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Abstract .  Rough set based data analysis starts from a data table, called an in- 
formation system. The information system contains data about objects of interest 
characterized in terms of some attributes. Often we distinguish in the inform* 
tion system condition and decision attributes. Such information system is called 
a decision table. The decision table describes decisions in terms of conditions that 
must be satisfied in order to carry out the decision specified in the decision table. 
With every decision table a set of decision rules, called a decision algorithm can be 
associated. It is shown that every decision algorithm reveals some well known prob- 
abilistic properties, in particular it satisfies the Total Probability Theorem and the 
Bayes' Theorem. These properties give a new method of drawing conclusions from 
data, without referring t o  prior and posterior probabilities, inherently associated 
with Bayesian reasoning. 

1 Introduction 

Rough set based data analysis starts from a data table, called an in forma-  
t i o n  system. The information system contains data about objects of interest 
characterized in terms of some attributes. Often we distinguish in the infor- 
mation system condition and decision attributes. Such an information system 
is called a decision table. The decision table describes decisions in terms of 
conditions that must be satisfied in order to carry out the decision specified 
in the decision table. With every decision table we can associate a decision 
algorithm which is a set of if.. . then..  . decision rules. The decision rules can 
be also seen as a logical description of approximation of decisions, and con- 
sequently a decision algorithm can be viewed as a logical description of basic 
properties of the data. The decision algorithm can be simplified, what results 
in optimal description of the data, but this issue will not be discussed in this 
paper. 

In the paper first basic notions of rough set theory will be introduced. 
Next the notion of the decision algorithm will be defined and some its basic 
properties will be shown. It is revealed that every decision algorithm has 
some well known probabilistic features, in particular it satisfies the Total 
Probability Theorem and the Bayes' Theorem [5 ] .  These properties give a 
new method of drawing conclusions from data, without referring to prior and 
posterior probabilities, inherently associated with Bayesian reasoning. Three 
simple tutorial examples will be given to  illustrate the above discussed ideas. 
The real-life examples are much more sophisticated and will not be presented 
here. 
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2 Approximation of Sets 

Starting point of rough set based data analysis is a data set, called an infor- 
mation system. 

An information system is a data table, whose columns are labeled by 
attributes, rows are labeled by objects of interest and entries of the table are 
attribute values. 

Formally, by an information system we will understand a pair S = (U, A), 
where U and A, are finite, nonempty sets called the universe, and the set of 
attributes, respectively. With every attribute a E A we associate a set V,, of 
its values, called the domain of a. Any subset B of A determines a binary 
relation I (B)  on U, which will be called an indiscernibility relation, and 
defined as follows: (x, y) E I (B)  if and only if a(x) = a(y) for every a E A, 
where a(x) denotes the value of attribute a for element x. Obviously I (B)  is 
an equivalence relation. The family of all equivalence classes of I (B) ,  i.e., a 
partition determined by B ,  will be denoted by U/I(B), or simply by U/B; 
an equivalence class of I (B) ,  i.e., block of the partition U/B, containing x 
will be denoted by B(x). 

If (x, y) belongs t o  I ( B )  we will say that x and y are B-indiscernible 
(indiscernible with respect to B). Equivalence classes of the relation I (B)  
(or blocks of the partition U/B) are referred to  as B-elementary sets or B- 
granules. 

If we distinguish in an information system two disjoint classes of at- 
tributes, called condition and decision attributes, respectively, then the sys- 
tem will be called a decision table and will be denoted by S = (U, C, D), where 
C and D are disjoint sets of condition and decision attributes, respectively. 

Suppose we are given an information system S = (U, A), X c U, and 
B c A. Our task is to  describe the set X in terms of attribute values from 
B. To this end we define two operations assigning to every X c U two sets 
B, (X) and B* (X) called the B-lower and the B-upper approximation of X ,  
respectively, and defined as follows: 

&(X)  = U {B(x) : B(x) c X) ,  
x E U  

Hence, the B-lower approximation of a set is the union of all B-granules that 
are included in the set, whereas the B-upper approximation of a set is the 
union of all B-granules that have a nonempty intersection with the set. The 
set 

will be referred t o  as the B-boundary region of X.  
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If the boundary region of X is the empty set, i.e., BNB(X) = 0, then X 
is crisp (exact) with respect to B ;  in the opposite case, i.e., if BNB(X) # 0, 
X is referred to as rough (inexact) with respect to B. 

