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12 Rough membership
functions

Zdzistaw PAWLAK and Andrzej SKOWRON

Abstract: A variety of numerical approaches for reasoning with uncertainty
have been investigated in the literature. We propose rough membership
Junctions (or rm-functions, for short) as a basis for such a reasoning. These
functions have values in the interval [0, 1] of the real numbers and they are
computable on the basis of the observable information about the objects
rather than on the basis of the objects themselves. We investigate properties
of the rm-functions. In particular we show that our approach is intensional
with respect to the class of all information systems (Pawlak, 1991). As
a consequence we point out some differences between the rm-functions and
the fuzzy membership functions (Zadeh, 1965); the rm-function values for
XU Y(X n Y)cannot be computed in general by applying the operation max
(min) to the rm-function values for X and Y. We propose the algorithm for
computing the rm-functions for the sets from a given field of sets.

Keywords: reasoning with incomplete information, rough sets, fuzzy sets,
evidence theory.

1. INTRODUCTION

One of the fundamental problems studied in artificial intelligence is
related to the object classification that is the problem of associating
a particular object to one of many predefined sets. In studing that
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problem, our approach is based on the observation that the
classification of objects is performed on the basis of the accessible
information about them. Objects with the same accessible infor-
mation will be considered as indiscernible (Pawlak, 1991). Therefore
we are faced with the problem of determining whether or not an
object belongs to a given set when only some properties (i.e., attribute
values) of the object are accessible.

We introduce the concept of a rough membership function
(rm-functions, for short), which allows us to measure the degree with
which any object with given attribute values belongs to a given set X.
The information about objects is stored in data tables called
information systems (Pawlak, 1991). Any rm-function p is defined
relatively to a given information system A and a given set X of objects.

The paper is structured as follows. Section 2 contains a brief
discussion of information systems (Pawlak, 1991), information func-
tions (Skowron, 1991b), and rough sets (Pawlak, 1991). In Section
3 we define a partition of boundary regions (Skowron, 1991a) and we
present some basic properties of this partition, which we apply later.
In Section 4 we define the rm-functions and we study their basic
properties. In Section 5 we present formulas for computing the
rm-function values u4,, (x) and p4%., (x) from the values p% (x) and
p4 (x) (when it is possible, ie., when classified objects are not in
a particular boundary region) if information encoded in the infor-
mation system A is accessible. In the construction of those formulas
we apply a partition of boundary regions related to X' and Y defined in
Section 3. One can interpret that result as follows: the computation of
rm-function values %, (x) and u%,., (x) (if one excludes a particular
boundary region!) is extensional under the condition that the
information system is fixed. -

We also show, in Section 5, that our approach is intensional with
respect to the set of all information systems (with a universe including
sets X and Y); namely it is not possible, in general, to compute the
rm-function values u4%,, (x) and p%., (x) from the values u% (x) and
1% (x) when information about A is not accessible (Theorem 3). Also
in Section 5, we specify the maximal classes of information systems
such that the computation of rm-function values for union and
intersection is extensional when related to those classes, and is defined
by the operations min and max as in the fuzzy set approach (Zadeh,
1965; Duois and Prade, 1980), that is, the values 4., (x)and p%,., (x)
are obtained by applying the operation min and the operation max to
the values p% (x) and p% (x), respectively (if A belongs to those

maximal classes).
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In Section 6 we present an algorithm for computing the
rm-function values p% (x) for x€ X, where X is any set generated by
the set theoretical operations v, N, - from a given family of finite sets.

2. INFORMATION SYSTEMS AND ROUGH
SETS

Information systems (sometimes called data tables, attribute-value
systems, condition-action tables etc)) are used for representing
knowledge. The information system notion presented here is due to
Pawlak (1991) and was investigated by several researchers (see the
references in Pawlak, 1991).

Rough sets have been introduced as a tool to deal with inexact,
uncertain, or vague knowledge in artificial intelligence applications
as, for example, knowledge-based systems in medicine, natural
language processing, pattern recognition, decision systems, approxi-
mate reasoning. Rough sets have been intensively studied since 1982
and many practical applications based on the theory of rough sets
have already been implemented.

In this section we present some basic notions related to information
systems and rough sets that will be necessary for understanding our
results.

An information system is a pair A = (U, 4), where

U - a nonempty, finite set called the universe and

A — a nonempty, finite set of aztributes, ie.,
a:U->V, foracA,

where V, is called the value set of a.

With every subset of attributes B< 4 we associate a binary
relation IND(B), called B-indiscernibility relation, and defined as:

IND(B) = {(x,y)e U : for every ae B, a(x) = a(y)}

By [x]inp@) or [x]p we denote the equivalence class of the
equivalence relation IND(B) generated by x, ie., the set {yeU:

xIND(B)y}.
We have that
IND(B) = (\IND (a)

aeB

If xIND(B) y, then we say that the objects x and y are indiscernible

IEEEEese——
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with respect to attributes from B. In other words, we cannot
distinguish x from y in terms of attributes in B.

