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ABSTRACT 
 
The paper gives basic ideas of rough set theory - a new approach to vague data analysis. The lower 
and the upper approximation of a set the basic operations of the theory, are intuitively explained and 
formally defined. Some applications of rough set theory are briefly outline and some future prob-
lems pointed out. 
 
INTRODUCTION 

Rough set theory [7] is a new mathematical approach to data analysis and data mining. After 15 
year of pursuing rough set theory and its application the theory has reached a certain degree of ma-
turity. In recent years we witnessed a rapid grow of interest in rough set theory and its application, 
world wide. Many international workshops, conferences and seminars included rough sets in their 
programs. A large number of high quality papers have been published recently on various aspects of 
rough sets.   
The connection of rough set theory and many other theories has been clarified. Particularly interest-
ing is the relationship between fuzzy set theory and Dempster-Shafer theory of evidence. The con-
cepts of  rough set and fuzzy set are different since they refer to various aspects of  imprecision 
[10], whereas the connection with theory of evidence is more substantial [12]. Besides,  rough set 
theory is related to  discriminant analysis [4], Boolean reasoning methods [13] and others. The rela-
tionship between rough set theory and decision analysis is presented in [11,15]. Several extension 
of  the "basic" model of rough set have been proposed and investigated. 
Various real life-applications of rough set theory have shown its usefulness in many domains. Very 
promising new areas of application of the rough set concept seems to emerge in the near future. 
They include rough control, rough data bases, rough information retrieval, rough neural network 
and others. No doubt that rough set theory can contribute essentially to material sciences, a subject 
of special interest to this conference. 
 
BASIC CONCEPTS 
 
Rough set philosophy is founded on the assumption that with every object of the universe of dis-
course we associate some information (data, knowledge). Objects characterized by the same infor-
mation are indiscernible (similar) in view of the available information about them. The indis-
cernibility relation generated in this way is the mathematical basis of rough set theory. 
Any set of all indiscernible (similar) objects is called an elementary set, and form a basic granule 
(atom) of knowledge about the universe. Any union of some elementary sets is referred to as a crisp 
(precise) set - otherwise the set is rough (imprecise, vague). 
Each rough set has boundary-line cases, i.e., objects which cannot be with certainty classified, by 
employing the available knowledge, as members of the set or its complement.  



Obviously rough sets, in contrast to precise sets, cannot be characterized in terms of information 
about their elements. In the proposed approach with any rough set a pair of precise sets - called the 
lower and the upper approximation of the rough set is associated. The lower approximation consists 
of all objects which surely belong to the set and the upper approximation contains all objects which 
possible belong to the set. The difference between the upper and the lower approximation consti-
tutes the boundary region of the rough set. Approximations are two basic operations used in rough 
set theory.  
Data are often presented as a table, columns of which are labeled by attributes, rows by objects of 
interest and entries of the table are attribute values. Such tables are known as information systems, 
attribute-value tables, data tables or information tables. 
Usually we distinguish in information tables two kinds of attributes, called  condition and decision 
attributes. Such tables are known as decision tables. Rows of a decision table are referred to as 
“if...then...” decision rules, which give conditions necessary to make decisions specified by the de-
cision attributes. An example of a decision table is shown in Table 1. 