3 Decision Rules 

In this section we will introduce a formal language to  describe approximations 
in logical terms. 

Let S = (U, A) be an information system. With every B c A we associate 
a formal language, i.e., a set of formulas For(B). Formulas of For(B) are 
built up from attribute-value pairs (a, u) where a E B and u E Va by means 
of logical connectives A (and), V (or), - (not) in the standard way. 

For any @ E For(B) by I l @ l  I s  we denote the set of all objects x E U 
satisfying @ in S and refer to as the meaning of @ in S .  

The meaning I l @ l l  of @ in S is defined inductively as follows: 
Il(a,u)lls = {x E U : a(.) = x) for all a E B and u E Va, I I @  V G?lls = 
ll@lls u l l ~ l l s ,  l l @ A ~ l l s  = ll@lls fl l l ~ l l s ,  I 1  - @lls = u - ll@lls- 

A formula @ is true in S if I l @ l l s  = U. 
A decision rule in S is an expression @ + G?, read if @ then G?, where 

@ E For(C), G? E For(D) and C, D are condition and decision attributes, 
respectively; @ and G? are referred to as conditions and decisions of the rule, 
respectively. 

A decision rule @ + G? is true in S if I l @ l l s  c IIG?lls. 
The number supps(@, G?) = card(1 I @  A G?l Is) will be called the support 

of the rule @ + G? in S .  We consider a probability distribution pu(x) = 
l/card(U) for x E U where U is the (non-empty) universe of objects of S ;  we 
have pu(X) = card(X)/card(U) for X c U. For any formula @ we associate 
its probability in S defined by 

With every decision rule @ + G? we associate a conditional probability 

that G? is true in S given @ is true in S called the certainty factor, used first 
by Lukasiewicz [3] to estimate the probability of implications. We have 

where Il@lls # 0. 
This coefficient is now widely used in data mining and is called confidence 

coeficient. 
Obviously, xs(G?l@) = 1 if and only if @ + G? is true in S. 
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If xs(G?l@) = 1, then @ + G? will be called a cer ta in  decision rule; if 
0 < xs(G?l@) < 1 the decision rule will be referred to as a uncer ta in  decision 
rule. 

Besides, we will also use a coverage fac to r  (used e.g. by Tsumoto [I41 for 
estimation of the quality of decision rules) defined by 

which is the conditional probability that @ is true in S, given G? is true in S 
with the probability xs(G?). Obviously we have 

The certainty factors in S can be also interpreted as the frequency of 
objects having the property G? in the set of objects having the property @ 
and the coverage factor - as the frequency of objects having the property @ 
in the set of objects having the property G?. 

The number 

OS(@, *) = SUpps(@7G?) = ~ ~ ( q l r n )  ~ ~ s ( m )  card (U) 

will be called the strength of the decision rule @ + G? in S. 

4 Decision Algorithms 

In this section we define the notion of a decision algorithm, which is a logical 
counterpart of a decision table. 

Let Dec(S) = {Gi + ei)E1,  rn > 2, be a set of decision rules in a decision 
table S = (U, C, D) . 

1) If for every @ + G?, @' + G?' E Dec(S) we have @ = @' or I I @  A @ ' I  I s  = 8, 
and G? = G?' or I IG? A G?' 1 1 = 8, then we will say that Dec(S) is the set of 
pairwise mutua l l y  exclusive ( independent)  decision rules in S .  

m m 

2) If I I V Gi 1 1 = U and I I V 1 1 = U we will say that the set of decision 
i= 1 i=l 

rules Dec(S) covers U. 
3) If @ + G? E Dec(S) and supps(@,G?) # 0 we will say that the decision 

rule @ + G? is admissible in S .  
4) If U C*(X) = I I V @ I  I s  where Dec+(S) is the set of all 

X E U I D  @+SE Dee+ (S) 
certain decision rules from Dec(S), we will say that the set of decision 
rules Dec(S) preserves the consistency of the decision table S = (U, C, D). 

