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Abstract— Granularity of knowledge attracted attention
of many researchers recently. This paper concerns this issue
from the rough set perspective. Granularity is inherently
connected with foundation of rough set theory. The concept
of the rough set hinges on classification of objects of inter-
est into similarity classes, which form elementary building
blocks (atoms, granules) of knowledge. These granules are
employed to define basic concepts of the theory. In the pa-
per basic concepts of rough set theory will be defined and
their granular structure will be pointed out. Next the con-
sequences of granularity of knowledge for reasoning about
imprecise concepts will be discussed.
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I. Introduction

Information (knowledge) granulation, discussed recently
by Prof. Zadeh [22, 23, 24] seems to be a very important
issue for computing science, logic, philosophy and others.
In this note we are going to discuss some problems con-
nected with granularity of knowledge in the context of
rough sets (cf. Pawlak [11]). First, discussion of granulation
of knowledge in connection with rough and fuzzy sets has
been presented by Dubois and Prade in [5]. Recently, an in-
teresting study of information granulation in the framework
of rough sets can be found in Polkowski [12] and Skowron
and Stepaniuk [16].
In rough set theory we assume that with every object
some information is associated, and objects can be ”seen”
through the accessible information only. Hence, object with
the same information cannot be discerned and appear as
the same. This results in, that indiscernible objects of the
universe form clusters of indistinguishable objects (gran-
ules, atoms, etc.). Thus from the rough set view the granu-
larity of knowledge is due to the indiscernibility of objects
caused by lack of sufficient information about them. Con-
sequently granularity and indiscerniblity are strictly con-
nected and the concept of indiscernibility seems to be prior
to granularity.
Indiscernibility attracted attention of philosophers for a
long time and its first formulation can be attributed to
Leibniz (cf. Forrest [6]), and is known as the principle of
”the identity of indiscernibles”. The principle says that not
two objects have exactly the same properties, or in other
words if all properties of objects x and y are the same then
x and y are identical.
But what are ”properties of objects”? and what does
it mean ”all properties”? A lot of philosophical discussions
have been devoted to answer these questions (cf. e.g., Black
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[1], Forrest [6]), but we will refrain here from philosophical
debate. Let us observe only that Leibniz approach to indis-
cernibility identifies indiscernibility with identity. The later
is obviously an equivalence relation, i.e., it leads to parti-
tion of the universe into equivalence classes (granules) of
objects which are indistinguishable in view of the assumed
properties. Thus in the rough set approach granulation is
a consequence of the Leibniz principle.
It is worthwhile to mention that indiscernibility can
be also viewed in a wider context, as pointed out by
Williamson [20]: ”Intelligent life requires the ability dis-
criminate, but not with unlimited precision”. This is a very
interesting issue however it lays outside the scope of this
paper.
In rough set theory we assume empiristic approach, i.e.
we suppose that properties are simply empirical data which
can be obtained as a result of measurements, observations,
computations, etc. and are expressed by values of a fixed,
finite set of attributes, e.g., properties are attribute-value
pairs, like (size, small), (color, red) etc. The idea could be
also expressed in more general terms assuming as a starting
point not a set of specific attributes but abstract equiva-
lence relation, however, the assumed approach seems more
intuitive.
Equivalence relation is the simplest formalization of the
indiscernibility relation and is sufficient for many applica-
tions. However, more interesting seems to assume that the
indiscernibility relation is formalized as a tolerance rela-
tion, i.e., transitivity of indiscernibilty is denied in this case,
for, if x is indiscernible from y and y is indiscernible from z
then not necessarily x is indiscernible from z.Many authors
have proposed tolerance relation as a basis for rough set
theory (cf. e.g., Skowron and Stepaniuk [17]). This causes,
however, some mathematical complications as well philo-
sophical questions, because it leads to vague granules, i.e.,
granules without sharp boundaries, closely related to the
boundary-line approach to vagueness (cf. e.g., Chattebrjee
[4], Sorensen [18]).
Besides, instead of tolerance relation also more sophis-
ticated mathematical models of indiscernibility, as a basis
for rough set theory, have been proposed (cf. e.g., Kraw-
iec, Slowinski, and Vanderpooten [8], Yao and Wong, [21],
Ziarko [25]). Interested readers are advised to consult the
mentioned above references, but for the sake of simplicity
we will adhere in this paper to the equivalence relation as a
mathematical formalization of the indiscernibility relation.
Since granules of knowledge can be considered as a basic
building blocks of knowledge about the universe it seems
that natural mathematical model for granulated knowledge
can be based on ideas similar to that used in mereology



