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[ Abstract.] The paper contains some considerations concern-
ing the relationship between decision rules and inference rules
from the rough set theory perspective. It is shown that decision
rules can be interpreted as a generalization of the modus ponens
inference rule, however there is an essential difference between
these two concepts. Decision rules in the rough set approach
are used to describe dependencies in data, whereas modus ponens
is used in general to derive conclusions from premises.

1 Introduction

Data analysis, recently known also as data mining, is, no doubt, a very important
and rapidly growing area of research and applications. Historically, data mining
methods were first based on statistics, but it is worth mentioning that their
origin can be traced back to some ideas of Bertrand Russell and Karl Popper
concerning reasoning about data. Recently machine intelligence and machine
learning contributed essentially to this domain. Particularly fuzzy sets, rough
sets, genetic algorithms, neural networks, cluster analysis and other branches
of AI can be considered as a basic tools for knowledge discovery in databases,
nowadays.

Main objective of data analysis is finding hidden patterns in data. More
specifically, data analysis is about searching for dependencies, or in other words,
pursuing ” cause-effect” relations, in data.

From logical point of view, data analysis can be perceived as a part of induc-
tive reasoning, and therefore it can be understood as a kind of reasoning about
data methods, with specific inference tools.

Reasoning methods are usually classified into three classes: deductive, induc-
tive and common sense reasoning.

Deductive methods are based on axioms and deduction rules, inductive rea-
soning hinges on data and induction rules, whereas common sense reasoning
is based on common knowledge and common sense evident inferences from the
knowledge.

Deductive methods are used exclusively in mathematics, inductive methods
— in natural sciences, e.g., physics, chemistry etc., while common sense reasoning
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is used in human sciences, e.g., politics, medicine, economy, etc. but mainly this
method is used almost everywhere in every day life debates, discussions and
polemics.

This paper shows that the rough set approach to data analysis bridges some-
how the deductive and inductive approach in reasoning about data. The rough
set reasoning is also, to some extent, related to common sense reasoning.

Rough set theory gave rise to extensive research in deductive logic, and var-
ious logical systems, called rough logics, have been proposed and investigated
(see e.g., [3, 6, 7, 10, 11, 18, 20, 23]). However, the basic idea of rough set based
reasoning about data is rather of inductive than deductive character. Partic-
ularly interesting in this context is the relationship between an implication in
deductive logic and a decision rule in the rough set approach.

In deductive logic basic rule of inference, modus ponens (MP) is based on
implication, which can be seen as counterpart of a decision rule in decision rule
based methods of data analysis. Although formally decision rules used in the
rough set approach are similar to MP rule of inference, they play different role
to that of MP inference rule in logical reasoning. Deduction rules are used to
derive true consequences from true premises (axioms), whereas decision rules
are description of total or partial dependencies in databases. Besides, in induc-
tive reasoning optimization of decision rules is of essential importance, but in
deductive logic we don’t need to care about optimization of implications used
in reasoning. Hence, implications and decision rules, although formally similar,
are totally different concepts and play various roles in both kinds of reasoning
methods. Moreover decision rules can be also understood as exact or approxi-
mate description of decisions in terms of conditions.

It is also interesting to note a relationship between rough set based reasoning
and common sense reasoning methods. Common sense reasoning usually starts
from common knowledge shared by domain experts. In the rough set based rea-
soning the common knowledge is not assumed but derived from data about the
domain of interest. Thus the rough set approach can be also seen as a new ap-
proach to (common) knowledge acquisition. Also the common rules of inference
can be understood in our approach as data explanation methods. Note, that
qualitative reasoning, part of common sense reasoning, can be also explained in
the rough set philosophy.

Summing up, rough set based reasoning has an overlap with deductive, in-
ductive and common sense reasoning, however it has its own specific features
and can be considered in its own right.

2 Data, Information Systems and Decision Tables

Starting point of rough set theory is a set of data (information) about some
objects of interest. Data are usually organized in a form of a table called infor-
mation system or information table.
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A very simple, fictitious example of an information table is shown in Table
1. The table describes six cars in terms of their (attributes) features such as fuel
consumption (F'), perceived quality (Q), selling price (P) and marketability (M ).

