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Abstract

The problem of imperfect knowledge has been tackled
for a long time by philosophers, logictans and mathe-
maticians. Recently il became also a crucial issue for
computer sctentists, particularly in the area of artificial
intelligence. There are many approaches to the probd-
lem of how to understand and manipulate the imperfect
knowledge. The most successful one is, no doubt, fuzzy
set theory proposed by Zadeh.

Rough set theory is another attempt to this problem.
The theory has atiracied atiention of many researchers
and practilioners all over the world, who contriduted
essentially to its development and applications.

Rough set theory overlaps with many other theo-
ries, especially with fuzzy set theory, evidence theory

\and Boolean reasoning methods — nevertheless it can
be viewed in its own rights, as an independent, comple-
mentary, and not competing discipline.

1 Introduction

The rough set philosophy is founded on the assump-
tion that with every object of the universe of discourse
we associate some information (data, knowledge). E.g.,
if objects are patients suffering from a certain disease,
symptoms of the disease form information about pa-
tients. ‘

All patients revealing the same symptoms are indis-
cernible (similar) in view of the available information
and form blocks, which can be understood as elemen-
tary granules of knowledge about patients (or types of
patients). These granules are called elementary sets or
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concepts, and can be considered as elementary building
blocks of our knowledge. Elementary concepts can be
combined into compound concepts, i.e. concepts that
are uniquely defined in terms of elementary concepts.
Any union of elementary sets is called a crisp set, and
any other sets are referred to as rough (vague, impre-
cise).

Consequently each rough set has boundary-line
cases, l.e., objects which cannot be with certainty clas-
sified as members of the set or of its complement. Obvi-
ously crisp sets have no boundary-line elements at all.
That means that boundary-line cases cannot be prop-
erly classified by employing the available knowledge.

Thus, the assumption that objects can be ”seen”
only through the information available about them
leads to the view that knowledge has granular struc-
ture. Due to the granularity of knowledge some ob-
jects of interest cannot be discerned and appear as the
same (or similar). As, a consequence vague concepts,
in contrast to precise ones, cannot be characterized in
terms of information about their elements. Therefore in-
the proposed approach we assume that any vague con-
cept is replaced by a pair of precise concepts — called
the lower and the upper approzimation of the vague
concept. The lower approximation consists of all ob-
jects which surely belong to the concept and the upper
approximation contains all objects which possible be-
long to the concept. Obviously, the difference between
the upper and the lower approximation constitute the
boundary region of the vague concept. Approximations
are two basic operations in rough set theory.

Rough set theory overlaps to a certain degree
many other mathematical theories. Particularly inter-
esting is the relationship with fuzzy set theory and
Dempster-Shafer theory of evidence. The concepts of
rough set and fuzzy set are different since they re-
fer to various aspects of imprecision [12] whereas the



connection with theory of evidence is more substantial
[17]. Besides, rough set theory is related to discrimi-
nant analysis [6], Boolean reasoning methods [16] and
others. The relationship between rough set theory and
decision analysis is presented in [13,19].

Despite of the relationships rough set theory can be
viewed in its own rights, as an the independent disci-
pline.

The rough set approach seems to be of fundamental
importance to Al and congnitive sicences, especially in
the areas of machine learning, knowledge acquisition,
decision analysis, knowledge discovery from databases,
expert systems, inductive reasoning and pattern recog-
nition.

The main advantage of rough set theory is that it
does not need any preliminary or additional informa-
tion about data — like probability in statistics, or basic
probability assignment in Dempster-Shafer theory and
grade of membership or the value of possibility in fuzzy
set theory.

The rough set theory has been successfully applied
in many real-life problems in medicine, pharmacology,
engineering, banking, financial and market analysis and
others. ‘

2 An Example

. Data are often presented as information tables, col-
umn of which are labelled by attributes, rows by objects
and entries of the table are atiribute-values. Simple il-
lustrative example of information table is shown below.

Patient | Headache | Muscle-pain | Temp. | Flu
pl no yes high yes
p2 yes no high yes
p3 yes yes v. high | yes
p4 no yes normal | no

p5 yes no high ‘no

p6 no yes v. high | yes

Table 1

Columns of the table are labelled by attributes (symp-
toms) and rows — by objects (patients), whereas entries
of the table are attribute values. Thus each row of the
table can be seen as information about specific patient.
For example patient p2 is characterized in the table by
the following attribute-value set "

. (Headache, yes), (Muscle-pain, no), (Temperature,
high), (Flu, yes),

which form information about the patient.
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In the table patients p2, p3 and p5 are indis-
cernible with respect to the attribute Headache, pa-
tients p3 and p6 are indiscernible with respect to at-
tributes Muscle-pain and Flu, and patients p2 and p5
are indiscernible with respect to attributes Headache,
Muscle-pain and Temperature. Hence, for example,
the attribute Headache generates two elementary sets
{p2, p3, p5} and {pl, p4, p6}, whereas the attributes
Headache and Muscle-pain form the following elemen-
tary sets: {pl, p4, p6}, {p2, p5} and {p3}. Similarly
one can define elementary sets generated by any subset
of attributes.