proposed by Leśniewski [9], in which part of is the basic
relation of this theory. Axioms of mereology, in particular
in a version proposed by Suppes [19], seem to be natural
candidate for this purpose. Moreover, rough mereology, ex-
tension of classical mereology proposed by Polkowski and
Skowron in [13, 14], seems to be exceptionally suited to an-
alyze granules of knowledge with not sharp boundaries (cf.
Polkowski [12], Skowron and Stepaniuk [16]).
It also worthwhile to mention in this context that gran-
ularity of knowledge has been also pursued in quantum
physics. Its relation to fuzzy sets and rough sets has been
first mentioned by Cattaneo [2, 3].
Besides, it is also interesting to observe that computa-
tions and measurements are very good examples of granu-
larity of information, for they are based in fact not on real
numbers but on intervals, determined by the accuracy of
computation or measurement.

II. Basic Philosophy of Rough Sets

The rough set philosophy is founded on the assumption
that with every object of the universe of discourse we asso-
ciate some information (data, knowledge). E.g., if objects
are patients suffering from a certain disease, symptoms of
the disease form information about patients. Objects char-
acterized by the same information are indiscernible (simi-
lar) in view of the available information about them. The
indiscernibility relation generated in this way is the math-
ematical basis of rough set theory.
Any set of all indiscernible (similar) objects is called an
elementary concepts, and forms a basic granule (atom) of
knowledge about the universe. Any union of some elemen-
tary concepts is referred to as crisp (precise) concept –
otherwise the set is rough (imprecise, vague).
Consequently each rough concept has boundary-line
cases, i.e., objects which cannot be with certainty classified
neither as members of the concept nor of its complement.
Obviously crisp concepts have no boundary-line elements at
all. That means that boundary-line cases cannot be prop-
erly classified by employing the available knowledge.
Thus, the assumption that objects can be ”seen” only
through the information available about them leads to the
view that knowledge has granular structure. As a conse-
quence vague concepts, in contrast to precise concepts,
cannot be characterized in terms of elementary concepts.
Therefore in the proposed approach we assume that any
vague concept is replaced by a pair of precise concepts –
called the lower and the upper approximation of the vague
concept. The lower approximation consists of all elemen-
tary concepts which surely are included in the concept and
the upper approximation contains all elementary concepts
which possibly are included in the concept. Obviously, the
difference between the upper and the lower approximation
constitutes the boundary region of the vague concept. Ap-
proximations are two basic operations in rough set theory.

III. Indiscernibility and Granularity

As mentioned in the introduction, the starting point of
rough set theory is the indiscernibility relation, generated

by information about objects of interest. The indiscernibil-
ity relation is intended to express the fact that due to the
lack of knowledge we are unable to discern some objects
employing the available information. That means that, in
general, we are unable to deal with single objects but we
have to consider clusters of indiscernible objects, as funda-
mental concepts of knowledge.
Now we present above considerations more formally.
Suppose we are given two finite, non-empty sets U and
A, where U is the universe, and A – a set attributes. With
every attribute a ∈ A we associate a set Va, of its values,
called the domain of a. The pair S = (U,A) will be called an
information system.Any subsetB ofA determines a binary
relation IB on U , which will be called an indiscernibility
relation, and is defined as follows:

xIBy if and only if a(x) = a(y) for every a ∈ A,
where a(x) denotes the value of attribute a for element x.

Obviously IB is an equivalence relation. The family of all
equivalence classes of IB, i.e., the partition determined by
B, will be denoted by U/IB , or simply U/B; an equivalence
class of IB , i.e., the block of the partition U/B, containing
x will be denoted by B(x).
If (x, y) belongs to IB we will say that x and y
are B-indiscernible. Equivalence classes of the relation
IB (or blocks of the partition U/B) are referred to as
B-elementary concepts or B-granules.
In the rough set approach the elementary concepts are
the basic building blocks (concepts) of our knowledge about
reality.

