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Abstract

Rough set theory is a new mathematical approach to vagueness and uncertainty.
The theory has found many real life applications world wide. It is also considered
as a very well suited new mathematical tool to deal with various decision problems
and many papers on rough set theory and decision support have been published
recently. Rough set theory gives new insight into the decision process and offers
new efficient algorithms. Several real life decision problems have been successfully
solved using this approach.

In this paper basic concepts of rough set theory will be given and its significance
for decision analysis will be briefly discussed.
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1 Introduction

Rough set theory seems to be a very well suited new mathematical tool to deal with various

decision problems. Many papers on rough set theory and decision support have been

published in recent years, ”see Greco et al (1996, 1997, 1998, 1999), Kowalczyk (1998),

Pal (1998), Pawlak (1994, 1997), Pawlak and S�lowiński (1994), S�lowiński (1992, 1993,

1994, 1995), S�lowiński and Stefanowski (1993, 1995), S�lowiński and Zopounidis (1995,

1994), S�lowiński et al (1997)”. It turned out however, that the original rough set approach

does not cover some important aspect of decision analysis. As pointed out recently by

Greco, Matarazzo and S�lowiński ”see Greco et al (1996, 1997, 1998, 1999)”, decision

problems usually involve attributes whose domains are preference ordered, e.g., product
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quality, market share, indebtement ratio, etc. Such attributes are called criteria and may

appear together with attributes, like symptoms, colors, textural features, traditionally

considered in the rough set methodology. The main problem with consideration of criteria

in rough approximation of ordered decision classes concerns situations where an object a

is indiscernible with object b with respect to attributes and a is not worse or better than

b on all criteria, however, a has been assigned to a worse decision class than b. These

situations are inconsistent with respect to the dominance principle and they cannot be

captured by indiscernibility or similarity relation originally used for rough approximations.

The innovation proposed by Greco, Matarazzo and S�lowiński consists in substitution of the

indiscernibility or similarity relation by a dominance relation in the rough approximation

of ordered decision classes. An important consequence of this fact is a possibility of

generating rules from these approximations having a more general syntax than before, not

requiring any prior discretization of quantitative attributes and distinguishing exact rules

and approximate rules depending whether they observe or not the dominance principle.

The introduction of the dominance relation to the rough approximations has extended

the application of rough sets to analysis of preferential information in the form of decision

examples and to construction of a preference model in terms of decision rules induced

from these examples. This possibility made the modeling of decision maker’s preferences

in terms of decision rules a strong alternative for traditional preference modeling based on

functions or relations. Thus, the extension of the rough set theory handling preferentially

ordered attributes has far going consequences for both knowledge discovery and multiple

criteria decision making. However we will refrain from discussion of dominance relation

in this paper. The interested reader is advised to consult the references.

In this paper we are going to present basic concepts of rough set theory. Various exten-
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sion of the theory, ”see Greco et al (1998), Kretowski and Stepaniuk (1996), Skowron and

Stepaniuk (1994), S�lowiński (1992, 1993), S�lowiński and Vanderpooten (1997), Stepaniuk

(1998), Stepaniuk and Kretowski (1995), Ziarko (1993)”, however, will be not discussed

here, for we would like to present in this paper rather rudiments of the theory, then its

generalizations. The reader interested in more advanced results is advised to consult the

references.

2 The intuitive foundations

The starting point of rough set theory is the indiscernibility relation. The indiscernibility

relation identifies objects having the same properties, i.e., objects of interest having the

same properties are indiscernible and consequently are treated as identical or similar. In

other words the indiscernibility relation leads to clustering of elements of interest into

granules, of indiscernible (similar) objects. In rough set theory these granules, called

elementary sets (concepts) are basic building blocks (concepts) of knowledge about the

universe.

Every union of elementary concepts is referred to as a crisp or precise concept (set);

otherwise a concept (set) is called rough, vague or imprecise. Thus rough concepts cannot

be expressed in terms of elementary concepts. However, they can be expressed approxi-

mately by means of elementary concepts by employing the idea of the lower and the upper

approximation of a concept. The lower approximation of the concept is the union of all

elementary concepts which are included in the concept, whereas the upper approximation

is the union of all elementary concepts which have nonempty intersection with the con-

cept. In other words, the lower and the upper approximation of a concept are the union

of all elementary concepts which are surely and possibly included in the concept, respec-
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tively. The difference between the lower and the upper approximation of the concept is

its boundary region. Now it can easily be seen that a concept is rough if it has nonempty

boundary region, i.e., its lower and upper approximation are nonidentical. Obviously, if

the lower and the upper approximations of the concept are the same, i.e., its boundary

region is empty – the concept is crisp.

