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1 Introduction

The idea of a rough set has been proposed by the author as a new mathemati- -
cal tool to deal with vagueness and uncertainty. It seems to be of fundamental
importance to AI and cognitive sciences, in particular expert systems, decision
support systems, machine learning, machme discovery, mductlve reasoning pat-
tern recognition, decision tables and others.

The rough set theory, besides its methodological significance, turn out to }§
be very useful in practice and its importance to data analysis seems to be -
unquestionable. Main advantage of the rough set theory in applications is in
discovering patterns in data, data reduction, discovering of data dependen-
cies, data significance, decision algorithms generation from data, approximate |
classification of data, discovering similarities or differences in data, and others. -
Many real life applications of this concept have been implemented. More about
i the application of the rough set theory can be found in Slowinski [38].

, 1« \ In the lecture basic concepts of the rough set theory will be outlined and its
il ‘l phllosophlcal background briefly presented. For more detailed exposition the
reader is referred to Pawlak [26].

i 2 Knowledge and classification

i and loglcla,ns [17,18,20,29]. Recently new momentum to this area of research

i have been given by Al researchers ([1,4,5,6,7,8,9,13,14,15,16,19,22,23,24,25 30,
‘ 31,32,33,39,40] and others). There is no tlll now, however w1dely shared body

of opinion, as to how understand, represent and mampul_a.te knowledge.

’ Theory of knowledge for a long time has been subject of interest of ph110s0phers

- Intuitively, the idea of knowledge seems to be best expressed by Russell, '
who says that “knowing” is a kind of relationship between an organism and the
l | e environment [35], which can be perceived as a body of information about some

!f . parts of reality that is needed to behave rationally in the real world. ,

D It seems natural that this kind of understanding of knowledge must be based
[ on the ability of an organism to classify various states of the real world and the

i - organism states itself, and consequently that each organism must be equipped

i with a variety of classification skills, on concrete and abstract level. | ‘
| For example, knowledge of any organism about its environment must be :
based on the ability to classify variety of situations (e.g. safe-unsafe, dark- - :

I bright, etc.). On more specific level classification of sensory signals, like color,




“Apart from the known and the unknown,
what else is there?”

‘Harold Pinter in The Homecoming

temperature etc., seems to be of fundamental significance to acquire knowledge
needed by any organism. '

Therefore we will assume, that knowledge is based on the ability to classify
objects, and by object we understand anything we can think of, for example
entities, states, processes, abstract concepts, signals, events etc. '

Classification requires that small differences between objects being classified
must be postponed, i.e. object being in the same class are indiscernible. For
example when classifying some objects according to color, in order to form
a class of red objects, we have to postpone small differences between various
shades of red, so that all objects in the same class are indiscernible. Therefore
the indiscernibility is a fundamental concept in the presented approach.

3 Knowledge and information ‘systems

As said before we assume that knowledge is manifested by the ability to classify.
Therefore we will define formally knowledge as a family of partitions over a
fixed, finite universe. For mathematical reasons instated of partitions we may
also use the corresponding equivalence relations. Thus knowledge can be also
defined as family of equivalence relations over the universe. Because we need a
“language” to represent various partitions, we will employ to this end so called
information systems, called also attribute-value tables.

An information system is a finite table rows of which are labelled by objects
of the universe U, whereas columns - are labelled by attributes from a fixed set
A and each entry of the table corresponding to object z and attribute a is an
attribute value. The set of all values of an attribute a is called the domain of a
and is denoted V, . For example, if the attribute is COLOR then its domain

may be red, green, blue, etc. An example of an information system is given in
the table below.

U | COLOR | SHAPE | SIZE

1 | red - tri. small

2 | green square | small

3 | blue round | large |
4 | red square | small

5 | green round large

Table 1

; The table contains data about five children toy blocks, described by three
sea't‘ll'fés (attributes) COLOR, SHAPE and SIZE. The domains of the corre-
Ponding attributes are {red, blue, green}, {triangular, square}, round and
smal!, large}.

