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WORKSHOP ON ROUGH SETS AND DATABASE MINING
T.Y. Lin

The theory of rough sets, originated by Zdzislaw Pawlak, has been develop rapidly in the
past decade, and has evolved into a technology. This emerging new technology concerns
the classificatory analysis of imprecise, uncertain or incomplete information. Database
mining can be dclined as the process of mining for implicit, previously unknown, and
potentially useful information from very large databases by efficient knowledge discovery
techniques. It is one of the most promising research topics in the fields of database
systems and machine learning. In the past few years, it has been demonstrated that rough
set theory is a very effective methodology for data analysis in the attribute-value based
domains. It is an efficient technique for investigating data mining in relational databases.

The main objective of the Workshop on CSC'95 is to provide a forum for researchers from
rough set and database mining communities to discuss their results, their viewpoints, and
to identify the future directions of the development and research in rough sets and database
mining.

WORKSHOP PARTICIPANTS:

T. Y. Lin (Chair), San Jose State University, USA,

Nick Cercone (Co-Chair), University of Regina, Canada,

Zdzislaw Pawluk (Honorary Chair), Warsaw University of Technology, Poland,
Jerzy Grzymala-Busse, University of Kansas, USA,

Vijay Raghavan, University of Southwestern Louisiana,

Zbigniew Ras, University of North Carolina, USA,

Andrzej Skowron, Warsaw University, Poland,

Wojciech Ziarko, University of Regina, Canada
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ROUGH REAL FUNCTIONS
AND
ROUGH CONTROLLERS*®

Zdzislaw Pawlak

Institute of Computer Science
Warsaw University of Technology
ul. Nowowiejska 15/19, 00 665 Warsaw, Poland

and
Institute of Theoretical and Applied Informatics
Polish Academy of Sciences
ul. Baltycka 5, 44 000 Gliwice, Poland

1 Introduction

This paper is an extension of articles Pawlak (1987, 1994), where some ideas concerning
rough functions were outlined. The concept of the rough function is based on the rough
set theory (cf. Pawlak, 1991) and is needed in many applications, where experimental
data are processes, in particular as a theoretical basis for rough controllers (cf. Czogala
et al., 1994, Mrozek and Plonka, 1994).

The presented approach is somehow related to nonstandard analysis (Robinson, 1970),
measurement theory (cf. Orlowska and Pawlak, 1984) and cell-to-cell mapping (cf. Hsu,
1980) but these aspects of rough functions will be not considered here.

In recent years we witness rapid grow of development and applications of fuzzy con-
trollers. The philosophy behind fuzzy control is that instead of describing, as in the case
of classical control theory, the process being controlled in terms of mathematical equa-
tions - we describe the behavior of human controller in terms of fuzzy decision rules,
i.e. rules that involve rather qualitative then quantitative variables and can be seen as
a common-sense model of the controlled process, similarly as in qualitative physics phys-
ical phenomena are described in terms of qualitative variables instead of mathematical
equations.

The idea of rough (approximate) control steams yet from another philosophical back-
ground. It is based on the assumption that the controlled process is observed and data
about the process are registered. The data are then used to generate the control algo-
rithms, which can be afterwards optimized. Both, the generation of the control algorithm
from observation, as well the optimization of the algorithm can be based on the rough set
theory, which seems to be very well suited for this kind of tasks. The control algorithms

*This work was supported by grant No. 8 S503 021 06 from State Committee for Scientific Research



obtained in this way are objective and can be viewed as an intermediate approach between
classical and fuzzy approach to control systems.

In some cases the observation can be postponed and control algorithm can be obtained
directly from the knowledgeable expert, similarly as in the fuzzy set approach. In this
case the control algorithm can be also simplified using the rough set theory technic.

In general we assume that a rough controller can be seen as an implementation of
rough (approximate) function, i.e. function obtained as a result of physical measurements
with predetermined accuracy, depending on assumed scale.

The aim of this paper is to give basic ideas concerning rough functions, which are
meant to be used as a theoretical basis for rough controllers synthesis and analysis. The
presented ideas can be also applied to other problems — in general to discrete dynamic
systems, and will be discussed in further papers.