3 Database

In order to give more intuitive insight into the theory we will start our consideration from

a database. A simple example of a database is presented in Table 1.

Store E Q L P
1 high good no profit
2 med. good no loss
3 med. good no profit
4 no avg. no loss
5 med. avg. yes loss
6 high avg. yes profit

Table 1

In the database six stores are characterized by four attributes:

E – empowerment of sales personnel,

Q – perceived quality of merchandise,

L – high traffic location,

P – store profit or loss.

Each store has different description in terms of attributes E, Q, L and P , thus all stores

are discernible by employing information provided by all attributes. However, stores 2

and 3 are indiscernible in terms of attributes E, Q and L, since they have the same values

of these attributes. Similarly, stores 1, 2 and 3 are indiscernible with respect to attributes

Q and L, etc.
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Each subset of attributes determines a partition (classification) of all objects into

classes having the same description in terms of these attributes. For example, attributes

Q and L aggregate all stores into the following classes {1, 2, 3}, {4}, {5, 6}. Thus, each

database determines a family of classification patterns which are used as a basis of further

considerations.

We are interested in the following problem: what are the characteristic features of

stores having profit (or loss) in view of information available in Table 1, i.e., we want

to describe set (concept) {1, 3, 6} (or {2, 4, 5}) in terms of attributes E, Q and L. It can

be easily seen that this question cannot be answered uniquely in our case since stores 2

and 3 display the same features in terms of attributes E, Q and L, but store 2 makes a

profit, whereas store 3 has a loss. Therefore, we can give partial answer to this question

only. In view of information contained in Table 1, we can say for sure that stores 1 and

6 make a profit, stores 4 and 5 have a loss, whereas stores 2 and 3 cannot be classified

as making a profit or having a loss. Employing attributes E, Q and L, we can say that

stores 1 and 6 surely make a profit, i.e., surely belong to the set {1, 3, 6}, whereas stores

1,2,3 and 6 possibly make a profit, i.e., possibly belong to the set {1, 3, 6}. We will say

that the set {1, 6} is the lower approximation of the set (concept) {1, 3, 6}, and the set

{1, 2, 3, 6} – is the upper approximation of the set {1, 3, 6}. The set {2, 3}, being the

difference between the upper approximation and the lower approximation is referred to

as the boundary region of the set {1, 3, 6}.

Now let us give some formal notations and definitions.

By a database we will understand a pair S = (U, A), where U and A, are finite,

nonempty sets called the universe, and a set of attributes respectively. With every at-

tribute a ∈ A we associate a set Va, of its values, called the domain of a. Any subset
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B of A determines a binary relation I(B) on U , which will be called an indiscernibility

relation, and is defined as follows:

(x, y) ∈ I(B) if and only if a(x) = a(y) for every a ∈ A, where a(x) denotes the value

of attribute a for element x.

It can easily be seen that I(B) is an equivalence relation. The family of all equivalence

classes of I(B), i.e., partition determined by B, will be denoted by U/I(B), or simple

U/B; an equivalence class of I(B), i.e., block of the partition U/B, containing x will be

denoted by B(x).

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible. Equivalence

classes of the relation I(B) (or blocks of the partition U/B) are refereed to as B-elementary

sets or B-granules.

An equivalence relation as a basis for rough set theory seems to be a very intuitive

choice, but for many applications it is not sufficient. Therefore many authors proposed

another relations as a basis for rough set theory, e.g., a tolerance relation, an ordering

relations and others. But for the sake of simplicity we will stick in this paper to the

equivalence relation as a basis for rough set theory.

4 Approximations of sets

Now the indiscernibility relation will be used to define basic operations in rough set theory,

which are defined as follows:

B∗(X) =
⋃

x∈U

{B(x) : B(x) ⊆ X},
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B∗(X) =
⋃

x∈U

{B(x) : B(x) ∩ X �= ∅},

assigning to every X ⊆ U two sets B∗(X) and B∗(X) called the B-lower and the B-upper

approximation of X, respectively.

Hence, the B-lower approximation of a concept is the union of all B-granules that are

included in the concept, whereas the B-upper approximation of a concept is the union of

all B-granules that have a nonempty intersection with the concept. The set

BNB(X) = B∗(X) − B∗(X)

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then X is crisp

(exact) with respect to B; in the opposite case, i.e., if BNB(X) �= ∅, X is referred to as

rough (inexact) with respect to B.