It is easily seen that each subset of attributes determines partition of objects

the universe into blocks having the same features, i.e. being indiscernible by
18 featyres, :




“Knowing is a relation of the organism to
something else or to a part of itself”

Bertrand Russel in An Inquiry into
Meaning and Truth

Formally an information system can be defined as a pair S = (U, A), where
U - is the universe and A - is the set of attributes. Each attribute a can be
understood as a total function a : U — V;, which to every objects associates
the attribute value.

- With every subset of attributes B C A, we associate a binary relation
IND(B), called an indiscernibility relation and defined thus: : '

IND(B) = {(z,y) € U?: for every a € B,a(z) = a(y)}.
Obviously IND(B) is an equivalence relation and

IND(B) = () IND(a)
a€EB

An equivalence class of the relation IND(B) containing the object z will
be denoted [z]p , and the partition generated by IND(B), i.e. family of all
equivalence classes of IN D(B), is denoted as U/IN D(B), or in short U/B.

Any subset of the universe will be called concept or category in S = (U, A);
in particular equivalence classes of any relation IND(a) will be referred to
as primitive concepts of a (in S), where as equivalence classes of any relation
IND(B) will be called basic concepts of B (in S), provided card (B) > 1.

An attribute value a(z) can be viewed as a name (description, label)) of the
it primitive category of a containing z (i.e.- the name of [z],), whereas the set
a(z),cp, can be considered as a name of the basic category [z]g.

Remark. In fact we should distinguish between the name (intention), of a
concept, e.g. red, and its meaning (extension), e.g. the set of all red objects,
but for the sake of simplicity we will make not this distinction, whenever it will
make no confusion.

For example if U/COLOR is a partition classifying objects according to
color, than red, greem, blue, etc., i.e. sets of red, green or blue objects, are
primitive concepts of our knowledge; if elements of the universe are classi-
fied according to COLOR (red, green, blue), and SHAPE"(iriangle, square,
round,) then the corresponding basic categories would be green and square
(green square) red and triangular (red triangle), etc. Thus basic categories are
fundamental building blocks, or basic properties of the universe which can. be
expressed employing this knowledge. Hence an information system contains
descriptions of all basic categories available in considered knowledge. -

Knowledge in the presented approach can be viewed as a family of basic
concepts or categories, which form elementary granules (atoms) of knowledge,
i.e. having an information system S = (U, A) knowledge determined by S
can be defined as K = U/A. Many important problems can be formulated
and solved in the proposed framework. For example we can easily define some
useful notions. If S = (U, B), §' = (U,B’) and U/B = U/B' we will say that
S is equivalent to S’, symbolically S ~ §’. If IND(B') C IND(B), then and
S will be called finer then S, or S’ - coarser then S, symbolically §' < S.
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“Reality, or the world we all know, is only
a description”

Carlos Castaneda in Journey to Iztlan:
The Lesson of Don Juan

Often the question arises whether all primitive concepts in S are necessary
in order to define all basic concepts in S. This problem arises in many practical
applications—and will be referred to as knowledge reduction. Formally this can
be formulated in the discussed framework as follows. Suppose we are given
S = (U, A) and B C A. The question is whether U/B=U/A ?

To answer this question we need some auxiliary notions.

o Let a € B. We will say that a is superfluous in Bif IND(B) = IND(B-
{a}), otherwise a is indispensable in B.

e The set of attributes B is independent if all its attributes are indispens-
able.

e The set B’ is a reduct of B if
-Bis indépendent, and
- IND(B') = IND(B). )

Thus a reduct of B is the minimal subset of B such that U/B’ = U/B, i.e.
B’ determines the same family of basic concepts as the set B. In other words
reduction of knowledge boils down to the elimination of superfluous attributes
in the information system. \

The set of all independent attributes in B is referred to as the core of B,
and is denoted CORE(B). The following interesting property is valid:

CORE(B) = URED(B), (1)
where RED(B) is the family of all reducts of B.

Re_mark. The problem of reduction of knowledge is related to the general idea
of independence discussed in mathematics as formulated by Marczewski [21]
see also an overview paper by Glazek [12].