Because patient p2 has flu, whereas patient p5 does
not, and they are indiscernible with respect to the
attributes Headache, Muscle-pain and Temperature,
thus flu cannot be characterized in terms of attributes
Headache, Muscle-pain and Temperature. Hence p2
and p5 are the boundary-line cases, which cannot be
properly classified in view of the available knowledge.
The remaining patients pl, p3 and p6 display symp-
toms which enable us to classify them with certainty
as having flu, patients p2 and p5 cannot be excluded
as having flu and patient p4 for sure does not have flu,
in view of the displayed symptoms. Thus the lower ap-
proximation of the set of patients having flu is the set
{p1, p3, p6} and the upper approximation of this set is
the set {p1, p2, p3, p5, p6}, whereas the boundary-line
cases are patients p2 and p5. Similarly p4 does not have
flu and p2, p5 cannot be excludes as having flu, thus
the lower approximation of this concept is the set {p4}
whereas ~ the upper approximation — is the set {p2, p4,
p5} and the boundary region of the concept "not flu”
is the set {p2, p5}, the same as in the previous case.

3 Formal Definition of Approximations

Now we present above concepts more formally.

Suppose we are given two finite, non-empty sets U
and A, where U is the universe, and A —a set attributes.
With every attribute a € A we associate a set V,, of
its values, called the domain of a. Any subset B of A
determines a binary relation I(B) on U, which will be
called an indiscernibility relation, and is defined as fol-
lows:

zI(B)y if and only if a(z) = a(y) for every a € A4,
~ where a(z) denotes the value of attribute a for ele-
ment .

Obviously I(B) is an equivalence relation. The fam-
ily of all equivalence classes of I(B), i.e., partition de-

termined by B, will be denoted by U/I(B), or simple

U/B; an equivalence class of I(B), i.e., block of the




where
POSc(D)= ] C.(X).

X eU/I(D)

The expression POSc(D), called a positive region of
the partition U/D with respect to C, is the set of all
elements of U that can be uniquely classified to blocks
of the partition U/D, by means of C.

Thus the coefficient k expresses the ratio of all ele-
ments of the universe, which can be properly classified
to blocks of the partition U/D, employing attributes
C. Notice that for £ = 1 we get the previous definition
of total dependency.

For  dependency {Headache, = Muscle-pain,
Temperature} => {Flu} we get £k = 4/6 = 2/3, be-
cause four out of six patients can be uniquely classified
as having flu or not, employing attributes Headache,
Muscle-pain and Temperature.

If we were interested in how exactly patients can be
diagnosed using only the attribute Temperature, that
is — in the degree of the dependence {Temperature} =
{Flu}, we would get k = 3/6 = 1/2, since in this case
only three patients p3,p4 and p6 out of six can be
uniquely classified as having flu. In contrast to the pre-
vious case patient p4 cannot be classified now as having
flu or not. Hence the single attribute Temperature of-
fers worse classification than the whole set of attributes
iieadache, Muscle-pain and Temperature. It is interest-
ing to observe that neither Headache nor Muscle-pain
can be used to recognize flu, because for both depen-
dencies {Headache} = {Flu} and {Muscle-pain} =
{Flu} we have k = 0.

Summing up: D is {otally (partially) dependent on
C, if all (some) elements of the universe U can be
uniquely classified to blocks of the partition U/D, em-
ploying C.

5 Reduction of Attributes

We often face a question whether we can remove
some data from an information table preserving its ba-
Sic properties, that is — whether a table contains some
superfluous data. For example, it is easily seen that if
we drop in Table 1 either the attribute Headache or
Muscle-pain we get the data set which is equivalent
to the original one, in regard to approximations and
dependencies. That is we get in this case the same ac-
curacy of approximation and degree of dependencies
2s In the original table, however using smaller set of
attributes.

" HT}“S concept can be formulated more precisiely as
ollows. Let D depends on C. A minimal subset C’ of
C, such that D depends on C” is called a reduct of C.

