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Abstract. In the paper we investigate the problem of
optimal decision rules generation by applying the rough set and
evidence approaches. We assume that the reader is familiar with
some basic concepts of the rough set theory ([4,5] and evidence
theory [7). Decision rules have the following form: T=—=>T’
where T,T’ are boolean combinations of descriptors built from
some conditions and decision approximating the expert decision
[(9), respectively. The decision rules are generated with some
certainty coefficients expressed by the basic functions of
evidence theory (and rough membership functions [6]) computable
from a given decision table. These coefficients can be used in
decision making. The method of rules generation is based on a
construction of some boolean functions from modified
discernibility matrices [10]. We construct decision rules in
the optimal form with respect to the number of descriptors
occurring in any disjunct on the left hand side of rules.

1. Introduction

In this section we recall some basic definitions of the
rough set theory [4,5].

An information system is a pair°A = (U, 4), where U is a
non-empty, finite set called the universe and 42 - a non-empty,
finite set of attributes, i.e. a: U — Va for aeA, where Va is

called the value set of a. Elements of U are called objects.

A decision table is any information system of the form A =
(U, Av {d}), where deAd is a distinguished attribute called
decision. The elements of A4 are called conditions.

By V is denoted the set Vv = L)Va v Vq v P(Vg), where P(Vq)
aea

is the powerset of V4. The set Vq will be called the frame of
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discernment of A and denoted by 6. To simplify notation we
assume 6p ={1,...,r(d)}. The decision d determines a partition
CLASSA(d) ={X1,...,Xr(d)} of the universe U, where xk = {xeU:
d(x)=k} for 1sk=r(d).

Let A = (U,A) be an information system. With every subset
of attributes B<A, an equivalence relation, denoted by INDA(B)
(or IND(B)) called the B-indiscernibility relation, Iis
associated and defined as follows:

IND(B)={(x,x’)eUzz for every aeB, a(x)=a(x'’')}

Objects x,x’ satisfying relation IND(B) are indiscernible
by attributes from B.

The sets {xeU: [x]B S X} and {xeU: [x]B n X#0} are called
B-lower and B-upper approximation of X<U in A, and they are

denoted by BX and BX, respectively. The B-boundary of X is the

set BNy(X) = BX - BX. We write BNp(X) instead of BNs(X) when

B=A. A set XcU is definable by B if it is the union of some
classes of the indiscernibility relation IND(B), otherwise it
is roughly definable by B.

An information function Ian :U— P(Ax | Va), for a given
aeld -

information system A=(U,2), is defined by Ian(x) = {(a,a(x)):
acd}. Any subset of Infn(x) is called an information (vector)
about x in A. The set {Ian(x) : xeU} 1is called the A-
information set and it is denoted by INF(A).

Let A be an information system with n objects and m
attributes. By M(R) [10] we denote an nxn matrix (cij), called
the discernibility matrix of A such that

cij = {aecA: a(xi)¢a(Xj)} for i,j=1,...,n.

A discernibility function fp for an information system A

is a boolean function of m boolean variables ;1,..,;m
corresponding to the attributes ay,...,ap, respectively and
defined by
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fp(ai,--.ap) = {\V Eij‘ 1sj<i=n, cjj*e}, where Eij={;: aecjy}.

We will write a instead of a because always from the
context it will be clear if we consider attributes or
corresponding to them boolean variables.

It can be shown [10] that the set of all prime implicants
of fg determines the set of all reducts of A. Here we apply an
analogous method for the decision rules generation by a
generalization of the discernibility matrix notion. The
modified discernibility matrix MG(AR) is a subset of
P(A)x{1,...,n}x{1,...,n} computable from M(R). fug(A) denotes a
boolean function constructed from MG(A) in an analogous way as
fp from M(A).

By PRIME MG(A) we denote the set of all prime implicants
of fHG(A) .

Different forms of decision rules are obtained by

construction of some appropriate forms of MG(A).
2. Rough set theory and evidence theory

The classification problems are central for the rough set
approach [5] as well as for the evidence theoretic "approach
{7)]. In the evidence theory (7] information about sets creating
a partition is embedded directly in some numerical functions.
In the case of rough set approach information about classified
sets and objects 1is included in a decision table. It is
possible to compute the basic functions of evidence theory from
a given decision table [9] by applying the rough set approach.
We use the standard notation 6, m, Bel and Pl to denote the
frame of discernment, basic probability assignment (bpa),
belief and plausibility functions, respectively. For a given
decision table one can define a new objects classification
approximating the classification given by the decision
attribute. The approximation is constructed on the basis of

conditions in decision table.