Some subsets of objects in an information system cannot be
expressed exactly in terms of the avallable attributes; they can be only

roughly defined.
If A = (U, A) is an information system, B € 4 and X < U, then the
sets

BX={xeU:[x]lpc X}and BX ={xeX: [x];nX # ¢}

are called the B-lower and the B-upper approximation of X in A,
respectively.

The set BNy(X) = BX — BX will be called the B-boundary of X.

Clearly, BX is the set of all elements of U, which can be with
certainty classified as clements of X with respect to the values of
attributes from B; and B Xis the set of those elements of U that can be
possibly classified as elements of X with respect of the values of the
attributes from B; finally, BNg(X) is the set of elements that can be
classified neither in X nor in -X on the basis of the values of attributes
from B.

A set X is said to be B-definable if BX = BX. It is easy to observe
that BX is the greatest B-definable set contained in X, whereas BX is
the smallest B-definable set containing X. One can observe that a set is
B-definable iff it is the union of some equivalence classes of the
indiscernibility relation IND(B).

By P(X) we denote the powerset of X.

Every information system A = (U, A) determines an information
Sfunction

Inf,: U->PUAx{)V,)

acd

]

defined as
Inf, (x) = {(a,a(x)): ac 4}

Hence, xIND(A)y iff Infi(x)= Infi(y).

We restrict our considerations in the paper to the information
functions related to information systems but our results can be
extended to the case of more general information functions (Skowron,
1991b). One can consider as information function an arbltrary
function f defined on the set of objects U with values in some
computable set C.

For example, one may take as the set U of objects the set To¢, of
total elements in the Scott information system A (Scott, 1982) and as
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C a computable (an accessible) subset of the set D of sentences in A.
‘The information function f related to C can be defined as follows:

fix)=xnC for xeTot,

Every such general information function f defines the indiscer-
nibility relation IND(f) € U x U as follows:

xIND(f)y iff flx)=Ay)

- 3. AN APPROXIMATION OF
CLASSIFICATIONS

In this section we introduce and study the notion of approximation of
classification. It was preliminarily considered in Skowron (1991a) and
Skowron and Grzymala-Busse (1991). The main idea is based on
observation that it is possible to classify boundary regions corres-
ponding to sets from a given classification, that is, a partition of object
universe.

Let A = (U, A) be an information system and let X and Z be
families of subsets of U such that Z < X and |Z| > 1, where |Z|
denotes the cardinality of Z. The set

(LBN, ()N () (U~ BN,(X)

is said to be the Z-boundary region defined by X and A and is
denoted by Bd,(Z,X).
By CLASS _. APPR,(X) we denote the set family

{dX: XeX} U {Bd\(Z,X): Z< X and |Z| > 1}

From the above definitions we get the following proposition
(Skowron, 1991):

Proposition 1. Let A = (U, A) be an information system and let X be
a family of pairwise disjoint subsets of U such that | JX = U. Let
Z <X and |Z| > 1. Then

(i) The set Bd,(Z,X) is definable in A;
(ii) CLASS _ APPR,(X) — {9} is a partition of U;
(iii) If x€ Bd\(Z,X) then [x], € UZ;
(iv) If xe Bd,(Z,X) then for every XeX the following equiva-
lence is true:
[X]ynX #0 if XeZ;
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(v) The following equality holds:
4UY)=U dXv \J Bd\(Z,X), where Y c X.
XeY »

IZI>1,ZsY .

Proof. (i) If xeBd,(Z,X) then xe BN,(X) for any XeZ and
xe U — BNA(X) for any Xe X — Z. From the definability in A of sets
BN,(X)and U — BN,(X) for X & U we have [x], < BN,(X) for any
XeZ and [x], € U—BN,(X) for any XeX—Z. Hence [x],
€ Bd\(Z,X). We proved that Bdi(Z,X) < 4(Bd\(Z,X)). Since
Bd\(Z,X) =2 4(BdA(Z,X) we get Bd,(Z, X) = A(Bd (Z, X)).

(ii) It is easy to observe that CLASS _ APPR,(X) is a family of
pairwise disjoint sets. We prove that | JCLASS _ APPR,(X)=U.

If xeU then xeX for some XeX. If xedX then
x€ CLASS _ APPR,(X), otherwise xe AX — AX. In the latter case
let Z ={XeX:[x],nX+#¢}. Then we bhave |Z,|>1 and
x€ Bd\(Z,,X).

(iii) Let x€ Bd,\(Z,X). Suppose that y¢(JZ for some ye[x],.
Since (JX = U, we have ye|JX—JZ. Hence yeX, for some
X,eX—-Z. In the consequence X,n[yl,=X,n[x],#e. If
x€ Bd,(Z,X)then xe U— BN ,(X)for XeZ — Z. Since U — BN ,(X)
is definable in A we obtain [x], <€ U— BN (X)=(U—-A4AX)u 4X.
Hence [x], < 4X, or [x], = U — AX,. Since X, n [x], # o we get

(") [las4X,

From the assumption x € Bd\(Z,X) we have also xe BN ,(X) for any
XeZ, so

o

(*) [x]l,nX#o forany XeZ

From (*) and (**) we would have X n X, # o for any XeZ but this
contradicts the assumption that X is a family of pairwise disjoint sets.