741

Thus areduct is a set of attributes that preserves the
dependence. It means that a reduct is a minimal sub-
set of attributes that enables the same classification of
elements of the universe as the whole set of attributes.

Obviously a set of attributes may have more then
one reduct. Intersection of all reducts is called the core.
The core in Table 1 is the attribute Temperature. Thus
the core is, in a certain sense, the set of the most im-
portant attributes, that cannot be eliminated from the
information table without changing its dependencies.

6 Decison Rules

Sometimes we distinguish in an information table
two classes of attributes, called condition and decision
(actions) attributes. For example in Table 1 attributes
Headache, Muscle-pain and Temperature can be con-
sidered as condition attributes, whereas the attribute
Flu - as a decision attribute.

Each row of a decision table detremines a decision
rule, which specifies decisions (actions) that should be
taken when conditions pointed out by condition at-
tributes are satisfied. For example in Table 1 the condi-
tion (Headache, no), (Muscle-pain, yes), (Temperature,
high) determines uniquely the decision (Flu, yes). Deci-
sion rules 2) and 5) in Table 1 have the same conditions
by different decisions. Such rules are called inconsis-
tent (nondeterministic, conflicting); otherwise the rules
are referred to as consistent (deterministic, nonconflict-
ing). Sometimes consistent decision rules are called sure
rules, and inconsistent rules are called possible rules.
Decision tables containing inconsistent decision rules
are called (inconsistent);otherwise the table is consis-
tent . Similar terminology applies to decision tables.

The number of consistent rules to all rules in a de-
cision table can be used as consistency measure of the
decision table, and will be denoted by v(C, D), where
C and D are condition and decision attributes respec-
tively. Thus if 7(C, D) = 1 the decision table is consis-
tent and if y(C, D) # 1 the decision table is inconsis-
tent. Notice, that y(C, D) = fo—ls[ﬁ(-gl.

Decision rules are often presented as implications
and are called ”1f... ,then...” rules. For example rule 1)
in Table 1 can be presented as implication

if (Headache, no) and (Muscle-pain, yes) and (Tem-
perature, high) then (Flu, yes).

Hence a decison table can be wieved as a set of
decison rules. With every total or partial dependency .
we can assoclate a set of decison rules which uniquly
determines the dependency. Beside reducing condition




partition U/B, containing z will be denoted by B(z).

If (z,y) belongs to I(B) we will say that z and y
are B-indiscernible. Equivalence classes of the relation
I(B) (or blocks of the partition U/B) are refereed to

as B-elementary sets. . ‘
Let us define now two following operations on sets

B.(X)={z €U :B(z) C X},
B*(X)={z €U :B(z)nX # 0},

assigning to every subset X of the universe U two sets
B.(X) and B*(X) called the B-lower and the B-upper
approzimation of X, respectively. The set

BNg(X) = B*(X) — Bu(X)

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, ie.,
BNp(X) = 0, then the set X is crisp (exact) with
respect to B;in the opposite case, i.e.,if BNg(X) # 0,
the set X is rough (ineract) with respect to B.

Rough set can be also characterized numerically by
the following coefficient

1B
“s(X) = 5@

called accuracy of approzimation, where |X| denotes
the cardinality of X. Obviously 0 < ap(X) < 1. If
ap(X) =1, X is crisp with respect to B (X is precise
with respect to B), and otherwise, if ap(X) < 1, X
is rough with respect to B (X is vague with respect to
B).

Let us depict above definitions by examples refer-
ring to Table 1. Consider the concept ”flu”, i.e., the
set X = {pl,p2,p3,p6} and the set of attributes
B = {Headache, Muscle-pain, Temperature}. Con-
cept "flu” is roughly B-definable, because B,(X) =
{r1,p3,p6} # 0 and B*(X) = {pl,p2,p3,p5,p6} # U.
For this case we get ap(” flu”) = 3/5. It means that
the concept "flu” can be characterized partially em-
ploying symptoms, Headache, Muscle-pain and Tem-
perature. Taking only one symptom B = {Headache}
we get B,(X) = 0 and B*(X) = U, which means that
the concept "flu” is totally indefinable in terms of at-
tribute Headache, i.e., this attribute is not characteris-
tic for flu whatsoever. However, taking single attribute
B = {Temperature} we get B.(X) = {p3,p6} and
B*(X) = {pl,p2,p3,p5,p6}, thus the concept *flu”
is again roughly definable, but in this case we ob-
tain ap(X) = 2/5, which means that the single symp-
tom Temperature is less characteristic for flu, than the
whole set of symptoms, and patient pl cannot be now
classified as having flu in this case.
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Rough sets can be also defined using a rough mem-
bership function, defined as

50y = XNB@I
ﬂX()" IB((I))I .

