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ABSTRACT—The rough set concept is a new mathematical tool to deal with vagueness and uncertainty. It
overlaps with other mathematical tools used in this area, in particular with fuzzy set theory and evidence
theory. Rough set theory, however, can be viewed in its own rights, as an independent discipline. Many real-
life applications of the theory have proved its practical usefulness. This article characterizes the philosophy
underlying rough set theory, gives its rudiments and presents briefly some areas of application. At the end some
further problems are briefly outlined. '
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1. INTRODUCTION

The rough set concept is a new mathematical tool to reason about imperfect knowledge. The
problem of imperfect knowledge has been tackled for a long time by philosophers, logicians and
mathematicians—recently it became also interesting for computer scientists. There are many approaches
to this problem. The most successful one is, no doubt, the fuzzy set theory.? _

Rough set theory is often contrasted with fuzzy set theory. The idea of fuzzy set and rough set are
not competitive, but complementary, since they refer to different aspects of imprecision. There is also a
relationship between the rough set theory and Dempster-Shafer theory of evidence >* Some relations
exist also between rough set theory and discriminant analysis,'® the Boolean reasoning methods,”
decison theory'® and others.

Despite the relationships, rough set theory can be viewed in its own rights, as an independent

_discipline.

Rough set theory has found many interesting applications. The rough set approach seems to be of
fundamental importance to Al and cognitive sciences, especially in the areas of machine learning,
knowledge acquisition, decision analysis, knowledge discovery from databases, expert systems, induc-
tive reasoning, pattern reco gnition and decision support systems. ‘

The main advantage of rough set theory is that it does not need any preliminary or additional
information about data—like probability in statistics, basic probability assignment in Dempster-Shafer
theory or grade of membership in fuzzy set theory. Anextensive study of various mathematical models
of uncertainty can be found in Grzymala-Busse.?

For basic ideas of the rough set theory the reader is referred to the references at the end of this
article.>!6262” Many interesting applications of this approach have been presented and discussed.!>18253
The present state of rough set theory and its further perspectives are discussed in Pawlak, et al.?
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2. PHILOSOPY OF ROUGH SETS

Rough set philosophy is based on the assumption that, in contrast to classical set theory, we have some
additional information (knowledge, data) about elements of a universe of discourse. Elements that exhibit
the same information are indiscernible (similar) and form blocks that can be understood as elementary
granules of knowledge about the universe. For example patients suffering from a certain disease,
displaying the same symptbms are indiscernible and may be think of as representing a granule (disease
unit) of medical knowledge. These granules are called elementary sets (concepts), and can be considered
as elementary building blocks of knowledge. Elementary concepts can be combined into compound
concepts, i.e., concepts that are uniquely determined in terms of elementary concepts. Any union of
elementary sets is called a crisp set, and any other sets are referred to as rough (vague, imprecise).

Due to the granularity of knowledge, rough sets cannot be characterized by using available knowledge.
Therefore with every rough set we associate two crisp sets, called its lower and its upper approximation.
Intuitively, the lower approximation of a set consists of all elements that surely belongs to the set, whereas
the upper approximation of the set constitutes of all elements that possibly belong to the set. The
difference of the upper and the lower approximation is a boundary region. It consists of all elements that
cannot be classified uniquely to the set or its complement, by employing available knowledge. Thus any
rough set, in contrast to acrisp set, has a non-empty boundary region. For example, a concept of abeautiful
painting is vague, for some paintings cannot be classified as beautiful or not, and form the boundary region
of the concept—whereas the concept an odd number is crisp, because every number can be uniquely
classified as odd or even, and there are no undecidable elements in this case whatsoever.

The above presented idea of vagueness, known as the “boundary-line” view, is due to Frege,® and it
has been for a long time pursued by philosophers and logicians.**' Thus our approach can be seen as a
special case of Frege’s idea.

3. BASIC CONCEPTS

In this section we give formal definitions of ideas presented above. As already mentioned, the starting
point of rough set theory is the indiscernibility relation. The indiscernibility relation can be defined in
purely abstract mathematical way, however, in order to provide more intuitive perspective we will use -
another approach—based on tabular representation of data, in a form of an attribute-value table, called
also an information system. The information system is a table in which rows are labeled by elements of
the universe, columns—by attributes, whereas entries of the table are values of attributes. An example
of a simple information system, containing description of five toy blocks having various, size, shape and
color, is shown in the table below.