(iv) Let x€ Bd,(Z,X) and XeX. Suppose that [x], N X # g, ie.,
x€ BN ,(X). Hence from the definition of Bd,(Z, X) we have Xe Z. If
XeZ then we have xe BN ((X). Hence [x],nX # o.

(v) () Ifx€ BdA(Z,X)we have from (iii) that xe d YZ S 4 Y.
We also have 4 X < 4| Y for any XeY.
(2)Letxed Y, ie, [x] = (JY.If x¢ 4 X for a certain XeY
then let Z, = {XeY : [x],n X # o}. Hence |Z,|>1 and [x],
€ UZ,. Thus, we have x€ Bd,\(Z,,X).
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4. ROUGH MEMBERSHIP FUNCTIONS:
DEFINITION AND BASIC PROPERTIES

One of the fundamental notions of set theory is the membership
relation, usually denoted by €. When one considers subsets of a given
universe it is possible to apply the characteristic functions for
expressing the fact whether or not a given element belongs to a given
set. We discuss the case when only partial information about objects
is accessible. In this section we show it is possible to extend
characteristic function notion to that case.

Let A = (U, A) be an information system and let o # X < U. The
rough A-membership function of the set X (or rm-function, for short)
denoted by u%, is defined as follows:

py(x) = M, for xe U, p, = 0.

|[x14]
The above definition is illustrated in Figure 12.1.

U

X
XlinX —— |[X1,

Figure 12.1

One can observe a similarity between the expression on the
right-hand side of the above definition and that expression used to
define the conditional probability.

From the definition of u% we have the following proposition
characterizing some basic properties of rm-functions.

Proposition 2. Let A = (U,A) be an information system and let
X, YcU.
The rm-functions have the following properties:

@) p3(x)=1if xe4X;
G nA (A =0 iff vell — A X
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(ili) 0 < u’% (x) < 1iff xe BN,(X); ;
(iv) If IND(4) = {(x,x):xe U} then p% is the characteristic
function of X; .
(v) If xIND(A)y then pu% (x) = p% (»);
(vi) py_y (x) =1— p% (x) for any xe X;
(vid) p%oy (¥) > max(p% (x), p% (x)) for any xe U;
(vii) g%,y (x) < min(p% (x), p3 (x)) for any xe U;
(ix) If X is a family of pairwise disjoint subsets of U then

udy(x) = ,\Ex”;(x) for any xe U.

Proof.
(i) We have xe 4 X iff [x], < X iff p% (x) = 1.

(i) We have xe U~ AX iff [x], N X = o iff u4 (x) = 0.

(iii) We have xeBN,(X) iff ((x],nX#o and [x], N
(U—X)#0)iff (uy(x) >0and p%(x) <1).

(iv) If IND(4) = {(x,x) : xe U} then |[x],] = 1 for any x€ X,
Moreover |[x],nX|=1if xeX and |[x],n X] =0 if
xeU—-X.

(v) Since [x], = [¥], we bave u4 (x) = u4 (7).

_IxLn@-00 _ | 10X _

() poox 0 = =5 En
e LD
A X)Xy X0 X _ .
W B GV = TG T 2 g S I

a similar way one can obtain u%,, (x) = u% (x).
(viii) Proof runs as in case (vi). .
y ua ) Kl UX] _ [U{[x] n X XeX| _
R | R PN

Y urx)

XeX

The last equality follows from the assumption that X is a family of
pairwise disjoint sets.

The set {Infi(x):x€ U} is called the A-information set and it is
denoted by INF(A). For every X< U we define the rough
A-information function, denoted by 24, as:

A% () = p% (x), where ueINF(A) and Infi(x) = u

The correctness of the above definition follows from (v) in
Proposition 1.
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If A=(U,A4) is an information §ystem then we define rough
A-inclusion of subsets of U in the standard way:

X<AY iff phx)<py(x)forany xelU
Proposition 3. If Y < , Ythen dXc dYand 4X < 4Y.
Proof. Follows from Proposition 2 (see (i) and (ii)).

The above definition of the rough A-inclusion is not equivalent to
the one in Pawlak (1991). Indeed, in Pawlak (1991) the reverse
implication to that formulated in Proposition 2 is not valid.

One can show that they are equivalent for any information system
A only if AX < 4Y. This is a consequence of our definition taking
into account some additional information about objects from the
boundary regions.

5. ROUGH MEMBERSHIP FUNCTIONS FOR
UNION AND INTERSECTION

Now we present some results obtained as a consequence of our
assumption that objects are observable by means of partial infor-
mation about them represented by attribute values. In this section we
prove that the inequalities in (vii) and (viii) of Proposition 1 cannot be
in general substituted by the equalities.