IV. Approximations and Granularity

Now the indiscernibility relation will be used to define
basic operations in rough set theory, which are defined as
follows:

B∗(X) =
⋃

x∈U
{B(x) : B(x) ⊆ X},

B∗(X) =
⋃

x∈U
{B(x) : B(x) ∩X �= ∅},

assigning to everyX ⊆ U two sets B∗(X) and B∗(X) called
the B-lower and the B-upper approximation of X , respec-
tively.
Hence, the B-lower approximation of a concept is the
union of all B-granules that are included in the concept,
whereas the B-upper approximation of a concept is the
union of all B-granules that have a nonempty intersection
with the concept. The set

BNB(X) = B∗(X)−B∗(X)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e.,
BNB(X) = ∅, then X is crisp (exact) with respect to B;
in the opposite case, i.e., if BNB(X) �= ∅, X is referred to
as rough (inexact) with respect to B.



Rough sets can be also defined using a rough membership
function, defined as

µBX(x) =
card(B(x) ∩X)
card(B(x))

.

Obviously
µBX(x) ∈ [0, 1].

Value of the membership function µBX(x) is kind of con-
ditional probability, and can be interpreted as a degree of
certainty to which x belongs toX (or 1−µBX(x), as a degree
of uncertainty).
The rough membership function, can be used to define
approximations and the boundary region of a set, as shown
below:

B∗(X) = {x ∈ U : µBX(x) = 1},
B∗(X) = {x ∈ U : µBX(x) > 0},

BNB(X) = {x ∈ U : 0 < µBX(x) < 1}.
The rough membership function can be generalized as fol-
lows (cf. Polkowski and Skowron [13]):

µ(X,Y ) =
card(X ∩ Y )
cardX

where X,Y ⊆ U,X �= ∅ and µ(Φ, Y ) = 1.
Function µ(X,Y ) is an example of a rough inclusion [14]
and expresses the degree to which X is included in Y . Ob-
viously, if µ(X,Y ) = 1, then X ⊆ Y.
If X is included in a degree k we will write X ⊆k Y.
The rough inclusion function can be interpreted as a gen-
eralization of the mereological relation ”part of”, and reads
as ”part in a degree”.
Employing now the rough inclusion function we can rep-
resent approximations in an uniform way:

B∗(X) =
⋃

x∈U
{B(x) : µ(B(x), X) = 1},

B∗(X) =
⋃

x∈U
{B(x) : µ(B(x), X) > 0}.

Hence, the B-lower approximation of X consists of all
B-granules included in X , whereas the B-upper approxi-
mation of X consists of all roughly included B-granules of
X.
In this way approximations reveal granular structure of
complex concepts. Thuse granularity of knowledge is inher-
ently incorporated in the foundations of rough set theory.

V. Dependencies and Granularity

Another important issue in data analysis is discovering
dependencies between attributes. Intuitively, a set of at-
tributes D depends totally on a set of attributes C, denoted
C ⇒ D, if all values of attributes from D are uniquely de-
termined by values of attributes from C. In other words,
D depends totally on C, if there exists a functional depen-
dency between values of D and C.

We would need also a more general concept of depen-
dency, called a partial dependency of attributes. Intuitively,
the partial dependency means that only some values of D
are determined by values of C.
Formally dependency can be defined in the following way.
Let D and C be subsets of A.
We will say that D depends on C in a degree
k (0 ≤ k ≤ 1), denoted C ⇒k D, if

k = γ(C,D) =
card(POSC(D))
cardU

,

where
POSC(D) =

⋃

X∈U/D
C∗(X),

called a positive region of the partition U/D with respect
to C, is the set of all elements of U that can be uniquely
classified to blocks of the partition U/D, by means of C.
Obviously

γ(C,D) =
∑

X∈U/D

card(C∗(X))
cardU

.