SIZE SHAPE | COLOR
x1 small triangular red
x2 large triangular blue
x3 small square red
x4 ~ small round yellow
x5 large round blue

In the table the universe consists of five toy blocks x1, x2, x3, x4 nd X5, There are three attributes in
the system, SIZE, SHAPE and COLOR. The attribute SIZE has two values, “small” and “large”; the

attribute SHAPE has three values, “round”, “square” and “triangular”; the attribute COLOR has also
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three values, “red”, “blue” and “yellow”. The table contains data about each toy block . Each row of the
table can be perceived as information (knowledge) about the corresponding toy block. For example, toy
block x3 described by the following information: (SIZE, small), (SHAPE, square) and (COLOR, red).
Each subset of attributes determines an indiscernibility relation on the set of toy blocks. For example,
elements x2 and x5 are indiscernible by attributes SIZE and COLOR, elements x1, x3 and x4 are
indiscernible in terms of attribute SIZE, and elements x1 and x3 are indiscernible by attribute COLOR.

Itiseasily seen that the indiscernibility relation generated by any subset of attributes is, in our example,
an equivalence relation. Thus every subset of attributes determines partition of the universe into granules
containing elements having the same description in terms of attribute values, i.c., elements indiscernible
in terms of available information. Each such a granule can be understood as a basic building block of our
knowledge about the universe.

As mentioned previously, in the rough set approach. in order to define a set we have to use information |
about elements of the universe.

Suppose, for example, that we would like to define set {x2, x3} by mean of attributes SIZE and
COLOR. One can casily see that this would be impossible. because elements x1 and x3 have the same
description, and also elements x2 and x5 have the same description in terms of these attributes.
Consequently, none of the element of the universe can be classified as surely belonging to set {x2, x3}
by employing attributes SIZE and COLOR , whereas elements x1, x2, x3 and x5 cannot be excluded as
being members of the set, exploiting the information contained in the table (i.e., only element x4 can be
definitely excluded as member of the set). This is how we arrived at the idea of approximations: the lower
approximation of set {x2,x3} is the empty set and the upper approximation of this setis {x1,x2,x3,x5}.

Now we are ready do formulate the above ideas more precisely.

Suppose we are given two finite, non-empty sets U and A, where U is the universe, and A is the
the set of attributes. With every attribute a € A we associate set v, of its values, called the domain
of a. Any subset B of A determines a binary relation /(B) on U, which will be called an indiscernibility
relation, and is defined as follows:

xI(B)y if and only a(x) = a(y) for every a € A,

where a(x) denotes the value of attribute a for element x.

Obviously I(B) is an equivalence relation. The family of all equivalence classes of /(B), i.e., partition
determined by B, will be denoted by U/I(B), or simple U/B; an equivalence class of /(B), i.e., block of
the partition U/B, containing x will be denoted by B(x). If (x, y) belongs to /(B) we say that x and y are
indiscernible with respect to B. '

Let us define now two following operations on sets

={xeU:B(x)c X}
B (X)={xeU:B(x)n X = &}

assigning to every subsetX of the universe U two setsB., (X) andB’(X) called the B-lower and the B-upper
approximation of X, respculvcly The set

BNy(X)=B"(X)- B.(X)

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, i.e., BN (X) = @ then the set X will becalled crisp (exact)
with respect to B in the opposite case, i.e., if BN (X) # @, the set X will be referred to as rough (inexact)
with respect to B. :

The boundary region of a set consists of all elements of the universe which cannot be classified to the
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set or its complement, on the basis of their features. This idea can be also characterized numerically by
a coefficient, called the accuracy of approximation and defined as follows:

B.(X)|
B"(X)

aB(X).:

where |X| denotes the cardinality of the set X. o

Obviously 0< o (X) £ 1. If e (X) = 1, the set X is crisp with respect to B; otherwise i.e., if @ (X) <1,
the set X is rough with respect to B. ,

It is worthwhile to notice!* that approximations are interior and closure operations in a topology
generated by the indiscernibility relation. Consequently, the above definition of the rough set has its roots
intopology. One can give also several other equivalent definitions of rough sets, however we will exclude
this issue here. ) ~

Sets are generally defined by means of a membership function. In the presented approach instead of
the membership function we used approximations. However, rough sets can be also defined using the
concept of membership, by defining the rough membership function as shown below,

By o | X " B(x)|
Obviously
uy (x) 0]

It might seem that this is a fuzzy membership function, but this is not the case, as it is clearly seen from
the following properties'’

1y up y(x)=1-p3(x) foranyxe U
2.) Myoy(x) = max(ug(x), uy(x)) forany xe U

3) MRy (x) Smin(uf(x), u¥(x)) foranyxe U

Besides, the rough membership, in contrast to fuzzy membership, has obvious probabilistic flavor, and
can be interpreted as a kind of conditional probability.