We also prove that for some boundary regions it is not possible to
compute the values of the rm-functions for union Xu Y and
intersection X' N Y knowing the values of rm-functions for X and
Y only (if information about information systems is not accessible
and does not hold some special relations between sets X and Y).
These results show that the assumptions about properties of the fuzzy
membership functions (Dubois and Prade, 1980, p. 11) related to the
union and intersection should be modified if one would like to take
into account that objects are classified on the basis of a partial
information about them. We present also the necessary and sufficient
conditions for the following equalities (which are the ones used in
fuzzy set theory) to be true for any xe U.

Koy (x) = max(p% (x), uy (x))

Hiray (x) = min(p% (x), p5 (x))

_
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These conditions are expressed by means of the boundary regions
of a partition of U defined by sets X and Y or by means of some
relationships that should hold for the sets X and Y. In particular we
show that the above equalities are true for arbitrary information
system A iff Y Yor Y X.

First we prove the following two lemmas.

Lemma 1. Let A = (U, 4) be an information system, X, Y < U and
X={XnY,Xn-Y,-XnY,-Xn -Y}.
If xe U — Bd ,(X, X), then

Biny (X) =
if xeBd\({Xn—Y, —XAY},X)u Bds((Xn—Y,~ XY,
-Xn-Y}X)
then 0
else if xe Bd\({XN Y, XN -7, Xn Y) then px ) +
Ky (x) -1

else min(y% (x), p4 (x))

Proof. In the proof we apply property (iii) from Proposition 1. Let
x€Bd\({Xn—Y,—XnY}UBd\({Xn-Y,-XnY,-Xn-Y}.
Hence [x], c(Xn-Y)u(-XnY)u(—Xn-Y),so [x],n(Xn
Y)=gand p3., (x)=

If xeBdy({XnY,Xn—Y,—XnY},X) then [x],€(XnYu
Xn—-Yu—-XnY). Hence, [x],=[ExL,nEnY)u[x],nX
Nn=Y)ulx],n(—XnY),so [x],=[x],nXu[x],nY.

Weobtain|[x],] = |[x],n X| + |[x],n Y| - [x],n(XNY)].
Hence p%,, (x) = p3 (x) + p5 (x) - 1.

Ifxe4(XNY), then [x], < XN Y. Hence u%., (x) = 1. We have
also [x], < X and [x], < Y because XnY<c X and XnYc Y.
Hence p% (x) = p% (x) = L.

Ifxe 4(Xn—Y)then [x], < Xn—Y.Hence [x],n(XnY) =
and [xX],NY S (XNn—Y)NY =g, 0 p%,,(x) = min(p3(x), p5(x)).

If xe 4(—XNY) the proof is analogous to the latter case.

I xed(—Xn—Y)weobtain uy., (x) = p}(x)=p4 (x) =

If xe Bdp({XNY,Xn—Y},X) we have [x], = [x],n(Xn Y)uU
[xX],n(Xn—=Y). Hence [x],Nn(XnY)=[x],nY and [x],=
[x],n X S X. Hence 4, (x) = p4 (x) < p4 () = L.

Ifxe Bdy\({Xn Y, — X Y },X) the proofis analogous to the latter
case.

If xe Bd,({Xn—Y, —Xn—Y),X) one can calculate u4,., (x) =
py(x)=0< p%(x). Similarly, in the case when xeBd,({—Xn
Y, —Xn ~Y},X) one can calculate that 4., (x) = p4(x) =
1y ().
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If xeBd,({XnY,—Xn=Y},X) we have u%.,(x)=pus(x)=
py (x).
Lemma 2. Let A = (U, 4) be an information system, X, Y < U and
X={XnY,Xn—-Y,-XnY,—-Xn-Y}. I xeU-—Bd\(X,X)
then
If xe U — Bd (X, X), then
”;u}' (x)=
if xeBdys({Xn—Y,—XnY},X)u Bdy({Xn-Y,—XNnY,
~Xn—-Y},X)
then u% (x) + p7 (x)
else if xe Bdy\({XnY,XNn—Y,— XN Y}, X) then 1
else max(u} (x), p% (x))

Proof. In the proof we apply property (iii) from Proposition 1.

If xeBd,({Xn—-Y,—XnY} then [x],=[x],n(Xn-Y)u
[x]un(—=XNY). Hence [x] nX=[x],nXNn-Y, [x],nY=
[xX]yn—=XANY.

Since [x],n(XUY)=([x],nX)u(x]4n Y)and ((x],n X) "
X1 nY)=[x],nXn—YNn~-XnY=90, we get pi, ,(x)=
By (x) + py (x).

IfxeBds({Xn—Y,—-XnY,-Xn-Y},X), then [x], = [x],n
Xn-Y)uxl,n(—XnY)u[x],n(—-Yn-Y).

Since [x], N (XU Y) = ([x],n X)u([x],nY)and ([x],n X)
X nY)=[x]ynXn—-YNn—-XnY =90, we get put,, (x)=
By (x) + py (x).

IfxeBdy({XnY,Xn-Y, —XnY},X)then [x], = [x],n(XNn
NNulxl,n(Xn=-Y)u[x],n(—XnY). Hence [x],n(XUY)=
(x4 80 sy () = 1.

