. In: [135], 1,
1999, pp. 201–227.

98. Poole, D.: Default logic. In: [33], 189-216.
99. Prawitz, D.: Natural deduction, a proof theoretic study. Stockholm Studies in

Philosophy Vol.3, Almquist & Wiksell, Stockholm, 1965.
100. J.R. Quinlan: C4.5. Programs for machine learning. Morgan Kaufmann, San Ma-

teo, CA, 1993.
101. Z.W. Ras: Cooperative knowledge–based systems. Journal of the Intelligent Au-

tomation Soft Computing 2/2 (special issue edited by T.Y. Lin), 1996, pp. 193–
202.

102. Rescher, N.: Many-valued Logics. Mc Graw Hill, New York, 1969.
103. J. J. Rissanen: Modeling by Shortest Data Description. Automatica 14, 1978, pp.

465-471.
104. Roddick J.F., Spiliopoulou M.: A Bibliography of Temporal, Spatial, and Tem-

poral Data Mining Research. Newsletter of the Special Interest Group (SIG) on
Knowledge Discovery & Data Mining 1/1, 1999, pp. 34-38.



105. Rosser, J.B., Turquette, A.R.: Many-valued Logics. North-Holland, Amsterdam,
1952.

106. Russel, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice Hall,
Englewood Cliffs, 1995.

107. Sandewall, E., Shoham, Y.: Non-monotonic temporal reasoning. In: [34], 439-498.
108. B. Selman, H. Kautz and D. McAllester. Ten challenges in propositional reasoning

and search. Proc. IJCAI’97, Japan.
109. Skowron A.: Synthesis of adaptive decision systems from experimental data. In:

A. Aamodt, J. Komorowski (eds): Proc. of the Fifth Scandinavian Conference
on Artificial Intelligence (SCAI’95), May 1995, Trondheim, Norway. IOS Press,
Amsterdam, 1995, pp. 220–238.

110. A. Skowron, H.S. Nguyen: Boolean reasoning scheme with some applications in
data mining. Proceedings of the 3-rd European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases, September 1999, Prague, Czech Repub-
lic. Lecture Notes in Computer Science 1704, 1999, pp. 107–115.

111. A. Skowron, C. Rauszer: The Discernibility Matrices and Functions in Information
Systems. In: S lowiński [115], 1992, pp. 331–362.

112. A. Skowron, J. Stepaniuk: Tolerance Approximation Spaces. Fundamenta Infor-
maticae 27, 1996, pp. 245–253.

113. A. Skowron, J. Stepaniuk, and S. Tsumoto: Information Granules for Spatial
Reasoning. Bulletin of the International Rough Set Society 3/4, 1999, pp. 147-
154.

114. D. Ślȩzak: Approximate reducts in decision tables. In: Proceedings of the Sixth
International Conference, Information Processing and Management of Uncertainty
in Knowledge-Based Systems (IPMU’96) vol. 3, July 1–5, Granada, Spain, 1996,
pp. 1159–1164.

115. R. S lowiński, (Ed.): Intelligent Decision Support – Handbook of Applications and
Advances of the Rough Sets Theory. Dordrecht, Kluwer Academic Publishers,
1992.

116. R. S lowiński, D. Vanderpooten: Similarity relation as a basis for rough approxi-
mations. In: P. Wang (Ed.): Advances in Machine Intelligence & Soft Computing.
Bookwrights, Raleigh NC, 1997, pp. 17–33.

117. R. S lowiński, D. Vanderpooten: A generalized definition of rough approximations
based on similarity. IEEE Trans. on Data and Knowledge Engineering (to appear).

118. http:agora.leeds.ac.ukspacenet.html

119. Stalnaker, R.: A theory of conditionals. In: N. Rescher (ed.): Studies in Logical
Theory. Blackwell, Oxford, 1968.

120. M. Szczuka: Symbolic and neural network methods for classifiers construction.
Ph.D. Dissertation, Warsaw University, 1999.

121. Tarski, A.: On the concept of logical consequence. In: Logic, Semantics, Meta-
mathematics. Oxford University Press, Oxford, 1956.

122. Tarski, A.: Der Wahrheitsbegriff in den Formalisierten Sprachen, Studia Philo-
sophica 1, 1936, pp. 261-405.

123. Troelstra, A. S.: Aspects of constructive mathematics. In: Barwise, J. (ed.): Hand-
book of Mathematical Logic. North Holland, Amsterdam, 1977, pp. 973-1052.

124. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London 1993.
125. S. Tsumoto: Modelling diagnostic rules based on rough sets. In: Polkowski and

Skowron [96], 1998, pp. 475–482.
126. J. D. Ullman, J. Widom: A First Course in Database Systems. Prentice–Hall,

Inc., Englewood Cliffs, 1997.



127. Urquhart, A.: Many-valued logic. In: [33], 71-116.
128. A. Wasilewska, L. Vigneron: Rough algebras and automated deduction. In:

Polkowski and Skowron [94], 1998, pp. 261–275.
129. Wille, R.: Formale Begriffsanalyse: Mathematische Grundlagen. Springer-Verlag,

Berlin, 1996.
130. Von Wright, G.H.: An Essay in Modal Logic. North Holland, Amsterdam, 1951.
131. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 1965, pp. 333-353.
132. Zadeh, L.A.: A theory of approximate reasoning. In: Hayes, J.E., Michie, D.,

Mikulich, L.C. (eds.): Machine Intelligence Vol.9. J. Wiley, New York, 1979, pp.
149-194.

133. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems
4, 1996, pp. 103-111.

134. Zadeh, L.A: Toward a theory of fuzzy information granulation and its certainty in
human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 1997, pp. 111-127.

135. Zadeh, L.A., Kacprzyk, J. (eds.): Computing with Words in Informa-
tion/Intelligent Systems Vol. 1-2. Physica-Verlag, Heidelberg, 1999.

136. M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li: New parallel algorithms for
fast discovery of association rules. In: Data Mining and Knowledge Discovery : An
International Journal (special issue on Scalable High-Performance Computing for
KDD) 1/4, 1997, pp. 343–373.

137. W. Ziarko: Variable Precision Rough Set Model. J. of Computer and System
Sciences 46, 1993, pp. 39–59.

138. W. Ziarko (ed.): Rough Sets, Fuzzy Sets and Knowledge Discovery (RSKD’93).
Workshops in Computing, Springer–Verlag & British Computer Society, London,
Berlin, 1994.

139. W. Ziarko: Rough sets as a methodology for data mining. In: Polkowski and
Skowron [95], 1998, pp. 554–576.


