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1 Introduction

This paper is concerned with some considerations concerning inference rules
and decision rules, from the rough set perspective.

Decision rules play an important rule in various branches of Al e.g.,
data mining, machine learning, decision support and others. Interference rules
play a fundamental role in logic, and attracted attention of logicians and
philosophers for many years. From logical point of view both, decision rules
and interference rules are implications.

However, there are essential differences between using decision rules in Al
and inference rules in logic. Inference rules (modus ponens) must be true, in
order to guarantee to draw true conclusions from true premises. In contrast,
in AT decision rules are meant as prescription of decisions that must be taken
when some conditions are satisfied. In this case, in order to express to what
degree the decision can be trusted, instead of truth, a credibility factor of the
decision rule is associated. The relationship between truth and probability
first was investigated by Lukasiewicz [3, 16], who showed that probabilistic
interpretation of implication leads to Bayes’ theorem.

In rough set theory decision rules are of special interest, since they are
inherently connected with the basic concepts of the theory — approximations
and partial dependencies. The rough set approach bridges to some extend
the logical and AI views on decision rules, and can be seen as generalization
of Lukasiewicz’s probabilistic logic associated with multivalued logic [3, 16].
Some considerations on this subject can be also found in [22, 23, 24, 25, 30].

For more information about rough set theory and its generalizations the
reader is advised to consult the enclosed references. In particular an overview
of current state of the theory and its applications can be found in [29].

2 The Lukasiewicz’s Approach

In this section we present briefly basic ideas of Lukasiewicz’s approach to
multivalued logics as probabilistic logic.

Lukasiewicz associates with every so called indefinite proposition of one
variable x, ®(z) a true value 7(®(x)), which is the ratio of the number of
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all values of z which satify @(z), to the number of all possible values of
x. For example, the true value of the proposition ”x is greater than 3” for
z=1,2,...,51is 2/5. It turns out that assuming the following three axioms

1) @ is false if and only if 7(®) = 0;
2) @ is true if and only if #(®) = 1,
3) if 7(® = ¥) =1 then n(P) + n(~ PAY) =7(¥);

one can show that

4) if 7(® = ¥) =1 then 7(®) = 7(¥);
6) T1(PVY)=n(P) +nw(¥) — (P AVD);
N w(@AP)=0if 7(®VVP) =7(P) + w(P).

Obviously, the above properties have probabilistic flavour.

The idea that implication should be associated with conditional proba-
bility is attributed to Ramsey (cf. [1]), but as mentioned in the introduction,
is can be traced back to Lukasiewicz [3, 16], who first formulated this idea in
connection with his multivalued logic and probability. More extensive study
of connection of implication and conditional probaility can be found in [1].

3 Rough Sets — the Intuitive Background

Rough set theory is based on the indiscernibility relation. The indiscerni-
bility relation identifies objects displaying the same properties, i.e., groups
together elements of interest into granules of indiscernible (similar) objects.
These granules, called elementary sets (concepts), are basic building blocks
(concepts) of knowledge about the universe. For example, if our universe of
discourse were patients suffering from a certain disease, then patients dis-
playing the same symptoms would be indiscernible in view of the available
information and form clusters of similar patients.

Union of elementary concepts is referred to as a crisp or precise concept
(set); otherwise a concept (set) is called rough, vague or imprecise. Thus
rough concepts cannot be expressed in terms of elementary concepts. How-
ever, they can be expressed approximately by means of elementary concepts
using the idea of the lower and the upper approzimation of a concept. The
lower approximation of the concept is the union of all elementary concepts
which are included in the concept, whereas the upper approximation is the
union of all elementary concepts which have nonempty intersection with the
concept, i.e., the lower and the upper approximations of a concept are the
union of all elementary concepts which are surely and possibly included in
the concept, respectively. The difference between the lower and the upper ap-
proximation of the concept is its boundary region. Hence a concept is rough
if it has nonempty boundary region.

Approximations are basic operations in rough set theory. They are used to
deal with rough (vague) concepts, since in the rough set approach we replace
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rough concepts by pairs of precise concepts — the lower and the upper ap-
proximations of the rough concept. Thus approximations are used to express
precisely our knowledge about imprecise concepts.