If xed(—Xn—7Y) then [x], = [x],n(—XNn-Y). Hence [x],
NXVY)=[x], nX=[x],nY=0.

If xe4(XNnY), then [x], =[x],nXNY. Hence [x]Ar\(XuY)
=[xl =Dl nX=[x],AY.

If xed(—XnY), then [x],=[x],n(—XnY). Hence
Xl n(XuY)=[x],nY#oand [x],nX=0.

If xe 4(—=XNY), the proof is analogous as in the latter case.

If xeBd\({XnY,Xn—-Y},X) then [x],=[x],n(XnY)u
[xX]yn(Xn=Y). Hence [x],nXuY)=[x],nX2[x],n(X
NY)=[x],nY.

If xe Bd\({XN Y, — XN Y},X), then the proof is analogous as in
the latter case. 4

¥ xeBd,({XnY,—Xn-Y},X), then pfiy(x)=pf(x)=
B (x).

—
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If xeBdA({Xn— Y, -Xn—-Y},X), then p%,, (x) = p% (x)and
py(x) =

If xeBdA({ XnY,—Xn - Y},X), then pny(x) px(x)and
By x)=

If xeBa'A({Xn Y,XnY, Xn Y},X), then u%,,(x)=
1y (x) Zp% (). :

If xeBdpa({—-XnY,XnY,-Xn-Y},X), then u%,, (x)=
py(x) > p (x).
Theorem 1. Let Z be a (nonempty) class of information systems with
the universe including sets X and Y. The following conditions are
equivalent:

(@) p¥.r (x)=min(p% (x), 7 (x)) for any xeU and A=
(U,A)eZ.

(i) Bds(Y,X)=9 for any X2Y2{Xn-Y,—-XnY} and
A =(U,4)eZ, where X = {XnY,-XnY,Xn-Y,-Xn-Y}.

Proof. (i) — (i) Follows from Lemma 1.
(i) — (i) Suppose that Bd,(Y,X)# e for some Y =
{Xn—Y,—-XnY}and A€Z.

If xeBd,({Xn—-Y,—-XnY},X) # o for some AeZ, then [x],
NXn—-Y)# o and [x],Nn(—XnY)+#o. Hence p%(x)> 0 and
U4 (x) > 0.Wealso have from Lemma 1 g%, (x) = 0. Thus we have
L.y (x) #min (u} (x), % (x)), ie., a contradiction with (i).

If xeBd\({Xn—-Y,—XNnY,—Xn-Y},X) for some AeZ and
xe U then one can sce that it contradicts (i) in the same manner as
before.

I xeBd\({Xn-Y,—XnY,XNnY},X) # o for some AeZ then:
we have [x], = [x],n(Xn— Y)u[x]An( - XnY)w[x],n(Xn®
Y). Hence [x], nX=[x],n(Xn=Y)u[x],n(XnY) and [x]A
NY =[x, n(-XnY)u[x],n(XnY).

Since [x]An(Xn Y) # o and [x]An( XnY)#o, we would
have u% (x) > p%., (x) and p% (x) > u4., (x) but this contradicts
assumption (i).

I xeBds({Xn-Y,—-XnY,-Xn-Y,XnY},X) for some}
AeZ, then [x], =[x],n(Xn=-Y)u[x],n(— XnY)u[x]Anw
XnY)u[xl,n(—Xn-Y).

Again we would have [x],nX=[x],n(Xn-Y)u[x] ,mg
XnY)and [x] nY =[x, n(-XnY)u[x],n(XnY). =

Since [x]An(Xn Y)+# o and [x]An( —XNnY)#o, we wouldi
have p% (x) > p%., (x) and p% (x) > u%., (x) but this contradlcts
assumption (i). pe

This completes the proof of (i) — (ii).

IEE———
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Theorem 2. Let Z be a (nonempty) class of information systems with
the set of objects including sets X and Y. The following conditions are
equivalent:
@) pror () =max(u%(x), py(x)) for any xeU and A=
(U,4)eZ. :
(i) Bda(Y,X)=9 for any X2Y2{Xn-Y,—-XnY} and
A=(U,A)eZ, where X = {XnY, - XnY,Xn-Y,-Xn-Y}.

Proof. (i) — (i) Follows from Lemma 2.
(i) — (i) Suppose that Bd,(Y,X)# o for some Y 2
{Xn-Y,-XNnY}and AeZ.

If xe Bdp({Xn—-Y,—XnY},X) + o for some AeZ, then [x],
Nn(Xn-Y)# o and [x],n(—XNY) +# o. Hence u% (x) >0 and
p4(x)>0. We have also from Lemma 2 that u%,,(x)=
w4 () + p% (x). This gives ph,, (x)> p4(x) and ph,(x)>
p4 (x), contrary to (i).

If xe Bdy({Xn-Y,-XNnY,—Xn~-Y},X) for some AeZ and
xe U then one can see that it contradicts (i) in the same manner as
before.