Proposition 1. [9] Let A=(U, 2 v {d}) be a decision table
and let APP_CLASSA(d)={4xl,...,éxr(d)} v {BdA(e): eseA and

|@|>1}, where Bd,(6) = N BN,(X;) n N
ieo ieo
of all non-empty sets from APP_CLASSA(d) creates a partition of

'BNA(xi)' The family

the universe U. Moreover, the following equality holds:

AX. v V) Bdp(A) = A U X, for 6s8, with |6]|>1.

iee” 1 Ace, |A|>1 iee A

The classification (partition) of the universe U described
in Proposition 1 is called the standard classification of U
approximating in A the classification CLASSA(d) (given by an

expert). We have a —clear interpretation of this new
classification. Any object from the universe U of A is
represented by an information Ian(x) € INF(R). An object x can

be classified exactly on the basis of information Ian(x) only

when the category (i.e. the equivalence <class of the
indiscernibility relation INDA(A)) corresponding to x is
included in xi for some i. Otherwise, that category is included
in a boundary region of the form BdA(e), for some 6. Then an
object x from U represented by the information Ian(x) can be
classified to the boundary region of {Xi: ie8} (i.e. it can be
classified into [in but there is no enough information about
ied
that object x either to decide in which of the sets X; it is or

to eliminate some hypotheses xeX;, where ieg).

There is a natural correspondence between subsets of GA
and elements of APP_CLASSA(d), which can be expressed by the

following function:

Ax, if 6
Fp(6) =4 @ if o

Bd,(6) if |e| > 1

{i} for some i (1=i=r(d))
]




Now we can define the injection

8p: U — P(8,)

as follows: BA(x) is the unique subset 6 of GA such that

XEFA(B).
In other words
aA(x) = {(k: 3x’ xIND(A)x'’ and d(x’)=k} for xeU.

The function aA can be treated as a new decision attribute

(defined by conditions in A) approximating the decision d.

The function m, : P(8p) — R, called the standard basic

A
probability assignment (defined by A ) is defined by
|Fp(0) |
mA(e) = —~—TET— , for any 6s6p.

Proposition 2 [9] The function my, defined above is a basic
probability assignment (in the sense of evidence theory). o

Theorem 3, (9] For an arbitrary 6s8p the following
equality holds:

Ay x,
|—iee ll
Bel_(8) =
" U]
The belief function BelA is Bayesian iff all sets from

CLASSA(d) are definable by the set A4 of conditions. 1In
particular the belief function BelA, where A'=(U,A v {aA}), is

Bayesian. o

Corollary 4. For an arbitrary 0<8p the following equality
holds:
a | x,
I ieB ll
Pl,(8) =
A
U]

3. Decision rules

Now we are going to define decision rules.

The atomic formulas over B<au{d} and V are expressions of




the form a=v (also denoted by (a,v) or ay), called descriptors
over B, where aeB and veVa. The set F(B,V) of formulas over B

is the 1least set containing all atomic formulas over B and
closed with respect to the classical propositional connectives
v (disjunction), A (conjunction) and -~ (negation).

Let <efF(B,V) (where BSsAu{d}) then by t, we denote the

A
meaning of Tt in the decision table A, i.e. the set of all

objects in U with property t, defined inductively as follows:

1. if T is of the form a = v then tA={X€U: a(x)=v};

2. (TAT )p = TpaNT'p (tvt')A = tAUt’A ; (1r)A = U-T

A.
The set F(A,V) is called the set of condition formulas in
A and is denoted by CA. The set F({aA},V) is called the set of

decision formulas in A*=(U,Au{aA}) and is denoted by D,-

If wu={(aj;=vi),...,(ar=vy)} then by <ty Wwe denote the
conjunction (aj=vi)A...A(ay=vy). By A(T) we denote the set of
attributes occurring in the formula T or corresponding to

boolean variables occurring in the formula <.

A decision rule for A is any expression of the form
T==>T’ where teCp and t’e Dp.

The decision rule t=—=>t’ for A is true in R iff Tp < Tp*.
If Tp = Tp* then we say that the rule t—=>t’ is A-exact.

An A-exact rule T=>t’ is A-optimal iff

(i) every disjunct in t has the minimal number of
descriptors, i.e. if t’’ is obtained from any disjunct
from Tt by an elimination (from that disjunct) of some
(but not all) descriptors then t’/’==>t’ is not true in
A;

and (ii) if the rule ty —> t’, where u is an information about




an object in A is true in A then there exists a subset
u’su such that tTys ==> t’is also true in A and Ty is
a disjunct in t.

We construct the optimal rules by applying the mentioned
above method based on the modified discernibility matrices.

We consider three binary relations R, (i=1,2,3) in P(8p)
defined by:
ARA, iff Aj=A;;
ARA, iff ASA,;
and AjR;A, iff AynA,2e for any A;,A,S8p.