Table 1. An example of information system

Car F Q P M
high  fair med. poor
v. high good med. poor
high  good low poor
med. fair med. good
v. high fair low poor
high good low good

S U W N

Our main problem can be characterized as determining the nature of the
relationship between selected features of the cars and their marketability. In
particular, we would like to identify the main factors affecting the market ac-
ceptance of the cars.

Information systems with distinguished decision and condition attributes are
called decision tables.

Each row of a decision table determines a decision rule, which specifies deci-
sions (actions) that should be taken when conditions pointed out by condition
attributes are satisfied. For example in Table 1 the condition (F,high), (Q,fair),
(P,med) determines uniquely the decision (M,poor). Decision rules 3) and 6) in
Table 1 have the same conditions but different decisions. Such rules are called
inconsistent (nondeterministic, conflicting, possible); otherwise the rules are re-
ferred to as consistent (certain, deterministic, nonconflicting, sure). Decision
tables containing inconsistent decision rules are called inconsistent (nondeter-
ministic, etc); otherwise the table is consistent (deterministic, etc).

The number of consistent rules to all rules in a decision table can be used as
consistency factor of the decision table, and will be denoted by v(C, D), where C
and D are condition and decision attributes respectively. Thus if v(C, D) < 1 the
decision table is consistent and if (C, D) # 1 the decision table is inconsistent.
For example for Table 1 (C, D) = 4/6.

In what follows information systems will be denoted by S = (U, A), where
U — is universe, A is a set of attributes, such that for every x € U and a € A,
a(x) € V,, and V, is the domain (set of values of a) of a.

3 Decision Rules and Certainty Factor

Decision rules are often presented as implications and are called ”if... then...”
rules. For example, Table 1 determines the following set of implications:
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1) if (F,high) and (Q,fair) and (P,med) then (M,poor),
2) if (F,v.high) and (Q,good) and (P,med) then (M,poor),
3) if (F,high) and (Q,good) and (P,low) then (M,poor),
4) if (F,med.) and (Q,fair) and (P,med.) then (M,good),
5) if (F,v.high) and (Q,fair) and (P,low.) then (M,poor),

6) if (F,high) and (Q,good) and (P,low) then (M,good),

In general decision rules are implications built up from elementary formulas
(attribute name, attribute value) and combined together by means of proposi-
tional connectives "and”, ”or” and ”implication” in a usual way.

Let @ and ¥ be logical formulas representing conditions and decisions, re-
spectively and let & — ¥ be a decision rule, where &g denote the meaning of @
in the system S, i.e., the set of all objects satisfying @ in S, defined in a usual
way.

With every decision rule & — ¥ we associate a number, called a certainty
factor of the rule, and defined as

ps(o,w) = 20|
|Ps|
where |®| denotes the cardinality of @. Of course 0 < ug(®,¥) < 1; if the rule
¢ — W is consistent then pg(®,¥) =1, and for inconsistent rules ug(®,¥) < 1.
For example, the certainty factor for decision rule 2) is 1, and for decision rule
3) is 0.5.

The certainty factor can be interpreted as a conditional probability of a
decision ¥ given the probability of the condition ®.

It is worth mentioning that association of conditional probability with impli-
cation first was proposed by J. Lukasiewicz in the context of multivalued logic
and probabilistic logic [4]. This idea has been pursued by other logicians years
after [1]. In the rule based knowledge systems many authors also proposed us-
ing conditional probability to characterize certainty of the decision rule [2]. In
particular in the rough set approach association of condition probabilities with
decision rules have been pursued e.g., in [21, 24, 27].

Now the difference between use of implications in classical logic and in data
analysis can be clearly seen, particularly in the rough set framework. Implication
in deductive logic is used to draw conclusions from premises, by means of modus
ponens rule of inference. In reasoning about data implications are decision rules
used to describe patterns in data. Hence, the role of implications in both cases is
completely different. Besides, modus ponens is an universal rule of inference valid
in any logical system, but decision rules are strictly associated with a specific
data and are not valid universally.
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However in the rough set approach decision rules can be also exploited in a
similar way as modus ponens in logic. Let us consider the following formula:

(W) = X(ns(P) - ps(®,¥)) = Xng(@A¥) (%)

where X' is taken over all conditions @ associated with the decision corresponding
to ¥, and wg(P) = %.

mg(P) is a probability that the condition @ is satisfied in S. Thus formula (*)
shows the relationship between the probability of conditions, certainty factor of
a decision rule and the probability of decisions.