Rough sets can be also defined using a rough membership function ”see Pawlak and

Skowron (1994)”, defined as

µB
X(x) = card(B(x) ∩ X)/card(B(x)).

Obviously

0 ≤ µB
X(x) ≤ 1.

Value of the membership function µB
X(x) is a conditional probability π(X|B(x)), and can

be interpreted as a degree of certainty to which x belongs to X (or 1−µB
X(x), as a degree

of uncertainty).

The rough membership function can be generalized as follows ”see Polkowski and

Skowron (1994)”:

µ(X, Y ) = card(X ∩ Y )/card X,
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where X, Y ⊆ U, X �= ∅.

The function µ(X, Y ) expresses the degree to which X is included in Y . Obviously, if

µ(X, Y ) = 1, then X ⊆ Y.

If X is included to a degree k in X we will write X ⊆k Y, and say that X is roughly

included in Y.

The rough inclusion can be also used to more general definition of approximations,

which are defined below:

Bk(X) =
⋃

k≤l≤1

{x ∈ U : B(x) ⊆l X},

Bk(X) =
⋃

0<l≤1

{x ∈ U : B(x) ⊆l X},

where k (0 < k ≤ 1) is a threshold – and are called k-lower and k-upper B-approximation

of X, respectively.

The k-boundary B-region of X is defined as

BNk
B(X) = Bk(X) − Bk(X) =

⋃

0<l≤k

{x ∈ U : B(x) ⊆l X},

For k = 1 we obtain the previous definitions.

This generalization is a variety of variable precision rough set model proposed by

Ziarko ”see Ziarko (1993)”.

5 Dependency of attributes

Another important issue in data analysis is discovering dependencies between attributes.

Suppose that the set of attributes A in a database S = (U, A) is divided into two subsets

C and D, called condition and decision attributes respectively, such that C ∪D = A and

C ∩ D = ∅. Such databases are called decision tables.
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Intuitively, a set of attributes D depends totally on a set of attributes C, denoted

C ⇒ D, if all values of attributes from D are uniquely determined by values of attributes

from C. In other words, D depends totally on C, if there exists a functional dependency

between values of D and C.

We would need also a more general concept of dependency, called a partial dependency

of attributes. Intuitively, the partial dependency means that only some values of D are

determined by values of C.

Formally dependency can be defined in the following way. Let D and C be subsets of

A.

We will say that D depends on C to a degree k (0 ≤ k ≤ 1), denoted C ⇒k D, if

k = γ(C, D) = card(POSC(D))/card (U),

where

POSC(D) =
⋃

X∈U/D

C∗(X),

called a positive region of the partition U/D with respect to C, is the set of all elements

of U that can be uniquely classified to blocks of the partition U/D, by means of C.

Obviously

γ(C, D) =
∑

X∈U/D

card(C∗(X))/card (U).

If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends partially

(to a degree k) on C, and if k = 0, D does not depend on C.

The coefficient k expresses the ratio of all elements of the universe, which can be

properly classified to blocks of the partition U/D, employing attributes C and will be

called the degree of the dependency.
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For example in Table 1 the degree of dependency between the attribute P and the set

of attributes {E, Q, L} is 2/3.

Obviously if D depends totally on C then I(C) ⊆ I(D). That means that the partition

generated by C is finer than the partition generated by D.

The function γ(C, D) can be regarded as a generalization of the rough inclusion func-

tion µ(X, Y ), for it expresses to what degree partition generated by C, i.e., U/C is included

in the partition generated by D, i.e., U/D.

6 Reduction of attributes

A reduct is a minimal set of condition attributes that preserves the degree of dependency.

It means that a reduct is a minimal subset of condition attributes that enables to make

the same decisions as the whole set of condition attributes.

Formally if C ⇒k D then a minimal subset C ′ of C, such that γ(C, D) = γ(C ′, D) is

called a D-reduct of C.

For example, in Table 1 we have two reducts {E, Q} and {E, L} of condition attributes

{E, Q, L}. This means that Table 1 can be replaced either by Table 2 or Table 3.

Store E Q P
1 high good profit
2 med. good loss
3 med. good profit
4 no avg. loss
5 med. avg. loss
6 high avg. profit

Store E L P
1 high no profit
2 med. no loss
3 med. no profit
4 no no loss
5 med. yes loss
6 high yes profit

Table 2 Table 3

It is easy to check that both Table 2 and Table 3 preserve degree of dependency

between attributes P and E, Q, L.
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Reduction of attributes is the fundamental issue in rough set theory.

7 Decision rules

Let S be a decision table and let C and D be condition and decision attributes, respec-

tively.