The set of decision rules Dec(S) that satisfies I),  2) 3) and 4), i.e., is 
independent, covers U, preserves the consistency of S and all decision rules 
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@ + G? E Dec(S) are admissible in S - will be called a decision a lgo r i thm in 
S .  

Hence, if Dec(S) is a decision algorithm in S then the conditions of rules 
from Dec(S) define in S a partition of U .  Moreover, the posit ive region of D 
w i t h  respect t o  C,  i.e., the set 

is partitioned by the conditions of some of these rules, which are certain in 
S .  

If @ + G? is a decision rule then the decision rule G? + @ will be called an 
inverse decision rule of @ + G?. 

Let Dec*(S) denote the set of all inverse decision rules of Dec(S). 
It can be shown that Dec*(S) satisfies I), 2), 3) and 4), i.e., it is an 

decision algorithm in S .  
If Dec(S) is a decision algorithm then Dec* (S) will be called an inverse 

decision algorithm of Dec(S) . 
The number 

where D(@) = {G? : @ + G? E Dec(S)} will be referred to  as the evgiciency 
of the decision algorithm Dec(S) in S ,  and the sum is stretching over all 
decision rules in the algorithm. 

The efficiency of a decision algorithm is the probability (ratio) of all ob- 
jects of the universe, that are classified to  decision classes, by means of de- 
cision rules @ + G? with maximal strength os(@,G?) among rules @ + G? E 
Dec(S) with satisfied @ on these objects. In other words, the efficiency says 
how well the decision algorithm classifies objects when the decision rules with 
maximal strength are used only. 

5 Decision algorithms and approximations 

Decision algorithms can be used as a formal language for describing approx- 
imations (see [ 5 ] ) .  

Let Dec(S) be a decision algorithm in S and let @ + G? E Dec(S). By 
C(G?) we denote the set of all conditions of G? in Dec(S) and by D(@) - the 
set of all decisions of @ in Dec(S). 

Then we have the following relationships: 
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From the above properties we can get the following definitions: 

i) If I l @ l  I s  = C* ( 1  l @ l  Is), then formula @ will be called the C-lower approxi- 
m a t i o n  of the formula @ and will be denoted by GI,(@); 

ii) If I l @ l  I s  = C* ( 1  l @ l  Is), then the formula @ will be called the C-upper 
approximation of the formula @ and will be denoted by C*(@); 

iii) If I l @ l l s  = BNc(ll@lls), then @ will be called the C-boundary of the 
formula @ and will be denoted by BNc(@). 

The above properties say that any decision @ E Dec(S) can be uniquely 
described by the following certain and uncertain decision rules respectively: 

This property is an extension of some ideas given by Ziarko [16]. The approx- 
imations can also be defined more generally, as proposed in [I51 by Ziarko, 
and consequently we obtain more general probabilistic decision rules. 

6 Some properties of decision algorithms 

Decision algorithms have interesting probabilistic properties which are dis- 
cussed in this section. 

Let Dec(S) be a decision algorithm and let @ + @ E Dec(S). Then the 
following properties are valid: 

That is, any decision algorithm, and consequently any decision table, sat- 
isfies (I),  (2), (3) and (4). Observe that (3) is the well known Total Probability 
Theorem and (4) is the Bayes '  Theorem. Note that we are not referring to  
prior and posterior probabilities - fundamental in Bayesian data analysis phi- 
losophy. The Bayes' Theorem in our case says that: if an implication @ + @ 
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is true in the degree xs(@J@) then the inverse implication @ + @ is true in 
the degree xS (@I@). 

Let us observe that the Total Probability Theorem can be presented in 
the form 

and the Bayes' Theorem will assume the form 

Thus in order to  compute the certainty and coverage factors of decision rules 
according to formula (6) it is enough to know the strength (support) of all 
decision rules in the decision algorithm only. The strength of decision rules 
can be computed from the data or can be a subjective assessment. 

In other words, if we know the ratio of Gs in @, thanks to  the Bayes' 
Theorem, we can compute the ratio of qs in @. 

7 Illustrative examples 

In this section we will illustrate the concepts introduced previously by means 
of simple tutorial examples. 

Example 1 

Let us consider Table 1 in which data on the relationships between color 
of eyes and color of hair is given. 