The problem of expressing vague concepts in terms of precise concepts in
rough set theory can be also formulated differently, by employing the idea of
dependency (partial) between concepts. We say that a concept (set) depends
totally on a set of concepts if it is the union of all those concepts; if it is the
union of some concepts it depends partialy on these concepts. Thus partaial
dependency can be also used to express vague concepts in terms of precise
concepts.

Both, approximations and dependencies are defined using decision rules,
which are implications in the form ”if...then...”

Approximations, dependencies and decision rules are basic tools of rough
set theory and will be discussed in details in the next sections.

4 Database

Rough set theory is mainly ment to be used to data analysis, therfore in
what follows the theory will be formulated not in generale terms but with
refererence to data. Hence we will start our consideration from a database.
Intuitevily by the database we will understand a data table whose columns
are are labelled by attributes (e.g., color, temerature, etc.), rows are lablled
by objects of interst (e.g., patienents, states, processe etc.) and entries of the
table are attrinute values (e.g., red, high, etc.). A very simple example of a
database is shown below: The table contains data about six cars where F,

Table 1. An example of a database

Car F C P M

med. black med. poor
high  white med. poor
med. white low  poor
low  black med. good
high  red low  poor

S Ot s W N =

med. white low  good

C, P and M denote fuel consumption, color, selling price and marketabiality,
respectively.

Formally the database is defined as follows.

By a database we will understand a pair S = (U, A), where U and A, are
finite, nonempty sets called the universe, and a set of attributes respectively.
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With every attribute a € A we associate a set V;, of its values, called the
domain of a. Any subset B of A determines a binary relation I(B) on U,
which will be called an indiscernibility relation, and is defined as follows:

(z,y) € I(B) if and only if a(z) = a(y) for every a € A, where a(z)
denotes the value of attribute a for element z.

It can easily be seen that I(B) is an equivalence relation. The family of all
equivalence classes of I(B), i.e., partition determined by B, will be denoted
by U/I(B), or simple U/B; an equivalence class of I(B), i.e., block of the
partition U/B, containing = will be denoted by B(z).

If (z,y) belongs to I(B) we will say that  and y are B-indiscernible
or indiscernible with respect to B. Equivalence classes of the relation I(B)
(or blocks of the partition U/B) are refereed to as B-elementary sets or B-
granules.

For example, cars 1, 3 and 6 are pairwise indiscernible with respect to the
attribute F. If B = {C, P} and = = 3, then B(z) = {3,6}.

Instead of an equivalence relation as a basis for rough set theory many
authors proposed another relations, e.g., a tolerance relation, an ordering
relations and others. However in this paper we will stay by the equivalence
relation.

5 Approximations of Sets

Having defined the notion of a database we are now in the position to put
forth our basic notions of approximation of a set by other sets, which is
defined next.

Let us define two following operations on sets:

B.(X) = |J{B@) : B(x) C X},
zeU

B*(X) = |J{B@) : B) N X # 0},
zeU
assigning to every X C U two sets B.(X) and B*(X) called the B-lower and
the B-upper approximation of X, respectively.

Hence, the B-lower approximation of a concept is the union of all B-
granules that are included in the concept, whereas the B-upper approximation
of a concept is the union of all B-granules that have a nonempty intersection
with the concept. The set

BNp(X) = B(X) - B.(X)

will be referred to as the B-boundary region of X.
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If the boundary region of X is the empty set, i.e., BNg(X) = (), then X
is crisp (exact) with respect to B; in the opposite case, i.e., if BNg(X) # 0,
X is referred to as rough (inexact) with respect to B.

For example, for the set of cars X = {4,6} selling well the B-lower and
the B-upper approximations of X are {4} and {3, 4, 6}, respectively, where
B={F,C,P}.

6 Dependency of Attributes

Another important issue in data analysis is discovering dependencies between
attributes. Intuitively, a set of attributes D depends totally on a set of at-
tributes C, denoted C' = D, if all values of attributes from D are uniquely
determined by values of attributes from C'. In other words, D depends totally
on C, if there exists a functional dependency between values of D and C.