Pipe   C   S P    Cracks 
1 
2 
3 
4 
5 
6 

high 
avg.  
avg. 
low 
avg. 
high 

high 
high 
high 
low 
low 
low 

 low 
 low 
 low 
 low 
 high 
 high 

yes 
no 
yes 
no 
no 
yes 

      Table 1 

The table contains data concerning six cast iron pipes exposed to high pressure endurance test.  In 
the table C, S and  P are condition attributes, displaying the percentage content in the pig-iron of 
coal, sulfur and phosphorus respectively, whereas the attribute Cracks revels the result of the test. 
The values of condition attributes are as follows (C, high) > 3.6%, 3.5% ≤ (C, avg.) ≤ 3.6%,  
(C, low) < 3.5%, (S, high) ≥ 0.1%, (S, low) < 0.1%, (P, high) ≥ 0.3%, (P, low) < 0.3%. 
Main problem we are interested in is how the endurance of the pipes depend on the compounds C, S 
and P comprised in the pig-iron, or in other words, if there is a functional dependency between the 
decision attribute Cracks and  the condition attributes  C, S and P. In the rough set theory language 
this boils down to the question, if the set {2,4,5}of all pipes  having no cracks after the test (or the 
set {1,3,6}of pipes having cracks), can be uniquely defined in terms of condition attributes values. 
It can be easily  seen that this is impossible, since pipes 2 and 3 display the same features in terms 
of attributes C, S and P, but they have different values of the attribute Cracks. Thus information 
given in Table 1 is not sufficient to solve our problem. However we can give a partial solution. Let 
us observe that if the attribute C has the value high for a certain pipe, then the pipe have cracks, 
whereas if the value of the attribute C is low, then the pipe has no cracks. Hance employing attrib-
utes C, S and P, we can say that pipes 1 and 6 surly are good, i.e., surely belong to the set {1, 3, 6}, 
whereas pipes 1, 2, 3 and 6 possible are good, i.e., possible belong to the set {1, 3, 6}.Thus the sets 
{1, 6}, {1, 2, 3, 6} and {2, 3} are the lower, the upper approximation and the boundary region of 
the set {1, 3, 6}. 
This means that the quality of pipes cannot be determined exactly by the content of coal, sulfur and 
phosphorus in the pig-iron, but can be determined only with some approximation. 
In fact approximations determine the dependency (total or partial) between condition and decision 
attributes, i.e., express functional relationship between values of condition and decision attributes. 
The degree of dependency between condition and decision attributes can be defined as a  consis-
tency factor  of the decision table, which is the number of conflicting decision rules to all decision 



rules in the table. By conflicting decision rules we mean rules having the same conditions but dif-
ferent decisions. For example, the consistency factor  for Table 1 is 4/6 = 2/3, hence the degree of 
dependency between cracks and  the composition of the pig-iron is 2/3. That means that four out of 
six (ca. 60%) pipes can be properly classified as good or not good on the basis of  their composi-
tion. 
We might be also interested in reducing some of the condition attributes, i.e. to know whether all 
conditions are necessary to make decisions specified in a table. To this end we will employ the no-
tion of a reduct (of condition attributes). By a reduct we understand a minimal subset of condition 
attributes which preserves the consistency factor of the table. It is easy to compute that in Table 1 
we have two reducts {C, S} and {C, P}. Intersection of all reducts is called the core. In our example 
the core is the attribute C. 
That means that in view of the data coal is the most important factor causing cracks and cannot be 
eliminated  from our considerations, whereas sulfur and phosphorus  play a minor role and  can be 
mutually exchanged as factors causing cracks. 
Now we present the basic concepts more formally. 
Suppose we are given two finite, non-empty sets U and A, where U is the universe, and A − a set 
attributes. With every attribute a A∈  we associate a set V , of its values, called the domain of a. 
Any subset B of A determines a binary relation I(B) on U which will be called an indiscernibility 
relation, and is defined as follows: 

a

 xI(B)y if and only if a(x) = a(y) for every a A∈ , 
 where a(x) denotes the value of attribute a for element x. 

Obviously I(B) is an equivalence relation. The family of all equivalence classes of I(B), i.e., parti-
tion determined by B, will be denoted by U/I(B), or simple U/B; an equivalence class of I(B), i.e., 
block of the partition U/B, containing x will be denoted by B(x). 
If (x,y) belong to I(B) we will say that x and y are B-indiscernible. Equivalence classes of the rela-
tion I(B) (or blocks of the partition U/B) are refereed to as B-elementary sets. In the rough set ap-
proach the elementary sets are the basic building blocks of our knowledge about reality. 
The indiscernibility relation will be used next to define basic concepts of rough set theory. Let us 
define now the following two operations on sets 
 

( ) ( ){ }B X x U B x X∗ = ∈ ⊆: ,  

( ) ( ){ }B X x U B x X∗ = ∈ ∩ ≠ ∅: ,  
 
assigning to every subset X of the universe U two sets ( )B X∗ and ( )B X∗ called the B-lower and the 
B-upper approximation of X, respectively. The set 
 

( ) ( ) ( )BN X B X B XB = −∗
∗  

 
will be referred to as the B-boundary region of X. 
If the boundary region of X is the empty set, i.e, ( )BN XB = ∅ , then the set X is crisp (exact) with 

respect to B; in the opposite case, i.e., if ( )BN XB ≠ ∅ , the set X is referred to as rough (inexact) 
with respect to B. 
Rough set can be also characterized numerically by the following coefficient 
 



( ) ( )
( )

α B X
B X

B X
= ∗

∗
 

 
called accuracy of approximation, where |X| denotes the cardinality of X. Obviously ( )0 1≤ ≤α B X . 