We define for a given decision table A, As8p and x,eU with
a property aA(x,)RkA the discernibility matrices:

Decision rules for k=1,2,3 have the following form:

T =—> \/ {6,=6: 6R,A} , where As8p and teCp

Our main result can be formulated as follows:

Theorem 5. Let A = (U,4v{d}) be a decision table, As8p and
ke{1,2,3}. Then we have:

1. \/ {ty: Ix,t,u (aA(x)RwA &
tePRIME_MG, (R, A, %) &
u=INF(t,A*,x))} —> \/1{8,=6: 6R,A)}
where INF(t,RA*,x)={(a,a(x)): acA(t)},
is an A-optimal decision rule.

| {xeU: aA(x)RkA}l

2. The value of o] is equal to mp(4),

Belp(A) and Plp(A) for k=1,2,3, respectively. o




The set INF (t,A*,x)={(a,a(x)): aeA(t)} is called the
trace (in A) of the prime implicant t on xeU.

For k=1 the rule describes a minimal information on the
basis of which we are able to classify objects into the union

lJXi without possibility to eliminate any hypothesis X; for
ied

ieA. For k=2 (k=3) the rule describes a minimal information on
the basis of which we are able to classify objects as certainly
(possibly) belonging into the union Lin' i.e. as belonging to
ieA
.| L}Xi (A iji). The value mp(A) describes a "chance" that an
ieA ieA

object chosen from A is classified by 3p into A. The value

Belp(A) describes a "chance" that an object chosen from A is

classified with certainty into the union [jxi (on the basis of
ieA

knowledge determined by A4). The value Plp(A) describes a

"chance" that an object chosen from R is classified as possibly

belonging to iji (on the basis of knowledge determined by A).
ieA

The numerical coefficients computed as the values of the
basic probébility assignments, belief or plausibility functions
can be applied in the decision making. The rough membership
functions [6] can be also used with the same purpose.

4. Examples

Let us consider a decision table A=(U,Au{d}) presented in
Table 1, where we have U={x“...,x§}, A={a,b,c} and d is the

decision. The values of attributes are presented in Table 1. In
the examples we write af and a+8 instead of arB and avB,
respectively.




X 1 0 1l 2

Table 1

In Table 2 the values of the "new" attribute aA are

presented.

In Table 3 we present the discernibility matrix for the
information system (U,4) (without the decision attribute d).
The rows and columns in the table are labelled by values of the

function aA for A=(U,Auv{d}).

c d A
x| O 0 ] 0 {0}
x,| © 1 ] 1 {1}
x| 0 0 1 0 {0,2}
X 1 1 0 1 {1}

x 1 1 1 1 {0,1}

x 1 1 1 0 | {0,1}

x| o 0 1 2 | {0,2)

x| 1 0 1 2 {2}

Table 2




We will construct the A-optimal rule of the form:

o w—> 8A={1}

In order to construct o we consider the following
discernibility matrices: MGI(A,{l},xz) and HG‘(A,{I},X‘).
HGl(A,{l},xz) has the following non-empty entries:

b; bc; ac; ac; bc; abc.

{0}y {1}y ({o0,2} {1} (0,1} {0,1} {O0,2} {2}
x x x x x X x x

1 2 3 4 5 6 7 8
{0} X, o b c ab abc abc c ac
{1} X, b -] bc a ac ac bc abc

{0,2} X, C bc 2 abc ab ab - a
{1} x, ab a abc 2 c c abc bc

{0,1} X, abc ac ab c ] -3 ab b

{0,1} X, abc ac ab c o - ab b

{0,2} X, c bc ) abc ab ab 2 a
{2} x| ac abc a bc b b a o

,Table 3

They are in Table 3 in the row corresponding to x, and in the
columns corresponding to objects x satisfying aA(x):aA(xz). The
discernibility function corresponding to that matrix has, after
the simplification, the following form:

b(a+c) = ba + bc.
We have PRIME_MG, (A,{l},x2)={ba,bc}. Hence we obtain the

following disjuncts of a taking in Table 1 traces of the prime

implicants ba, bc in the row corresponding to X,
bla0 ' blco.
HGI(A,{I},x‘) has the following non-empty entries:
ab; abc; c; c¢; abc; bc.
They are in Table 3 in the row corresponding to X, and in the

10




colums corresponding to objects x satisfying aA(x)aal(x‘). The

discernibility function corresponding to that matrix has, after
the simplification, the following form:

c(a+b) = ca + cb.
We have PRIME MG (R,{1},x,)={ca,cb}. Hence we obtain the

following disjuncts of a taking in Table 1 traces of the prime
implicants ca, cb in the row corresponding to x

c cb.
oax' o1

Finally we obtain the following A-optimal decision rule:
aob1 + blco + ac, — aA={1}

Any disjunct in a has the minimal number of descriptors: if any
descriptor is deleted from any disjunct then obtained rule is
no longer true in A. We have also mA({l})=2/8.