The rough membership function, can be also used to define the approximations and the boundary
region of a set, as shown below:

B.(X)={xeU:pf(x)=1]
B (X)={xeU:u}(x)> 0}
BNy(X)={xeU0<pu}(x)<1}

Thus, we have two ways of defining rough sets, by using topological and probabilistic methods.
However, one can show!'” that both definitions are not equivalent. This should not be a surprise, since the
first definition refers to sets, and expresses the impossibility of defining a set by means of certain tools,
while the second one is connected with elements of a set, and expresses our inability to classify elements
to some concepts. Hence both definitions refer to different aspects of imperfect knowledge, the first one
to vagueness of concepts, while the second—to uncertainty of elements.
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4. THE THEORY

The rough set theory has inspired a lot of theoretical research. Many authors have studied algebraic and
topological properties of rough sets. Besides, a variety of logical research, directed to create logical tools
to deal with approximate reasoning have been published by many authors.

The rough setconcept overlaps in many aspects with many other mathematical ideas developed to deal
with and vaguencss and uncertainty. In particular many authors were involved in clarifying the
relationship between fuzzy sets and rough sets.*'” Extensive study of the relation between the evidence
theory and rough set theory has been revealed recently in Skowron and Grzymala-Busse (1994).** The
rough set philosophy in data analysis is close to statistical approach.-Comparison of these two approaches
canbe found in Krusinska, Slowinski, and Stefanowski (1992).'° Another aspects of statisticals and rough
sets has been considered in Wong, Ziarko, and Ye (1986)*and Ziarko (1993).* and others. Important
issue is the relationship of rough set theory to boolean reasoning, which has been deeply analyzed in
Skowron and Rauszer (1992).> Many authors have given attention to connections of rough set theory and
other important disciplines, like mathematical morphology, conflict theory, concurrency, Petri nets,
mereology. neural networks, genetic algorithms and others.

5. APPLICATIONS

After several years of pursuing rough set theory and its applications it is clear that this theory is of
substantial importance to Al and cognitive sciences, in particular expert systems, decision support
systems, machine learning, machine discovery, inductive reasoning, pattern recognition, decision tables
and the like.

The rough sets approach has proved to be a very effective tool, with many successful applications to
its credit. A variety of real-life applications in medicine, pharmacology, industry, engineering, control
systems, social sciences, earth sciences, switching circuits, image processing and other have been
successfully implemented.™ ‘

The rough set theory seems to be particularly suited to data reduction, discovering of data dependen-
cies, discovering data significance, discovering similarities or differences in data, discovering patterns
in data. decision algorithms generation, approximate classification and the like.

The rough set methodology has found many real-life applications in medical data analysis, finance,
voice recognition, image processing and others, '*13:252629.3234 ,

The proposed method has many important advantages. Some of them are listed below.

» Provides efficient algorithms for finding hidden patterns in data

* Finds minimal sets of data (data reduction)

» Evaluates significance of data

 Generates minimal sets of decision rules from data

e It is easy to understand

* Offers straightforward interpretation of obtained results

* Mostalgorithms based on the rough set theory are particularly suited for parallel processing, but
in order to exploit this feature fully, a new hardware is necessary.

Many other fields of applications of the rough set theory are being extensively explored.

6. FURTHER PROSPECTS

Rough set theory has reached a certain degree of maturity. More than a thousand papers have been
hitherto published on rough set theory and its applications. Despite many important theoretical contribu-
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tions and extensions of the original model many essential theoretical problems still remain open and
besides, further development of the theory seems badly needed.

Problems related to incomplete and distributed data seem of primary importance. Algorithms based on
the rough sets approach are very well suited to parallel processing, especially when appropriate hardware
could be developed. Computing machine based on the rough set concepts, seems to be at hand. Beside
practical aspects also more general look on concurrency can be gained in the framework of the rough set
theory. . /

Closer investigation of neural networks and genetic algorithms in connection with the rough set view
can contribute to better understanding the above said disciplines and lead to more efficient algorithms.

Researchon roughlogic seems to be very promising both theoretically and practically. The rough truth,
rough consequence relation investigated in Chakrabory and Banerjee? and in Lin and Liu'' seems to be
a very good starting point to this end. '

Theory of rough functions, similar to that considered in nonstandard analysis, is seemingly also very -
importent issue. Various approximate operations on rough functions are needed in many applications,
especially in approximate (rough) control theory based on the rough set approach. Rough continuity of
functions, rough stability of control systems are exemplary problems which require formulation in the
framework of the rough set theory. Also appropriate formulation of complexity, which could be used to
analyze control algorithms is necessary in this context.

In summary

 rough logic, based on the concept rough truth seems to be a very important issue
* theory of rough relation and rough function is necessary in many applications
» comparison with many other theories and tools is of primary significance

Besides, some practical problems related with application of rough sets in many domains are of great
importance. Particularly

» efficient and widely accessible software is necessary to further development of various
applications

* developmentof rough set computer seems to be a must in order to pursue many new applications

* last but not least “rough control” seems to be a very promising area of application of the rough
set concept
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