2 Basic of the Rough Set Concept

Basic ideas of the rough set theory can be found in Pawlak (1991). In this section we will
give only those notions which are necessary to define concepts used in this paper.

Let U be a finite, nonempty set called the universe, and let I be an equivalence relation
on U, called an indiscernibility relation. By I(x) we mean the set of all y such that xIy,
i.e. I(x) = [z]; , i.e- is an equivalence class of the relation I containing element x. The
indiscernibility relation is meant to capture the fact that often we have limited information
about elements of the universe and consequently we are unable to discern them in view
of the available information. Thus I represents our lack of knowledge about U.

We will define now two basic operations on sets in the rough set theory, called the
I-lower and the I-upper approximation, and defined respectively as follows:

L(X)={z€U:I(x) C X},
I'(X)={zeU:I(zx)NX #0}.

The difference between the upper and the lower approximation will be called the I-
boundary of X and will be denoted by BN;(X), i.e.

BN/(X) = I'(X) - L(X).

If I*(X) = L.(X) we say the the set is I-ezact otherwise the set X is I-rough. Thus rough
sets are sets with unsharp boundaries.

Usually in order to define a set we use the membership function. The membership
function for rough sets is defined by employing the equivalence relation I as follows:

card(X N1(x))
cardl(z)

px =
Obviously
px () € [0,1].
The value of the membership function expresses the degree to which the element x belongs
to the set X in view of the indiscernibility relation I.
The above assumed membership function, can be used to define the two previously
defined approximations of sets, as shown below:
L(X)={x € U: px(z) =1},
I'(X)={r € U: u(x) > 0}.



3 Rough Sets on the Real Line

In this section we reformulate the concepts of approximations and the rough membership
function referring to the set of reals, which will be needed to formulate basic properties
of rough real functions.

Let R be the set of reals and let (a,b) be an open interval. By a discretization of the
interval (a,b) we mean a sequence S = {xg,x1,...,2,} of reals such that a = o < 1 <
... < x, = b. Besides, we assume that 0 € S. The ordered pair A = (R, .S) will be referred
to as the approximation space generated by S or simple as S-approzimation space. Every
discretization S induces the partition 7(S) = {{zo}, (zoz1), {21}, (x1, 22), {22}, (22, x3),
{z3}, ... {zn_1}, (1, zn), {xn}on(a, b). By S(z) (or [z]s) we will denote block of the
partition 7(S) containing z. In particular, if z € S then S(z) = {x}. The closed interval
[a,b] will be denoted by S’(x), and will be referred to as the closure of S(z).

In what follows we will be interested in approximating intervals (0, z) = Q(x) for any
x € [a,b].

Suppose we are given an approximation space A = (R, S). By the S-lower and the
S-upper approximation of Q(x), denoted by S,(Q(z)) and S*(Q(z)) respectively, we mean
sets defined below:

Sd(Q(z)) ={y e R: S(y) € Q'(2)}
S (Qz)) ={y € R: S(y)NQ'(x) # 0}.

The above definitions of approximations of the interval < 0,z > can be understood as
approximations of the real number x which are simple the ends of the interval S(x),
therefore we will use the following abbreviations: S.(Q(z)) = S.(z) and S*(Q(z)) =
S*(xz). If X C R, then A(X) = Sup|z — y|,z,y € X. In particular A(S(z)) will be
denoted by Ag(x) and will be called the length of X with respect to scale S.

In other words given any real number z and a discretization S, by the S-lower and the
S-upper approximation of x we mean the numbers S, (z) and S*(z), which can be defined
as

Si(z) = Supl{y € Sy < x}
S*(x)=Inf{ye S:y >z}

for x > 0 and
Si(x)=Inflye S:y>ua}
S*(x) = Sup{y € Sy <x}.
for x <0.
Thus S(z) = (Si(x), S*(z)).

We will say that the number z is exact in A = (R, S) if S.(z) = S*(x), otherwise the
number x is inezact (rough) in A = (R, S). Of course x is exact iff z € S. Thus to every
inexact number x we can associate pair of exact numbers S, (z) and S*(z) (the lower and
the upper approximations) and the interval S(z)).

Any discretization S can be interpreted as a scale (e.g. km, in, etc), by means of which
reals from R are measured with some approximation due to the scale S.