More about reduction of attributes can be found in [37].

4 Uncertainty, vagueness and rough sets

In this section we would like to discuss the central problem of our approach,
vae Problem of vagueness and uncertainty. There are many conceptions of
Sueness and uncertainty in logical and philosophical literature [2,3,10,34].
wgtpresent here so. called “boundary-line” view, which is due to Frege, who
es:
The concept must have a sharp boundary. To the concepl without a sharp

z?;“ldary there would correspond an area that had not a sharp boundary-line
" dround. ([11]).




“We must distinguish between truth,
which is objective, and certainty, which is
subjective” ' .

Karl R. Popper (1992)

Thus Frege’s idea of vagueness is based on the boundary-line cases. i.e. if
a concept is precise every object can be classified as belonging to this concept
or not, whereas for vague concepts this is not the case and some object cannot
be classified to the concept or its complement, forming thus the boundary
line cases. For example the concept of an odd (even) number is precise, because
every number is either odd or even - whereas the concept of a beautiful women is
vague, because for some women it cannot be decided whether they are beautiful
or not, (there are boundary-line cases). Thus if a concept is vague we are
uncertain whether some objects (the boundary-line cases) belong to the concept
or not. Hence vagueness is a property of concepts (sets), whereas uncertainty
is a property of objects (elements), i.e. if a concept is vague its extension is
uncertain. '

The ideas considered in the previous sections can be easily employed to
express these considerations more precisely. )

In the presented approach concept is a subset of the universe. Suppose we
are given an information system S = (U, A) and let X C U. The concept (set)
X will be said to be precise, if it is an union of some basic concepts (sets) of
S, otherwise the concept (set) is vague (rough). Thus precise concepts can be
defined in terms of basic concepts in S, whereas this is not the case for vague
concepts. (Let us note that some concepts can be precise in one information
system but vague in another one).

Basic idea of our approach to vagueness consists in replacing vague concept
by a pair of precise concepts, called its lower and upper approzimations. The
difference between the upper and the lower approximation is the boundary
region. For example the lower approximation of the concept of a beautiful
women contains all women which are beautiful with certainty, whereas the
upper approximation of this concept contains all women which are possibly
beautiful, and the boundary region of this concept is formed by all women

~which can not be classified with certainty as beautiful or not beautiful. The
“size” of the boundary region can be used as a measure of vagueness of the
vague concept. - The greater the boundary region, the “more” vague is the
concept; precise concepts do not have the boundary region at all.

Formally the above considerations can be presented as follows.

_Let S = (U, A) be an information system, X C U and B C A. With each
subset X C U and the set of attributes B we associate two subsets:

BX =u{Y eU/B:Y C X}
BX =U{Y €eU/B:Y nX-¥}

called the B — lower and the B — upper approximation of X (in S) respectively.

Set BNp(X) = BX — BX will be called the B — boundary of X. The set
‘BX 1s the set of all elements of U which can be with certainty classified as
elements of X, employing set of attributes B; the set BX is the set of elements
of U which can be possibly classified as elements of X, employing the set of
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attributes B; the set BNpg(X) is the set of elements which cannot be classified
either to X or to —X using B. :

The boundary region is the undecidable area of the concept X, and none of
the objects belonging to the boundary region can be classified with certainty
to X or —X by using the set of attributes B. :

Obviously a concept X is vague (rough) with respect to B, if and only if
BX # BX, otherwise the concept X is precise.

In order to express how “vague” is a concept we can use a numerical eval-
uation of vagueness by defining the accuracy measure

ap(X) = cardB/cardB

where X # 0.

Obviously 0 < ap(X) < 1, for every B and X C U; if ap(X) = 1 the
boundary region of X is empty and the set X is precise with respect to B; if
ap(X) < 1, the set X has some non-empty R-boundary region and conse-
quently is vague with respect to B.