If  X is crisp with respect to B (X is precise with respect to B), and otherwise, if 

 X is rough with respect to B. 
( )α B X = 1,

( )α B X < 1,
Approximation can be employed to define dependencies (total or partial) between attributes, reduc-
tion of attributes, decision rule generation and others, but will not discuss these issues here. For 
details we refer the reader to references. 
 
APPLICATIONS 
 
Rough set theory has found many interesting applications. The rough set approach seems to be of 
fundamental importance to AI and cognitive sciences, especially in the areas of machine learning, 
knowledge acquisition, decision analysis, knowledge discovery from databases, expert systems, 
inductive reasoning and pattern recognition. It seems of particular importance to decision support 
systems and data mining.  
The main advantage of rough set theory is that it does not need any preliminary or additional infor-
mation about data - like probability in statistics, or basic probability assignment in Dempster-Shafer 
theory and grade  of  membership  or the value of possibility in fuzzy set  theory. 
The rough set theory has been  successfully applied in many real-life problems in medicine, phar-
macology, engineering, banking, financial and market analysis and others. Some exemplary applica-
tions are listed below.  
There are many applications in medicine. In pharmacology  the analysis of relationships between  
the chemical structure and the antimicrobial activity of drugs has been successfully investigated. 
Banking applications include evaluation of a bankruptcy risk and market research. Very interesting 
results have been also obtained  in speaker independent speech recognition and acoustics. The 
rough set approach seems also important for various engineering applications, like diagnosis of  
machines using vibroacoustics symptoms (noise, vibrations) and process control. Application in 
linguistics, environment and databases are other important domains.  
First application of rough sets to material sciences, particularly interesting to this community, can 
be found in [2, 3]. Rough set approach to materials science provides new algorithmic method for 
predicting and understanding material properties and behaviour, which can be very useful in creat-
ing new materials [3]. 
More about applications of rough set theory can be found in [5,6,14,19,20,21,22].  
Application of rough sets requires a suitable software. Many  software systems for workstations and 
personal computers based on rough set theory have been developed. The most known include LERS 
[1], Rough DAS and Rough Class [16] and  DATALOGIC [17]. Some of them are available com-
mercially. 
 
CONCLUSION 
 
Rough set approach to data analysis has many important advantages. Some of them are listed below. 

• Provides efficient algorithms for finding hidden patterns in data. 

• Identifies relationships that would not be found using statistical methods. 

• Allows both qualitative and quantitative data. 



• Finds minimal sets of data  (data reduction).  

• Evaluates significance of data. 

• Generates sets of decision rules from data. 

• It is easy to understand. 

• Offers straightforward interpretation of obtained results.    

• Most algorithms based on the rough set theory are particularly suited for parallel processing, but 
in order to exploit this feature fully, a new computer organization based on rough set theory is 
necessary.  

Although rough set theory has many achievements to its credit, nevertheless several theoretical and 
practical problems require further attention.   
Especially important is widely accessible efficient software development for rough set based data 
analysis, particularly for large collections of data.  
Despite of many valuable methods of  efficient, optimal decision rule generation methods from 
data,  developed in recent years based on rough set theory - more research here is needed, particu-
larly, when quantitative attributes are involved. In this context also new discretization methods for 
quantitative attribute values are badly needed. Also an extensive study of a new approach to missing 
data is very important. Comparison to other similar methods still requires due attention, although  
important results have been obtained  in this area. Particularly  interesting seems to be a study of  
the relationship between neural network and rough set approach to feature extraction from data.  
Last but not least, rough set computer is badly needed for more serious applications. Some research 
in this area is already in progress. 
For basic ideas of rough set theory the reader is referred to [8,9,15,18].  
 
ACKNOWLEDGMENTS 
 
The author gratefully acknowledge the support of the Air Force Contract F61708-97-WO196. 

 
REFERENCES 
 
1. J.W. Grzyma³a-Busse, in Intelligent Decision Support. Handbook of Applications and  Ad-

vances of the Rough Set Theory, (R. S³owiñski ed.), Kluwer Academic Publishers, Boston, 
London, Dordrecht, 1992, P.471. 