Remark
We can also assume that the discretizatin S induces partition 7(S) = {(—INF, o),
{zo}: (xow1), {z1}, (21, 2), {@2}, (w2, w3), {ws}, ..o {zn1}, (W1, 0), {2}, (20, +INF)}

on R. In this case for z > b the upper approximation of x is S*(x) = +INF, and similarly
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for © < a, we have S*(x) = —INF. However for the sake of simplicity we will not consider

this case here. O
The introduced idea of the rough set on the real line corresponds exactly to those

defined for arbitrary sets and can be seen as a special case of the general definition.
Now we give the definition of the next basic notion in the rough set approach - the

rough membership function — referring to the real line (cf. Pawlak and Skowron, 1993).
The rough membership function for set on the real line have the form

1o (y) = A(QA([?)SE;J;(?J)),

where A(X) = Suplx —y|,z,y € X.

Assuming that z = y, we get

which can be understood as an error of measurement of x in scale S.

4 Rough Sequencies and Rough Functions

Let A = (R, S) be an approximation space and let {a,} be an infinite sequence of real
numbers.

A sequence {a,} is roughly convergent in A = (R, S), (S-convergent), if there exists
i such that for every j > i S(a;) = S(a;); Si(a;) and S*(a;) are referred to as the rough
lower and the rough upper limit (S-upper, S-lower limit) of the sequence {a,, }. Any roughly
convergent sequence will be called rough Cauchy sequence.

A sequence {a,} is roughly monotonically increasing (decreasing) in A = (R, S), (S-
increasing (S-decreasing)), if S(a,) = S(ans1) or a, < api1(a, > any1) and S(a,) #
S(an—l—l)-

Obviously, {a} is the Cauchy sequence iff {a} is roughly monotonically increasing or
decreasing.

A sequence {a,} is roughly periodic in A = (R, S) (S-periodic), if there exists k such
that S(a,) = S(anyx). The number k is called the period of {a,}.

A sequence {a,} is roughly constant in A = (R, S) (S-constant), if S(a,) = S(an41).

Suppose we are given a real function f : X — Y with discretizations S and P on X
and Y respectively. With every function f we associate the function Fy : 7n(S) — 7(P)
such that

Fy(S()) = P(f())
Thus the function F assigns unequally to each block of the partition 7(S) one block of
the partition 7(P). We can enumerate blocks of partitions 7(S) and 7(P) by integers in
the following way:

N(S(z)) = i,0leqi < n, if Si(x)) = x1, where S = {x¢,21,...,2,}. Now instead of
function F; we can use the function fg: {n} — {n}, from integers to integers defined as
follows:

fs(1) = N(P(f(x)).

The function fg will be called the discretization of f.
The function fg can be used to define some properties of real functions.



A function f is roughly monotonically increasing (decreasing) if fs(i +1) = f(i) +
where « is a non-negative integer, (« is non-positive integer), for every i = 0,1,2,...n— 1

A function f is roughly periodic if there exist k such that fg(i) = fs(i + k) for every
1=0,1,...,n—1.

A function f is roughly constant if fs(i) = fs(i + 1), for every i = 0,1,...,n — 1.

Now we give a definition of a very important concept, the rough continuity of real
function.

Suppose we are given a real function f : X — Y, where both X and Y are sets of
reals and S, P are discretizations of X and Y respectively.

A function f is (S, P)-continuous (roughly continuous) in x if

f(5(@)) € P(f(x)).

In other words a function f is roughly continuous in z iff for every y € S(x) f(y) € P(f(x)).

If f is roughly continuous in z for every x € 6(S), where §(S) = (x¢, z,), we say that
f is (S,P)-roughly continuous.

The intuitive meaning of this definition is obvious. Whether the function is roughly
continuous or not depends on the information we have about the function, i.e. it depends
on how exactly we "see” the function through the available information (the indiscerni-
bility relation).

Obviously a function f is roughly continuous iff Fy(i + 1) € {—1,0,+1} for every
i=0,1,...,n—1}.