Besides characterization of vague concept by means of numerical values one
can also define qualitative characterization of vagueness, showing that there
| are four basic classes of vagueness, as defined below.

a) If BX # 0 and BX # U, then we say that X is roughly B-definable,
b) If BX =0 and BX # U, then we say that X is internally B-undefinable,
¢) f BX # @ and BX = U, then we say that X is ezternally B-undefinable,
d) If BX = 0 and BX = U,then we say that X is totally B-undefinable.

The intuitive meaning of this classification is the following:

If set X is roughly B-definable, this means that we are able to decide for
some elements of U whether they belong to X or —X.

If X is internally B-undefinable, this means that we are able to decide
Whether some elements of U belong to —X, but we are unable to decide for any
element of U/, whether it belongs to X or not.

If X is externally B-undefinable, this means that we are able to decide for
* Some elements of U whether they belong to X, but we are unable to decide,
for any element of U whether it belongs to —X or not.

If X is totally B-undefinable, we are unable to decide for any element of U
Whether it belongs to. X or —X.

Thflt means, that the set X is roughly definable if there are some objects in
ofe universe which can be positively classified, to the set X employing the set

attribute B. This definition also implies that there are some other objects
Which can be classified without any ambiguity as being outside the set X.
Slﬁc}f;:;{terqal B-u.ndeﬁnability of a set refer§ to tihe situ.ation when pqsitive clas-
ob: 1on 1s possible for some objects, but it is impossible to determine that an
atJe'Ct does not belong to X on the basis of its features expressed by the set of
tributes B. )
. Ha"lr}g defined the vagueness we are now in a position to define uncertainty.
Mentioned before uncertainty is related to elements of the universe and
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expresses how “strongly” an element belong to a concept. This idea can be
expressed by the formula [27].

px,B(z) = card([z]p N X)/cardX.

The intuitive meaning of the above formula is obvious. It is interesting to
compare this formula with the membership function in the fuzzy set theory, but
we will not discuss this problem here. More about it can be found in [27,28,36],

5 Conclusion

The rough set theory besides, its importance to data analysis, contributed also
to understanding better vagueness and uncertainty.

References

[1] Aikins JS. Prototypic a knowledge for expert systems. Artificial Intelli-
gence 1983; 20:163-210

[2] Black M. Vagueness. The Philosophy of Sciences 1937; 427-455
[3] Black M. Reasoning with loose concepts. Dialog 1963; 2:1-12

[4] Bobrow DG. A panel on knowledge representation. Proc Fifth Int’l Joint
Conference on Artificial Intelligence, 1977, Carnegie-Melon University,
Pittsburgh, PA

[5] Bobrow DG, Winograd T. An overview of KRL: a knowledge representa-
tion language. Journal of Cognitive Sciences 1977; 1:3-46

[6] Brachman RJ, Smith BC. Special issue of knowledge representation.
SIGART Newsletter 1980; 70:1-138

[7] Brachmar RJ, Levesque HJ. (eds) Readings in knowledge representation.
Morgan Kaufmann Publishers Inc, 1986

[8] Buchanan B, Shortliffe E. Rule based expert systems. Addison-Wesley,
Reading, Mass, 1984 ,

[9] Davis R, Lenat D. Knowledge-based systems in artificial intelligence.
McGraw-Hill, 1982

[10] Fine K. Vagueness, truth and logic. Synthese 1975; 30:265-300

[11] Frege G. Grundgesetze der arithmentik. 1903;2. Geach, Black (eds) In:
Selections from the phllosophlcal writings of Gotlob Frege Blackweil, Ox-
ford, 1970

[12] Glazek K. Some old and new problems in the 1ndependence theory. Collo-
quium Mathematicum 1979; 17:127-189




41

L

[13] Grzymala-Busse J. On the reduction of knowledge representation. Systems
Proc of the 6th Int‘l Workshop on Expert Systems and their Applications,
Avignon, France, 1986; pp 463-478

[14] Grzymala-Busse J. Knowledge acquisition under uncertainty - a rough set
approach. Journal of Intelligent and Robotics Systems 1988; 1:3-16