IfxeBdp({XNn—Y,—XNY,XNnY},X) # o for some A€eZ then
we have [x], = [x], n(Xn-Y)u[x],n(—-XnY)Uu[x],n(XNn
Y) and [x],nZ#o for Ze{Xn-Y,—XnY,XnY}. Hence
IIxTal > IE¥], A X] and |[x], > I[x], A 7. Thus p4 (x) <1 and
w4 (x) < 1. However p%,, (x) = 1 from Lemma 2. This contradicts
our assumption (i).

Now let us assume that xe Bd,({Xn—=Y, - XnY,—-Xn-Y, XN
Y},X) for some A€eZ Then [x],=[x],nXn-Y)u[x],
N=XnY)u[x],n(XnY)u[x],(—Xn—-Y)and [x],nZ #o
for Ze{Xn-Y,—XnY,—-Xn—-Y,XnY}. Hence [x],n (Xu
Y)=[x],nXulx],n(—XnY) and [x],n(XVY) [x],nY
u[x]An(Xn Y)

Consequently u%,, (x) > p% (x) and p4,, (x) > u% (x). This con-

iradlcts our assumption (i), which completes the proof of (i) — (ii).

%-N_ow we would like to characterize the conditions related to the
ggundm regions occurring in Theorems 1 and 2.

i:;;emma 3. Let Z be a class of information systems with the set of
bjects including sets X and Y. The following conditions are
(uivalent for arbitrary A = (U,4)eZ:

_s(l) BdA(Y X)=g0 for any X2 Y2{Xn-Y,-XNY}, where
= X={XnY,-XnY,Xn-Y,-Xn-Y};
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(i) avpvyvdve where
a:=(Xc Yor Y<cX)
[3=(X Y#oand Y- X #gandXu Y= UananY._

o and Bd,({Xn-Y,-XnY},X)=0)
=(X-Y#oand Y- X#gand XU Y= UananY—

o and Bdy({Xn-Y,—XnY},X) =0 and Bds({Xn—
Y,-XnY,XnY},X)=0);

=(X—Y#0 and Y-X#9o and XUY#U and
XnY+#o and Bd,({Xn-Y,-XnY},X)=9 and
Bd\({Xn—-Y,-XnY,-Xn-Y},X) = 0);

=(X—-Y#eoandY—-X#gand Xu Y # Uand XY #
o and Bd,({Xn—Y,~XnY},X) = o and Bd,({Xn—
Y,-XnY,-Xn-Y},X)=06 and Bd,({Xn-Y,
—XnY,XnY},X)=9p and Bdy\({Xn-Y,—XNY,
XnY, - Xn - Y},X) =9).

Proof. We have the following equivalencies:

Bd,({Xn—Y,—XnY})=piff X< Yor Y= Xor X— Y #0oand
Y-X#gand Bd,({Xn—-Y,—-XnY}, X)#e;

Bd\({Xn—-Y,-XnY,—-Xn-Y},X)=piff X< YorY < Xor
XuY=Uor X—Y+#9o and Y—X#0 and YUY # U and
Bd\({Xn—Y,—-XnY,—-Xn-Y},X) = 0);

Bd\({Xn—-Y,-XnY,XnY},X)=0 iff XS Y or YS X or
XnY=0 or (X—Y#eo and Y—X#0 and XnY+#o and
Bd\({Xn-Y,—-XnY,XnY},X)=0);

Bd\({Xn—Y,-XnY,-Xn-Y,XnY},X)=9 iff X< Y or
YcXorXnY=porXuY=Uor(X—Y#oand Y- X #0oand
XNnY#oand XUY # U and Bd,({Xn-Y, —XnY, -Xn-Y,
XnY}, X)=0).

Hence, taking the conjunction of above equivalencies, we obtain:
Bdy(Y,X) =g for any Y2 {Xn—Y, — XN Y} iff one of the con-
ditions a, B, v, J, & from (ii) is satisfied.

Let us remark that only when condition a holds, that is, when
X < Yor Y < X, condition (ii) is independent from the properties of
boundary regions in the information systems.

In Figure 12.2 we illustrate the conditions formulated in (ii) of
Lemma 3.

Now we prove that the assumptions from Lemmas 1 and 2 related
to the boundary region Bd,(X,X) cannot be removed because
otherwise it will not be possible to compute the values of p 4, (x)
and u%.y (x) knowing the values u% (x) and u% (x) only.
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X and Y form a partition of U
The condition for the boundary regions is:
Bd,({Xn-Y,—-XnY} #0)

The conditions for the boundary regions
are: ,
Bdy\({Xn—Y,XnY},X) # 2)
Bd\({Xn-Y,XnY,~XnY},X) #0)

The conditions for the boundary regions
are:

Bd\({Xn—Y,-XnY},X)+# 9)
Bd\({Xn-Y,-XnY,-Xn-Y},X) # o)

The conditions for the boundary regions
are:

BdA({Xn—Y,—XNY},X) # 2)
Bd\({Xn—-Y,—-XnY,XnY},X) #0)
Bd\({Xn—Y,—-XnY,—-Xn-Y},X) # 2)
Bdy({Xn—Y,-XnY,XnY,-Xn
—-Y},X)#2)

Figure 12.2
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Theorem 3. There is no function
F:[0,1]x[0,1]—[0,1]

such that for any finite sets X and Y and any information system
A = (U, A4) such that X, Y < U the following equality holds:

oy ()= F(p% (x), p%(x)), forany xeU.