Particularly interesting is the relationship between dependency of attributes in infor-
mation systems and the rough continuity of functions

Let S = (U, A), be an information system, (cf. Pawlak, 1991), where U is a finite set
of objects, called the universe and A is a finite set of attributes. With every attribute
a € A a set of values of attribute a, called domain of a, is associated and is denoted by
V. . Every attribute a € A can be seen as a function a : U — V | which to every object
x € U assigns a value of the attribute a. Any subset of attributes B C A determines
the equivalence relation IND(B) = {z,y € U : a(z) = a(y)for everya € A}. Let
B,C C A. We will say that the set of attributes C' depends on the set of attributes B,
in symbols B — C, iff IND(B) C IND(C). If B — C then there exists a dependency
function fpc @ VyaVi,x.. .2V, — VoaVyx... 2V, , such that fpc(vi,ve,...,0,) =
(w1, wa, ..., wy), iff o(vy) No(ve)N,...,No(v,) C o(wy) No(we)N,...,No(w,), where
v € ywj € Vg,,0(v) = {r € U : a(v) = x} and v € V,. The dependency function
B — C, where B = {by,by,...,b,} and C = {cy,c¢a,..., ¢y} assigns uniquely to every
n-tuple of values of attributes from B the m-tuple of values of attributes from C.

There exists the following important relationship. B — C'iff fz ¢ is (B, C)-roughly
continuous.

Many other basic concepts concerning functions can be expressed also in the rough
function setting.

By the (P)-lower approzimation of f we understand the function f, : X — Y such
that

f«(x) = P.(f(z))for everyx € X.

Similarly the (P)-upper approximation of f is defined as
f*(z) = P*(f(x))for everyz € X.

We say that a function f is ezactin x iff f.(x) = f*(z); otherwise the function f is inezact
(rough) in x. The number f*(z) — f.(x) is the error of approzimation of f in x.
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If f is a (S5, P)-continuous function, then F} is exact for every = € S.

Finally in many applications we need the fix point properties of functions.

We say that x is a rough fix-point (rough equilibrium point) of a real function f if
Fy(N(S.(x) = N(S. ().

5 Optimal Discretization of Rough Functions

The function fs : S — Y such that fs(z) = f(x) for any x € S will be called a S-discrete
representation of f or in short S-discretization of f.

Our main task is to give interpolation algorithm for discrete representation fg giving
the best approximation of f.

Let us first consider the linear interpolation formula. The linear interpolation of f will
be denoted by f,Fs and is defined as follows:

fa(x) = [(S:(2)) + pas. @) (@)-Af(S(@)),
where Af(S(z)) = f(5"(x)) — f(5:(x)).
The number
|[fo(z) — f(z)|
f(z)
will be called the relative error of the interpolation of f in x. The maximal error of
interpolation will be called the error of interpolation of f.

If f(S«(z)) and f(S*(z)) are unknown we can use another interpolation formulas shown
below.

1) Lower interpolation
fa(@) = Pi(f(Su(2))) + nas. @y (@).A' f(S(2)),
where A'f(S(z)) = P.(f(S*(2))) — Pu(f(S(2)));
2) Upper interpolation
fa@) = P*(f(S.(2))) + has. @) (2)-A%f(S(2)),
where A f(S(z)) = P*(f(S*(z))) — P*(f(S:(2)));
3) Lower cross interpolation
fa(x) = P.(f(S*(x))) + pas. @y (2)-A° f(S(2)),
where Af(S(xz)) = P*(f(5*(x))) — P(f(Su(2)));

4) Upper cross interpolation

fa(x) = P*(f(S.(2))) + po(s. @y (2) A F(S (),
where A*f(S(z)) = P.(f(S*(2))) — P*(f(S.(2)));

The meaning of the above interpolation formulas is obvious.

We will be also interested in the following problem. Given a function f: X — Y and
a number 0 < e < 1. Find categorizations S and P such the the error of interpolation of
f is less than e.



The following algorithm solves the problem.
Tog = 2 € X

Tip1 = Sup{z > x1 : |f(y) — pra(y)| < e}or anyy € (x;, x >,

where p,, .(y) denotes the straight line determined by points z;, z.

6 Conlusions

Rough function concept is meant to be used as a theoretical basis for rough controllers.
Basic definitions concerning rough functions were given and some basic properties of these
functions investigated.

Applications of the above discussed ideas will be presented in the forthcoming papers.
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