[15] Halpern J. (ed) Theoretical aspects of reasoning about knowledge. Proc'of
the 1986 Conference, Morgan Kaufman, Los Altos, CA 1986

[16] Hayes-Roth B, McDermott J. An inference matching for inducing abstrac-
tion. Communication of the ACM 1978; 21:401-410

[17] Hempel CG. Fundamental of concept formation in empirical sciences. Uni-
versity of Chicago Press, Chicago, 1952

[18] Hintika J. Knowledge and belief. Cornell University Press, Chicago, 1962

[19] Holland JH, Holyoak KJ, Nisbett RE, Thagard PR. Induction: processes
of inference, learning, and discovery, MIT Press, 1986

[20) Hunt EB. Concept formation. John Wiley and Sons, New York, 1974

[21] Marczewski E. A general scheme of independence in mathematics, BAPS
1958; 731-736 | ‘

[22] McDermott D. The last survey of representation of knowledge. Proc of the
AISB/GI Conference on Al, Hamburg, 1978, pp 286-221

[23] Minski M. A framework for representation knowledge. In: Winston P (ed)

The psychology of computer vision, McGraw-Hill, New York, 1975, pp
211-277

[24] Newell A. The knowledge level. Artificial Intelligence 1982; 18:87-127

[25] Orlqwska E. Logic for reasoning about knowledge. Zeitshrift fur Math
Logik und Grundlagen der Math 1989; 35:559-572

[26] Pawlak Z. Rough sets—theoretical aspects of reasoning about data. Kluwer
Academic Publishers, 1991

[27] Pan.ak Z, Skowron A. From the rough set theory to evidence theory. In:
Fedrizzi M, Kacprzyk J, Yager RR (eds) Advances in the Dempster-Shafer
theory of evidence, John Wiley and Sons, 1992 (to appear)

[28] Pawlak Z, Skowron A. Rough membership functions: a tool for reason-
' Ing with uncertainty. Algebraic Methods in Logic and Computer Science,
Ba:nach Center Publications, Institute of Mathematics, Polish Academy of
Sciences, Warsaw, 1993; 28:135-150

[29] Popper K. The logic of scientiﬁckdiscovery. Hutchinson, London, 1959

3 . : .
[ 0] Rauszer C. Logic for information systems. Fundamenta Informaticae 1992
to appear) ‘




42

[31] Rauszer C. Knowledge representation for group of agents. In: Wolenski j i
(ed) Philosophical logic in Poland, Kluwer Academic Publishers, 1992 (to

appear)

[32] Rauszer C. Rough logic for multi agent systems. Proc of the Conference
Logic at Work, Amsterdam, 1992 (to appear)

[33] Rauszer C. Approximate methods for knowledge systems. Proc of the Tth
Int’l Symposium on Methodologies for Intelligent Systems, Trondheim,
1993, pp 326-337

[34] Russell B. Vagueness. Australian Journal of Philosophy 1923; 1:84-92

[35] Russell B. An inquiry into meaning and truth. George Allen and Unwin,
London, 1950

[36] Skowron A, Grzymala-Busse J. From the rough set theory to evidence
theory. In: Fedrizzi M, Kacprzyk J, Yager RR (eds) Advances in the
Dempster-Shafer theory of evidence, John Wiley and Sons, 1991 (to ap-
pear) ‘

- [37] Skowron A, Rauszer C. The discernibility matrices and functions in infor-
mation systems, In: Slowinski R (ed) Intelligent decision support. Hand-

book of advances and applications of the rough set theory, Kluwer Aca-
demic Publishers, 1992, pp 311-362 '

[38] Slowinski R (ed) Intelligent decision support. In: Handbook of advances

and applications of the rough set theory, Kluwer Academic Publishers,
1992

[39] Ziarko W. On reduction of knowledge representation. Proc 2nd Int‘l Symp
on Methodologies of Intelligent Systems, Charlotte, NC, 1987, pp 99-113

[40] Ziarko W. Acquisition of design knowledge from examples, Math Comput
Modeling 1988; 10:551-554