Hence the formula (*) allows to compute probability that the decision ¥ is
satisfied in S, in terms of the probability of condition ¢ and conditional proba-
bility of the decision rule @ = V.

This is a kind of analogous structure to modus ponens inference rule and
can be treated as its generalization, called rough modus ponens (RMP) [15]. The
certainty factor of a decision rule can be seen as generalization of the rough
membership function. It can be also understood as a rough inclusion factor in
rough mereology [16, 17] or as a degree of truth of the implication associated
with the inclusion.

4 Approximations of Sets

The main problem discussed in the previous section can be also formulated as
follows: can we uniquely describe well (poorly) selling cars in terms of their
features. Of course, as before, this question cannot be answered uniquely, since
cars 3 and 6 have the same features but car 3 sells poorly whereas car 6 sells
well, hence we are unable to give unique description of cars selling well or poorly.

But one can observe that in view of the available information we can state
that cars 1, 2 and 5 surely belong to the set of cars which are selling poorly,
whereas cars 1, 2, 3, 5 and 6 possibly belong, to the set of cars selling poorly,
i.e. cannot be excluded as cars selling poorly. Similarly car 4 surely belongs to
well selling cars, whereas cars 3, 4 and 6 possible belong to well selling cars.
Hence, because we are unable to give an unique characteristic of cars selling well
(poorly), instead we propose to use of two sets, called the lower and the upper
approximation of the set of well (poorly) selling cars.

Now, let us formulate the problem more precisely.

Any subset B of A determines a binary relation Ig on U, which will be
called an indiscernibility relation, and is defined as follows: xIgy if and only if
a(x) = a(y) for every a € B, where a(x) denotes the value of attribute a for
element x. Obviously Ip is an equivalence relation. The family of all equivalence
classes of Ip, i.e., the partition determined by B, will be denoted by U/Ig, or
simply U/B; an equivalence class of Ig, i.e., the block of the partition U/B,
containing = will be denoted by B(x).

If (x,y) belongs to Ip we will say that « and y are B-indiscernible. Equiva-
lence classes of the relation Ip (or blocks of the partition U/B) are referred to
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as B-elementary concepts or B-granules. As mentioned previously in the rough
set approach the elementary concepts are the basic building blocks (concepts)
of our knowledge about reality.

The indiscernibility relation will be used next to define basic concepts of
rough set theory. Let us define now the following two operations on sets

B.(X)={z €U : B(z) C X},

B*(X) ={z €U :B(z) N X # 0},

assigning to every subset X of the universe U two sets B, (X) and B*(X) called
the B-lower and the B-upper approximation of X, respectively. The set

BNs(X) = B*(X) - B.(X)

will be referred to as the B-boundary region of X. If the boundary region of X
is the empty set, i.e., BNg(X) = 0, then the set X is crisp (exact) with respect
to B; in the opposite case, i.e., if BNp(X) # 0, the set X is referred to as rough
(inezxact) with respect to B.

For example, the lower approximation of the set {1,2,3,5}, of poorly selling
cars, is the set {1,2,5}, whereas the upper approximation of poorly selling cars is
the set {1,2,3,5,6}. The boundary region is the set {3,6}. That means that cars
1, 2 and 5 can be surely classified, in terms of their features, as poorly selling
cars, while cars 3 and 6 cannot be characterized, by means of available data, as
selling poorly or not. Rough sets can be also defined using a rough membership
function, defined as

_ XN B()|
p§(x) = TB@) and p§ () € [0, 1].

Value of the membership function px(x) is kind of conditional probability, and
can be interpreted as a degree of certainty to which x belongs to X (or 1 —px (x),
as a degree of uncertainty).