Proof. Let us take X ={1,2,3,5} and Y={1,2,3,4}. Let U=
{1,...,8}. It is easy to construct atrribute sets 4 and A4’ such that
[1],= Uand [1],, = {1, 4, 5, 6}. Thus we have 4 (1) = u* (1) =
1/2 and u4,, (1) = 5/8, where A = (U,4) and p3 (1) = u3 (1) =12
and u},, (1) = 3/4, where B = (U, 4’).

Similarly one can prove:

Theorem 4. There is no function
F:[0,1] x[0,11—[0,1]

such that for any finite sets X and Y and any information system
A = (U,A4) such that X, Y < U the following equality holds:

By (X)=F(p% (x), p%(x)), for any xeU.

6. AN ALGORITHM FOR COMPUTING THE
ROUGH MEMBERSHIP FUNCTION
VALUES

o

In the previous section we proved that it is not possible, in general, to
construct a function such that it can be used for computing values of
the rm-function corresponding to the X' u ¥ or X n Y from the values
of the rm-functions corresponding to X and Y. Hence any particular
functions, for example, min or max applied for computing the values
of rm-functions, will give incorrect values. This shows a major
drawback of some approaches in fuzzy set theory.

We present an efficient algorithm for computing values of
rm-functions based on the properties of the atomic components of the
sets. '

Let X be a (nonempty) family of subsets of a given finite set U. By
B(X) we denote the field set generated by X, that is, B(X) is the least
family of sets satisfying the following two conditions:
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() X < B(X);
(i) if X, YeB(X) then XU Y, XN Y — XeB(X).

If X < U then we define X° = Xand X' = U— X. By AT(A,X)
we denote the set of all nonempty atoms generated by X = {X,,
WX}, ie, ATAX)={X{n...nX¥:il,..,ike(0,1} and X'}
ﬁ ﬂXk # ﬂ}
We will apply the well-known propertles of atoms.

Proposition 4. Let X be a (nonempty) family of subsets of a given set
U. The following properties hold:

) IfY,YeAT(A,X)and Y# Y' then YNnY' =g.

(i) If @ = YeB(X) then there exists a uniquely determined set of
(nonempty) atoms Y < AT(A,X) such that Y= (J X.

XeY

Let A = (U, A) be an information system and let X be a family of
subsets of U. For every ueINF(A) we define the set AT(A, X, u) of
all atoms YeAT(A,X) such that

Y Nus # 0, where up = {xe U: Inf(x) = u}.

Moreover, let f(A,X,u) be a function from AT(A,X) into
nonnegative reals such that

|ua N Y|

SA X, u)(Y)= for any YeAT(A,X)

[
From the definition we have the following equality:
SA X, Infa(x))(Y) = u% (x), for any xe U and YeAT(A,X)

There is a simple method for computing all functions from the
family { f(A,X,u)}“emF( A for a given information system A. We
represent the family {f(A,X, u)}uem( A i a table T(A, X) in which
rows correspond to different information ueINF(A) and the
columns correspond to different atoms from AT(A, X). In the table
T(A,X) the position corresponding to an information u and to an
atom YeAT(A,X) is empty if Y¢AT(A,X,u) and contains the
value f(A,X,u)(Y) if YeAT(A,X,u).

Example 1. Let us consider the following information system. Let
U={1,...,20}, A={abcde}, X={X,,X,}, X,=05,...,15),
X, = {10,...,20} and the attributes are defined as in Table 12.1.
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Table 12.1

alblcld|e alb|c|d|e
1 (1{1]{0f0]0 11 {ofo]1]|0]1
2 |0/0[1]0]1 12 |o|ojojo]o
3(1/0{1|0!]1 13 {ofo|1(1]1
4 [1|1[1]1]1 14 [1]{1]o|ofo0
5(0j0[1]0f1 15 [o]|ofofo]o
6 [1|1[1]1]1 16 [1{1]1|0]0
7 (1|0[1]|0(1 17 (o|oj1]of1
8§ 11|/1(0]j0(0 18 |1|1(1}1]1
9 10[(1|0]|1]0 19 [1]1)1]1]1
10 (00111 20 (0jo0|0f0}O

From the above definitions we get:

AT(A,X) = {Yl’ Yz, YS’ Y4}, Where Yl = Xl sz = {10,...,15},
Y2 = Xl &) _X2 = {5,...,9}, Y3 = _Xl an = {16,...,20}, Y =
—Xlﬁ—X2={1 eee }.