2. A.G. Jackson, M. Ohmer and H. Al-Kamhawi, in The Third International Workshop on Rough 
Sets and Soft Computing Proceedings (RSSC'94), (T.Y. Lin ed.), San Jose State University, San 
Jose, California, USA, 1994.  

3. A.G. Jackson, S.R. LeClair, M.C. Ohmer, W. Ziarko and H. Al-Kamhwi, Acta Metallurgica et 
Materialia, 1996, p.4475. 

4. E. Krusiñska, R. S³owiñski and J. Stefanowski, Applied Stochastic Models and Data Analysis, 
8, 1992, p.43.  

5. T.Y. Lin and N. Cercone, Rough Sets and Data Mining - Analysis of Imperfect Data, Kluwer 
Academic Publishers, Boston, London, Dordrecht, 1997, P.430. 

6. T.Y. Lin and A.M.Wildberger, The Third International Workshop on Rough Sets and Soft Com-
puting Proceedings RSSC'94), San Jose State University, San Jose, California, USA, 1995. 

7. Z. Pawlak, International Journal of Computer and Information Sciences, 11, 1982, p.341.  
8. Z. Pawlak, Rough Sets - Theoretical Aspects of Reasoning about Data, Kluwer Academic  Pub-

lishers, Boston, London, Dordrecht, 1991, P.229.  



9. Z. Pawlak, J.W. Grzyma³a-Busse, R. S³owiñski and W. Ziarko, Communication of the ACM, 
38, 1995, p.88.  

10. Z. Pawlak and A. Skowron, in Advances in the Dempster Shafer Theory of Evidence, (R.R Yae-
ger, M. Fedrizzi and  J. Kacprzyk eds.), John Wiley & Sons, Inc., New York, Chichester, Bris-
bane, Toronto, Singapore, 1994.  

11. Z. Pawlak and R. S³owiñski, European Journal of Operational Research, 72, 1994, p.443.  
12. A. Skowron and J.W. Grzyma³a-Busse, in Advances in the Dempster-Shafer Theory of Evi-

dence, (R.R, Yaeger, M. Fedrizzi and J. Kacprzyk eds.), John Wiley & Sons, Inc., New York, 
Chichester, Brisbane, Toronto, Singapore, 1994. 

13. A. Skowron and C. Rauszer, in Intelligent Decision Support. Handbook of Applications and  
Advances  of  the  Rough Set Theory, (R. S³owiñski ed.), Kluwer Academic Publishers, Boston, 
London, Dordrecht, 1992, P.471.  

14. R. S³owiñski, Intelligent Decision Support. Handbook of Applications and Advances of  the 
Rough Set Theory, Kluwer Academic Publishers, Boston, London, Dordrecht, 1992, P.471. 

15. R. Słowiński, AI Expert, 10, 1995, p.18. 
16. R. S³owiñski and J. Stefanowski, J., (1992), in Intelligent Decision Support. Handbook of  Ap-

plications  and  Advances  of  the  Rough Set Theory, (R. S³owiñski ed.), Kluwer Academic 
Publishers, Boston, London, Dordrecht, 1992, P.471. 

17. A. Szladow, PC AI , 7/1, 1993, p.40. 
18. A. Szladow and W. Ziarko, AI Expert, 7,1993, p.36. 
19. S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka and A. Nakamura, The Fourth Internal 

Workshop on Rough Sets, Fuzzy Sets and Machine Discovery, PROCEEDINGS, The Univer-
sity of Tokyo, 1996, P.465. 

20. P.P. Wang, Second Annual Joint Conference on Information Sciences, PROCEEDINGS, 
Wrightsville Beach, North Carolina, USA, 1995. 

21. P. Wang, Joint Conference of Information Sciences, Vol. 3. Rough Sets and Computer Sciences, 
Duke University, 1997, P.449. 

22. W. Ziarko, Rough Sets, Fuzzy Sets and Knowledge Discovery. Proceedings of the International 
Workshop on Rough Sets and Knowledge Discovery (RSKD'93), Banff, Alberta, Canada, Octo-
ber 12--15, Springer-Verlag, Berlin, 1993, P.476.  

 

 

 

 

 