Table 1. Simple data table 

brown 

The above data can be presented as a decision table shown in Table 2. 
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Table 2. Decision table 

Rule Eyes Hair Support 

number 

1 blue blond 16 

2 blue dark 0 

3 hazel blond 8 

4 hazel dark 56 

Assume that Hair is a decision attribute and Eyes is a condition attribute. 
The corresponding decision algorithm is given below: 

1) if (Eyes, blue) then (Hair, blond), 
2) if (Eyes, blue) then (Hair, dark), 
3) if (Eyes, hazel) then (Hair, blond), 
4 )  if (Eyes, hazel) then (Hair, dark). 

The certainty and coverage factors for the decision rules are given in Table 
3. 

Table 3. Certainty and coverage factors 

Rule Cert. Cov. Support Strength 

number 

From the certainty factors of the decision rules we can conclude that: 

- every person in the data table having blue eyes is for certain a blond, 
- for certain there are no people in the data table having blue eyes who are 

dark-haired, 
- the probability that a person having hazel eyes is a blond is 0.125, 
- the probability that the person having hazel eyes is dark-haired equals to  

0.875. 

In other words the decision algorithm says that: 
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- 12,5% persons with hazel eyes are blond, 
- 87,5% persons with hazel eyes are dark-haired, 
- 100% persons with blue eyes are blond. 

From the above we can conclude that: 

- people with hazel eyes are most probably dark-haired, 
- people with blue eyes are for certain blond. 

The efficiency of the decision algorithm is 0.9. 
The inverse decision algorithm is given below: 

1') if (Hair,  blond) then  (Eyes ,  blue), 
2') if (Hair,  dark) then  (Eyes ,  blue), 
3 ' )  if (Hair,  blond) then  (Eyes ,  hazel), 
4 ' )  if (Hair,  dark) then  (Eyes ,  hazel). 

The coverage factors says that: 

- the probability that a blond has blue eyes is 0.67, 
- for certain there are no dark-haired people in the data table having blue 

eY es, 
- the probability that a blond has brown eyes is 0.33, 
- for certain every dark-haired person in the data table has hazel eyes. 

In other words: 

- 33% blond have hazel eyes, 
- 67% blond have blue eyes, 
- 100% dark-haired persons have hazel eyes. 

Thus we can conclude that: 

- blond have most probably blue eyes, 
- dark-haired people have for ceratin hazel eyes. 

The efficiency of the inverse decision algorithm is 0.9. 

Example 2 

In Table 4 information about nine hundred people is represented. The 
population is characterized by the following attributes: Height, Hair, Eyes 
and Nationality. 
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Table 4. Characterization of nationalities 

U Height Hair Eyes Nationality Support 

1 tall blond blue Swede 270 

2 medium dark hazel German 90 

3 medium blond blue Swede 90 

4 tall blond blue German 360 

5 short red blue German 45 

6 medium dark hazel Swede 45 

Suppose that Height, Hair and Eyes are condition attributes and Na- 
tionality is the decision attribute, i.e., we want to  find description of each 
nationality in terms of condition attributes. 

Below a decision algorithm associated with Table 4 is given: 

1) if (Height, tall) then (Nationality, Swede), 
2 )  if (Height, medium) and (Hair, dark) then (Nationality, German), 
3) if (Height, medium) and (Hair, blond) then (Nationality, Swede), 
4 )  if (Height, tall) then (Nationality, German), 
5)  if (Height, short) then (Nationality, German), 
6 )  if (Height, medium) and (Hair, dark) then (Nationality, Swede). 

The certainty and coverage factors for the decision rules are shown in Table 
5. 

Table 5. Certainty and coverage factors 

Rule Cert. Cov. Support Strength 

number 

From the certainty factors of the decision rules we can conclude that: 
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- 43% tall people are Swede, 
- 57% tall people are German, 
- 33% medium and dark-haired people are Swede, 
- 67% medium and dark-haired people are German, 
- 100% medium and blond people are Swede, 
- 100% short people are German. 

Summing up: 

- tall people are most probably German, 
- medium and dark-haired people are most probably German, 
- medium and blond people are for certain Swede, 
- short people are for certain German. 