INF(A) = {11000, 00101, 10101, 11111, 01010, 00111, 0000, 11100};
11000, = {1,8,14}; 00101, = {2,5,11,17}; 10101, = {3,7};

11111, = {4,6,18,19}; 01010, = {9}; 00111, = {10,13};

00000, = {12,15,20}; 11100, = {16}; .
AT(A,X,11000) = {Y,,Y,,Y,}; AT(A, X,00101) = {Y,,Y,,Y,,
Y.}

AT(A,X,10101) = {Y,,7,}; AT(A, X, 11111) = {Y,,¥,, ¥, };
AT(A,X,01010) = {¥,}; AT(A,X,00111) = {Y, };
AT(A,X,00000) = {Y,,Y;}; AT(A,X, 11100) = {Y,};

Thus, we have T(A,X) as in Table 12.2 specifying the functions
Sf(A,X,u) for ue INF(A).

Let us denote by [A,X] the extension of the data table corres-
ponding to A by the columns corresponding to the characteristic
functions of sets from X.

One can show that the tabel T(A,X) can be constructed from
[A,X]in the number of steps of order 0(n?(m + k)), where n = |U],

= |A4], and k = | X|.
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Table 12.2
P ARARARZ
11000 | 1/3 | 113 1/3
00101 | 1/4 | 1/4 | 1/4 | 1/4
10101 12 1/2
11111 14 | 12| 1/4
01010 1
00111 | 1
00000 | 2/3 1/3
11100 1

Let us observe that by a slight modification of the construction of
the table T(A, X) one can obtain a table for computing the belief and
plausibility functions of the information systems (Skowron, 1991;
Skowron and Grzymala-Busse, 1991). This modification can be
realized by adding to T(A, X) one additional column in which in the
position corresponding to u the cardinality of u, is stored.

After such a modification one can easily compute the A-basic
probability assignment m,(6) for any nonempty set 0 of atoms. It is
sufficient, in fact, first to find all rows with nonempty entries
corresponding exactly to elements of 0, second, to compute the sum
s of all numbers appearing in the last column of these rows, and third
to put m,(0) = s/|U|.

Now we are ready to present a simple method for computing the

rm-function values.

We assume that the family { (A, X, u)}uem( a8 represented by its
data table T(A, X) in the way described before. We also assume that
the information system A is represented in the standard way by its
data table. The data table of a given information system A is extended
by one additional column containing for any xe U a pointer to the
row labeled by Inf,(x) in the table T(A,X). A set X of objects is
represented by marking all columns in the table T(A, X) correspond-
ing to atoms included in X.

ROUGH MEMBERSHIP FUNCTION PROCEDURE:;

INPUT: representations of X, A, {f(A,X,u)},.npn and
XeB(X) in the form described above.
OUTPUT: u4%.
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1. For any xe€ U perform the following steps:

1.1. For a given x find in the table T(A, X) the row correspond-
ing to u = Ian(x)

1.2. Computeu’ (x) =Y. f(A,X,u)(Y),where the above sum
is taken for all Y such that, first, the entry in T(A,X)
corresponding to the column labeled Y and the row labeled
u is nonempty, and second, Y corresponds to a marked
column in T(A, X).

The correctness of this method follows from Proposition 2 (part
(ix)) and from the construction of the table T(A, X). One can see that
the sum in Step 1.2 is taken for all Ye'Y n AT(A, X, u), where Y is
a set of atoms such that X' = | Y.

The number of steps to realize Step 2 is of order 0(n?) (at most
n additions for each u), where n = |U]|.

Example 2. (continuation of Example 1). Let X = X, u X,. We have
X=X,nX,vXn—X,u-X,nX,=Y,uY,uY,;. HenceY =
{Y,Y,,Y,}.

Let x = 7. Then Inf,(7) = 10101, Y n AT((A, X, 10101) = {Y,},
and p% (7) = f(A,X, 10101)(Y,) = 1/2.

Let x = 6. Then Inf,(6) = 11111, YN AT((A,X, 11111) = {Y,,
Yy}, and ph(6) =f(A,X,11111) (¥,) + f(A, X, 11111) (¥;) =
1/4 + 1/2 = 3/4.

7. CONCLUSIONS =

We introduced the rough membership functions (rm-functions) as
a new tool for reasoning with uncertainty. The definition of those
functions is based on the observation that objects are classified by
means of partial information that is available. That definition allows
us to overcome some problems that may be encountered if we use
other approaches (like the ones mentioned in Section 5). We have
investigated the properties of the rm-functions, and in particular, we
have shown that the rm-functions are computable in an algorithmic
way so that their values can be derived without the help of an expert.

We would also like to point out one important topic for further
research based on the results presented here. Our rm-functions are
defined relative to information systems. We will look for a calculus
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with rules based on properties of rm-functions and also on belief and
plausibility functions for information systems. One important prob-
‘lem to be studied is the definition of strategies that can allow us to
reconstruct those rules when the information systems are modified by
environment. In some sense we would like to embed a nonmonotonic
reasoning on our rm-functions approach as well as the belief and
plausibility functions. related to the information systems (Shafer,
1976; Skowron, 1991; Skowron and Grzymala-Busse, 1991).
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