Obviously
px(z) €10,1].

Value of the membership function px(z) is kind of con-
ditional probability, and can be interpreted as a degree
of certainty to which z belongs to X (or 1 — px(z), as
a degree of uncertainty).

4 Dependency of Attributes

Another important issue in data analysis is discover-
ing dependencies between attributes. Intuitively, a set
of attributes D depends totally on a set of attributes C,
denoted C' = D, if all values of attributes from D are
uniquely determined by values of attributes from C. In
other words, D depends totally on C, if there exists a
functional dependency between values of D and C. In
Table 1 there are not total dependencies whatsoever. If
in Table 1, the value of the attribute Temperature for -
patient pb were “no” instead of “high”, there would be
a total dependency {Temperature} = {Flu}, because
to each value of the attribute Temperature there would
correspond unique value of the attribute Flu.

Formally dependency can be defined in the follow-
ing way. Let D and C be subsets of A. We say that
D depends totally on C, if and only if I(C) C I(D).
That means that the partition generated by C' is finer
than the partition generated by D. Notice, that the
concept of dependency discussed above corresponds to
that considered in relational databases. ;

We would need also a more general concept of depen-
dency of attributes, called a partial dependency of at-
tributes. Let us first depict the idea by example, refer-
ring to Table 1. In this table, for example, the attribute
Temperature determines uniquely only some values of
the attribute Flu. That is, (Temperature, very high)
implies (Flu, yes), similarly (Temperature, normal) im-
plies (Flu, no), but (Temperature, high) does not imply
always (Flu, yes). Thus the partial dependency means
that only some values of D are determined by values
of C.

Formally, the above idea can be formulated as fol-
lows. Let D and C be subsets of A. We say that D de-
pends in degree k,0 < k < 1, on C, denoted C = D,
if
_ |POSc(D)]

k b
Ul



attributes in an a decison table we can also reduce at-
tributes in each decison rule obtaing minmal decison
rules. For example with the partial dependecy

{Headache, Muscle-pain, Temperature} = {Flu}

we can associate the folowing minimal set of decison
rules

If (Temperature, normal), then (Flu, yes),

If (Headache, no) and (Muscle-pain, yes) or
(Muscle-pain, yes) and (Temperature, high)
(Temperature, very high),

then (Flu, yes).

7 Applications and Advantages

The rough set methodology has found many real-life
applications.

There are many applications in medicine, pharma-
cology, banking, and market research. Very interesting
results have been also obtained in speaker independent
speech recognition, and acoustics. The rough set ap-
proach seems also important for various engineering ap-
plications, like diagnosis of machines using vibroacous-
tics, symptoms (noise, vibrations), material sciences
and process control. Application in linguistics and en-
vironment, databses are other important domains.

More about applications of the rough set theory can
be found in [7,18,22]. Besides, many other fields of ap-
plication, e.g., time series analysis, Image processing
and character recognition, are being extensively ex-
plored.

Application of rough sets requires a suitable soft-
ware. Many software systems for workstations and per-
sonal computers based on rough set theory have been
developed. Some of them are available commercially.

The theory has many important advantages. Some
of them are listed below.

e Provides efficient algorithms for finding hidden
patterns in data.

¢ Finds minimal sets of data (data reduction).

o Evaluates significance of data.

¢ Generates minimal sets of decision rules from data.
e It is easy to understand.

o Offers straightforward interpretation of obtained
results,
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e Most algorithms based on the rough set theory are
particularly suited for parallel processing, but in
order to exploit this feature fully, a new hardware
is necessary.

8 Further Research

More than 1000 papers have been published on
rough set theory and its applications till now.

Although rough set theory has many achierements
to its credit, nevertheless several theoretical and prac-
tical problems require further attention.

Especially important is widly accessible efficient
software development for rough set based data anal-
ysis, particularly for large collections of data analysis.

Despite of many valuable methods of efficient, opti-
mal decision rule generation methods from data, devel-
oped in recent years based on rough set theory — more
research here is needed, particularly, when quantita-
tive attributes are involved. In this context also further
discretization methods for quantitative attribute values
are badly needed. Comparison to other similar methods
still requires due attention, although important results
have been obtained in this area. Particularly interesting
seems to be a study of the relationship between neural
network and rough set approach to feature extraction
from data.

Last but not least, rough set computer is badly
needed for more serious computations in decision sup-
port. Some research in this area is already in progress.

For basic ideas of rough set theory the reader is re-
ferred to [11,15,19,20].
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