The efficiency of the above decision algorithm is 0.65. 
The inverse algorithm is as follows: 

1') if (Nationality, Swede) then (Height, tall), 
2') if (Nationality, German) then (Height, medium) and (Hair, dark), 
3') if (Nationality, Swede) then (Height, medium) and (Hair, blond), 
4') if (Nationality, German) then (Height, tall), 
5') if (Nationality, German) then (Height, short), 
6') if (Nationality, Swede) then (Height, medium) and (Hair, dark). 

From the coverage factors we get the following characterization of nationali- 
ties: 

- 11 % Swede are medium and dark-haired, 
- 22% Swede are medium and blond, 
- 67% Swede are tall, 
- 9% German are short, 
- 18% German are medium and dark-haired, 
- 73% German are tall. 

Hence we conclude that: 

- Swede are most probably tall, 
- German are most probably tall. 

The efficiency of the inverse decision algorithm is 0.7. 
Observe that there are no certain decision rules in the inverse decision 

algorithm nevertheless it can properly classify 70% objects. 
Of course it is possible to  find another decision algorithm from Table 4. 
Observe that there are three methods of computation of the certainty and 

coverage factors: either directly from definition employing the data, or using 
formula (4) or (6). 

Similarly, rs(!P) can be computed in three ways: using the definition and 
the data, or formula (3) or (5). 
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The obtained results are valid for the data only. In the case of another 
bigger data set the results may not be valid anymore . 

Whether they are valid or not it depends if Table 4 is a representative 
sample of a bigger population or not. 

Example 3 

Now we will consider an example taken from [12], which will show clearly 
the difference between the Bayesian and rough set approach to data analysis. 

We will start from the data table presented below: 

Table 6. Voting Intentions 

where Yl represents Voting Intentions (1 = Conservatives, 2 = Labour, 
3 = Liberal Democrat, 4 = Others), Y2 represents Sex (1 = male, 2 = female) 
and Y3 represents Social Class (1 = high, 2 = middle, 3 = low). 
Remark. In the paper [I21 wrongly 1 = low and 3 = high instead of 1 = 
high and 3 = low. 

We have to classify voters according to their Voting Intentions on the 
basis of Sex and Social Class. 

First we create from Table 6 a decision table shown in Table 7: 
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Table 7. Voting Intentions 

U Y z  Y3 YI Support Strength 

Next we simplify the decision table by employing only the decision rules 
with maximal strength, and we get the decision table presented in Table 8. 
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Table 8. Simplified Decision Table 

U Y z  Y3 Yl Support Strength 

It can be easly seen that the set of condition attributes can be reduct 
(see[4]) and the only reduced is the attribute Y3 (Social Class). 

Thus Table 8 can be repleaced by Table 9 

Table 9. Reduced Decision Table 

U Y3 Yi Strength Certainty Coverage 

The numbers in parenthesis refer to  Table 7. 
From this decision table we get the following decision algorithm: 

cer. 
1. high class + Conservative party 0.60 
2. middle class + Conservative party 0.49 
3. lower class + Labour party 0.55 

The efficiency of the decision algorithm is 0.51. 
The inverse decision algorithm is given below: 

cer. 
1'. Conservative party + high class 0.07 
2'. Conservative party + middle class 0.82 
3'. Labour party + lower class 0.31 

The efficiency of the inverse decision algorithm is 0.48. 
From the decision algorithm and the inverse decision algorithm we can 

conclude the following: 
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- 60% high class and 49% middle class intend t o  vote for the  Conservative 
party 

- 55% lower class in tend  t o  vote for the Labour party 
- 7% intend t o  vote for the  Conservative party belong t o  the  high class 
- 82% intend t o  vote for the  Conservative party belong t o  the  middle class 
- 31% intend t o  vote for the  Labour party belong t o  the  lower class 

We advise the reader to  examine the approach and results presented in [I21 
and compare them with that shown here. 

Clearly, the rough set approach is much simpler and given better results 
then that discussed in [12]. 

8 Conclusions 

The notion of a decision algorithm has been defined and its connection with 
decision table and other basic concepts of rough set theory discussed. Some 
probabilistic properties of decision algorithms have been revealed, in par- 
ticular the relationship with the Total Probability Theorem and the Bayes' 
Theorem. These relationships give a new efficient method to draw conclusions 
from data, without referring to prior and posterior probabilities intrinsically 
associated with Bayesian reasoning. 
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