We would need also a more general concept of dependency, called a partial
dependency of attributes. Intuitively, the partial dependency means that only
some values of D are determined by values of C.

Formally dependency can be defined in the following way. Let D and C'
be subsets of A.

We will say that D depends on Cin a degree k (0 < k < 1), denoted

C = D, if
k =~(C,D) = EXGU/D card(C. (X))
’ cardU ’

If C = D, we will call C'—condition and D — decision attributes, respectively.
Any database with distinguished condition and decision attributes is usually
called a decision table.

If £ =1 we say that D depends totally on C, and if k < 1, we say that D
depends partially (in a degree k) on C, and if k = 0, does not depend on C

The coefficient k expresses the ratio of all elements of the universe, which
can be properly classified to blocks of the partition U/D, employing attributes
C and will be called the degree of the dependency.

For example, the degree of dependency between the set of condition at-
tributes {F, C, P} and the decision attribute {M} in Table 1 is 2/3.

The notion of dependency of attributes is used to express relationships
hidden in the database. It expresses the global properties of the database in
contrast to approximations which express local properties of the database.

7 Decision Rules

Let S be a database and let C' and D be condition and decision attributes,
respectively.

By @,¥ etc. we will denote logicals formulas built up from attributes,
attribute-values and logical connectives (and, or, not) in a standard way. We
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will denote by |®|s the set of all object = € U satisfying @ in S and refer to
as the meaning of @ in S.
The expression g (®) =
the formula @ is true in S.
A decision rule is an expression in the form ”if...then...”, written & — ¥;
@ and ¥ are refered to as conditions and decisions of the rule respectively.
A decision rule & — ¥ is admissible in S if |®|s is the union of some C-
elementary sets, |¥|gs is the union of some D-elementary sets and |PAP|g # 0.
In what follows we will consider admissible decision rules only.
With every decision rule ¢ — ¥ we associate the conditional probability
that ¥ is true in S given @ is true in S with the probability wg(®), called the
certainty factor and defined as follows:

card(|P|s)

card(U)  Can be interpreted the probability that

card(|® ANP|s)

ms () =

where |®|s # 0 denotes the set of all objects satisfying @ in S.
Besides, we will also need a coverage factor [46]

card(|® ANP|s)

ms(ojp) =

which is the conditional probability that @ is true in S given ¥ is true in S
with the probability 7g(¥).

For example, (F,low) and (C,black) and (P,med.) — (M,good) is an ad-
missible rule in Table 1 and the certainty and coverage factors for this rule
are 1/2 and 1/4, respectively.

Let {®; — ¥}, be a set of decision rules such that all conditions ®; are
pairwise mutally exclusive, i.e., |#; A &g = 0, for any 1 < i,j < n, i # j,
and

ZFS(@W) =1 (1)

Then the following property holds:
n

Ts(¥) = ZT"S(W|¢i) s (D). (2)
i=1

For any decision rule & — ¥ the following formula is valid:

ws(P|P) - ms(P)
Yoy s (W] Py) - mws (i)

ms(2¥) = (3)

Formula (2) is well known as the formula for total probability and it can be
seen as generalization of axiom 3) in Lukasiewicz’s probabilistic logic whereas
formula (3) is the Bayes’ theorem.
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This means that any database, with distinguished condition and decision
attributes (a decision table) or any set of implications satisfying condition
(1) satisfies the Bayes’ theorem. Thus databases or set of decision rules can
be perceived as a new model for the Bayes’ theorem. Let us note that in
both cases we do not refer to prior or posterior probabilities and the Bayes’
theorem simple reveals some patterns in data. This property can be used to
reason about data, by inverting implications valid in the database.

8 Conclusions

The papers shows that any set of data satisfying some simple conditions
satisfies the Bayes’ theorem — without referring to prior and posterior prob-
abilities inherently associated with Baysian statistical inference philosophy.
The result bridges somehow rough set theory and some ideas provided by
Lukasiewicz in context of his multivalued logic and probability.
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