For example, car 1 belongs to the set {1,2,3,5} of cars selling poorly with
the conditional probability 1, whereas car 3 belongs to the set with conditional
probability 0.5.

5 Dependency of Attributes

Our main problem can be rephrased as whether there is a functional dependency
between the attribute M and attributes F), @ and P. In other words we are asking
whether the value of the decision attribute is determined uniquely by the values
of the condition attributes. It is easily seen that this is not the case for the
example since cars 3 and 6 have the same values of condition attributes but
different value of decision attribute. The consistency factor «(C, D) can be also
interpreted as a degree of dependency between C' and D. We will say that D
depends on C'in a degree k (0 < k < 1), denoted C' =, D, if k = v(C, D).
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If ¥ = 1 we say that D depends totally on C, and if k£ < 1, we say that D
depends partially (in a degree k) on C.

For example, for dependency {F, P,Q} = {M} we get k =4/6 =2/3.

Dependency of attributes can be also defined using approximations as shown
below.

We will say that D depends on C'in a degree k(0 < k < 1), denoted C =, D,
if

POSc(D
k=~(C,D) = w where POSc(D) = | Cu(X),
U] xel/p

called a positive region of the partition U/D with respect to C, is the set of all

elements of U that can be uniquely classified to blocks of the partition U/D, by
means of C. Obviously

.01

1CD)= >, g

XeU/D

If £ = 1 we say that D depends totallyon C, and if k < 1, we say that D depends
partially (in a degree k) on C.

The coefficient k expresses the ratio of all elements of the universe, which
can be properly classified to block of the partition U/D, employing attributes
C.

6 Reduction of Attributes

We often face a question whether we can remove some data from a data table pre-
serving its basic properties, that is — whether a table contains some superfluous
data. This can be formulated as follows.

Let C, D C A, be sets of condition and decision attributes, respectively. We
will say that C" C C is a D-reduct (reduct with respect to D) of C, if C" is a
minimal subset of C such that

’Y(Ca D) = ’Y(Cla D)

Thus reduct enables us to make decisions employing minimal number of condi-
tions.

For example, for Table 1 we have two reducts F, ) and F, P. It means that
instead of Table 1 we can use either Table 2 or Table 3, shown below.

These simplifications yield to the following sets of decision rules. For Table
2 we get

1) if (F,high) and (Q,fair) then (M,poor),

2) if (F,v.high) and (Q,good) then (M,poor),
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Table 2. Reduced information system Table 3. Another reduced information
system

Car F Q M Car F P M
high  fair poor
v. high good poor
high  good poor
med.  fair good
v. high fair poor
high  good good

high  med. poor
v. high med. poor
high  low poor
med. med. good
v. high low poor
high  low good

SO W N~
SO W N -

3) if (F,high) and (Q,good) then (M,poor),

4) if (F,med.) and (Q,fair) then (M,good),

5) if (F,v.high) and (Q,fair) then (M,poor),

6) if (F,high) and (Q,good) then (M,good),
and for Table 3 we have

7) if (F,high) and (P,med) then (M,poor),

8) if (F,v.high) and (P,med.) then (M,poor),

9) if (F,high) and (P,low) then (M,poor),

10) if (F,med.) and (P,med.) then (M,good),

11) if (F,v.high) and (P,low.) then (M,poor),

12) if (F,high) and
(P,low) then (M,good).

Hence, employing the notion of the reduct we can simplify the set of decision
rules.

7 Conclusions

Using rough sets to reason about data hinges on three basic concepts of rough set
theory: approximations, decision rules and dependencies. All these three notions
are strictly connected and are used to express our imprecise knowledge about
reality, represented by data obtained from measurements, observations or from
knowledgeable expert.
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The rough set approach to reasoning about data bridges to some extent
the deductive and inductive way of reasoning. Decision rules in this approach
can be understood as implications, whose degree of truth is expressed by the
certainty factor. Consequently, this leads to generalization of the modus ponens
inference rule, which in the rough set framework has a probabilistic flavor. It is
interesting that the certainty factor of a decision rule is closely related to the
rough membership function and to rough inclusion of sets, basic concept of rough
mereology.
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