By Φ, Ψ etc. we will denote logical formulas built from attributes, attribute-values

and logical connectives (and, or, not) in a standard way. We will denote by |Φ|S the set

of all object x ∈ U satisfying Φ and refer to as the meaning of Φ in S.

The expression πS(Φ) = card(|Φ|S)/card(U) will denote the probability that the for-

mula Φ is true in S.

A decision rule is an expression in the form ”if...then...”, written Φ → Ψ; Φ and Ψ

are referred to as condition and decision of the rule respectively.

A decision rule Φ → Ψ is admissible in S if |Φ|S is the union of some C-elementary

sets, |Ψ|S is the union of some D-elementary sets and |Φ ∧ Ψ|S �= ∅. In what follows we

will consider admissible decision rules only.

Examples of decision rules admissible in Table 1 are given below:

1) (E, med.) and (Q, good) → (P, loss)

2) (E, no) → (P, loss) (*)

3) (E, med.) and (Q, avg.) → (P, loss)
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With every decision rule Φ → Ψ we associate a certainty factor

πS(Ψ|Φ) = card(|Φ ∧ Ψ|S)/card(|Φ|S),

which is the estimate of conditional probability that Ψ is true in S given Φ is true in S

with the probability πS(Φ).

Besides, we will also need a coverage factor ”see Tsumoto (1998)”

πS(Φ|Ψ) = card(|Φ ∧ Ψ|S)/card(|Ψ|S),

which is the estimate of conditional probability that Φ is true in S given Ψ is true in S

with the probability πS(Ψ).

For example, for the set at decision rules (*) we have:

π(Ψ|Φ1) = 1/2, π(Ψ|Φ2) = 1, π(Ψ|Φ3) = 1,

and

π(Φ1|Ψ) = 1/3, π(Φ2|Ψ) = 1/3, π(Φ3|Ψ) = 1/3,

where Φi is the condition of rule i, and Ψ = (P, loss). Let {Φi → Ψ}n be a set of decision

rules such that all conditions Φi are pairwise mutually exclusive, i.e., |Φi ∧ Φj |S = ∅, for

any 1 ≤ i, j ≤ n, i �= j, and

n∑

i=1

πS(Φi|Ψ) = 1. (∗∗)

Then the following property holds:

πS(Ψ) =
n∑

i=1

πS(Ψ|Φi) · πS(Φi). (∗ ∗ ∗)

For any decision rule Φ → Ψ the following property is true:

πS(Φ|Ψ) = πS(Ψ|Φ) · πS(Φ)/
n∑

i=1

πS(Ψ|Φi) · πS(Φi). (∗ ∗ ∗∗)
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This relationship first was observed by �Lukasiewicz ”see Borkowski (1970), �Lukasiewicz

(1913)”.

It is easy to check that the set of decision rules (*) statistics properties (**), (***)

and (****), i.e.,

π(Ψ) = 1/2 · 1/3 + 1 · 1/6 + 1 · 1/6 = 1/2, π(Φ1|Ψ) = 1/3, π(Φ2|Ψ) = 1/3, π(Φ3|Ψ) = 1/3.

It can be easily seen that the relationship between the certainty factor and the coverage

factor, expressed by the formula (****) is the Bayes’ Theorem. However, the meaning

of Bayes’ Theorem in this case differs from that postulated in statistical inference. In

statistical data analysis based on Bayes’ Theorem, we assume that prior probability about

some parameters without knowledge about the data is given. The posterior probability

is computed next, which tells us what can be said about prior probability in view of the

data. In the rough set approach the meaning of Bayes’ Theorem is unlike. It reveals some

relationships in the database, without referring to prior and posterior probabilities, and

it can be used to reason about data in terms of approximate (rough) implications. Thus,

the proposed approach can be seen as a new model for Bayes’ Theorem, and offers a new

approach to data analysis.

8 Conclusions

Basic concepts of rough set theory are, approximations, dependencies and decision rules.

They can be used to solve many problems of decision analysis. Besides, the rough set ap-

proach offers new insight into the decision process and offers new efficient algorithms. Sev-

eral real life decision problems have been successfully solved using the rough set approach.

Nevertheless, several problems, both theoretical and practical, need further research, e.g.,
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efficient algorithms for data reduction and discretization. Also widely available software

for data analysis based on rough set theory is badly needed.
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[39] S�lowiński, R.: Strict and weak indiscernibility of objects described by quantitative

attributes with overlapping norms. In: S�lowiński, J. Stefanowski (eds.), Foundations
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