If k = 1 we say that D depends totally on C, and if k < 1,
we say that D depends partially (in a degree k) on C.
The coefficient k expresses the ratio of all elements of the
universe, which can be properly classified to blocks of the
partition U/D, employing attributes C and will be called
the degree of the dependency.
Obviously if D depends totally on C then IC ⊆ ID. That
means that the partition generated by C is finer than the
partition generated by D.
Degree of dependency expresses to what extend granu-
larity imposed by the set of attributes D can be expressed
in terms of elementary concepts associated with C.
The function γ(C,D) can be regarded as a generalization
of the rough inclusion function µ(X,Y ), for it expresses to
what degree partition generated by C, i.e., U/C is included
in the partition generated by D, i.e., U/D.
In other words, degree of dependency between C and D
reveals to what degree granular structure imposed by D
can be expressed in terms of granular structure associated
with C.
In fact approximations and dependencies are different
sides of the same coin, and exhibit a relationship between
two kinds of granular structures.

VI. Decision Rules and Granularity

With every dependency C ⇒k D we can associate a set
of decision rules, specifying decisions that should be taken
when certain condition are satistied.
To express this idea more precisely we need a formal lan-
guage associated with any information system S = (U,A).
The language is defined in a standard way and we omit de-
tailed definition here, assuming that the reader is familiar
with the construction.
Given x ∈ U and B ⊆ A by ΦBx =

∧
a∈B(a, v) we mean

a formula such that a(x) = v and v ∈ Va.



Every dependency C ⇒k D determines a set of decision
rules

{ΦCx → ΦDx }x∈U .
We say that a decision rule ΦCx → ΦDx is true in S, if
|ΦCx |S ⊆ |ΦDx |S , where |ΦCx |S denotes the meaning of ΦCx
in S, defined in a usual way.
Let CS(x) = |ΦCx |S . Hence the decision rule ΦCx → ΦDx is
true in S if CS(x) ⊆ DS(x).
A decision rule ΦCx → ΦDx is true in a degree l in S, if
l = µ(CS(x), DS(x)) > 0, i.e., CS(x) ⊆l DS(x).
True decision rules are often refered to as sure decision
rules, whereas decision rules true to a degree l are called
possible decision rules.
Let us notice that

µ(CS(x), DS(x)) = µCx (DS(x)),

Hence rough inclusion in this case boils down to rough
membership function. As a consequence rough membership
can be interpreted as a generalized truth value (truth to a
certain degree).
The degree of truth of a decision rule can be also inter-
preted as a certainty factor of the rule, expressing to what
degree decision imposed by the decision rule can be trusted.
It is also interesting to observe in this context that par-
tial truth in the rough set setting has a probabilistic flavor,
for the rough membership can be interpreted both as con-
ditional probability and at the same time as partial truth
value.
The above considerations lead to a new inference rule,
which will be called the rough modus ponens and is defined
below:

π(ΦCx ); µ(Φ
C
x , Ψ

D
x )

π(ΨCx )
,

where

π(ΦCx ) =
card(|ΦCx |S)
cardU

,

µ(ΦCx , Ψ
D
x ) =

card(|ΦCx ∧ ΨDx |S)
card |ΦCx |S

and

π(ΨDx ) = π(∼ ΦCx ∧ ΨDx ) + π(ΦCx ) · µ(ΦCx , ΨDx ).
The number π(ΦCx ) can be interpretated as the probability,
that x has the property ΦCx , and the number µ(Φ

C
x , Ψ

D
x ) –

as certainty factor of the decision rule ΦCx → ΨDx .
Hence the inference rule, the rough modus ponens, en-
ables us to calculate the probability of conclusion ΨDx as a
simple function of the probability of the premise ΦCx and the
certainty factor µ(ΦDx , Ψ

D
x ) of the decision rule Φ

C
x → ΨDx .

Another approach to this problem has been proposed by
Skowron in [15].

VII. Conclusions

Granularity of knowledge, information, measurements,
computations etc. seems to be an intrinsic feature of our
thinking and can be considered as a manifestation of an
old antinomy associated with continuos-discrete paradigm.

Rough set philosophy hinges on the granularity of data,
which is used to build all its basic concepts, like approxima-
tions, dependencies, reduction etc. Particularly interesting
in this approach seems to be the relationship between par-
tial truth and certainty, which is a natural consequence of
data granularity.
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