Now we will construct the A - optimal rule of the form:

In order to construct B we consider the following
discernibility matrix: MGi(A,{O},xl). »
HGI(A,{O},xl) has the following non-empty entries:

b; c; ab; abc; abc; c; ac.
They are in Table 3 in the row corresponding to x, and in the
columns corresponding to objects x satisfying aA(x):aA(xz). The

discernibility function corresponding to that matrix has, after
the simplification, the following form:

bc.
We have PRIHE_HGI(A,{0},x1)={bc}. Hence we obtain only one
disjunct of g taking in Table 1 the trace of the prime
implicant bc in the row corresponding to x

b c .
00

11




We obtain the following A-optimal decision rule:
boco —_ 8A= {0}

The disjunct bc, has the minimal number of descriptors: if any

descriptor is deleted from it then the obtained rule is no
longer true in A. We have also mA({O})=1/8.

Let us construct now the A-optimal rule of the form:
¥ => 8,={0,1}

In order to construct 7 we consider the following
discernibility matrices: HGl(A,{O,l},xs) and HGi(A,{O,l},x‘).
HGI(A,{O,l},xs) has the following non-empty entries:

abc; ac; ab; c; ab; b
They are in Table 3 in the row corresponding to X, and in the
columns corresponding to objects x satisfying aA(x):BA(xs). The

discernibility function corresponding to that matrix has, after
the simplification, the following form:

bc.
We have PRIHE_MGi(A,{0,1},xs)={bc}. Hence we obtain the

following disjunct of 7 taking in Table 1 the trace of the
prime implicant bc in the row corresponding to x :

bacx'
Since HGI(A,{O,l},xs) has the same non-empty entries as
HGl(A,{O,l},xs) we obtain the following A-optimal decision
rule:

b1c1 —_—D> 6A={0, 1}

The disjunct bﬁﬂ has the minimal number of descriptors: if any

descriptor is deleted from it then the obtained rule is no
longer true in A. We have also mA({O,l})=2/8.

12




Let us construct also the A-optimal rule of the form:

§ ==> 8,={0,2}

In order to construct & we consider the following
discernibility matrices: HGI(A,{O,z},xa) and HGI(A,(O,z},xv).
HGI(A,{O,Z},X3) has the following non-empty entries:

c; bc; abc; ab; ab; a
They are in Table 3 in the row corresponding to X, and in the
columns corresponding to objects x satisfying aA(x)taA(xs). The

discernibility function corresponding to that matrix has, after
the simplification, the following form:

ac.
We have PRIHE_HGI(A,{O,Z},x2)={ac}. Hence we obtain ¥ with only

one disjunct taking in Table 1 the trace of the prime implicant
ac in the row corresponding to X :

ac.

01
Since HGI(A,{O,Z},X7) has the same non-empty entries as
HGi(A,{O,l},xa) (in the implementation of indiscernibility

matrices one can take only one representat for each
indiscernibility class) we obtain the following A-optimal
decision rule:

ac, —_—D aA={0,2}
The disjunct ac has the minimal number of descriptors: if any
descriptor is deleted from it then the obtained rule is no
longer true in A. We have also mA({O,Z})=1/4.

Let us now construct the A-optimal rule of the form
¢ => 3A={1} + 6A={0}‘+ 3A={0,1}

In order to construct ¢ we consider the discernibility matrix
for the information system (U,A4) with rows and columns labelled
by the values of a function dlz U ——> {0,1} defined by




<:l1 (xj)=0 for j=3,7,8 and dl(xj)sl otherwise.
Hence the value d1(xj) = 1 iff 8A("j)‘{9'1}‘ In this way we
obtain Table 4.
Let us now consider the following discernibility matrices:
MG,(R,{0,1},x,),
MG,(R,{0,1},x ),
MG, (R, {0,1},x,),
MG,(A,{0,1},x),
MG,(R,{0,1},x ).

1 1 0 1 1 1 0 0

X, X, x, x, X, X, x, x,
1 X 2 b c ab abc abc c ac
1 X, b -/ bc a ac ac bc abc
0 X, c bc ] abc ab ab 2 a
1 x, ab a abc 2 c c abc bc
1 X, abc ac ab c 2 2 ab b
1 X, abc ac ab c 2 e ab
0 X, c bc 2 abc ab ab 2 a
0 X, ac abc a bc b b a -]

Table 4

They have the following non-empty entries:

MGZ(A,{O,l},xl): c, ¢, ac;
MGZ(A,{O,l},xz): bc, bc, abc;
MGE(A,{O,l},x‘): abc, abc, bc;
MGZ(A,{O,l},xs): ab, ab, b;
MGZ(A,{O,l},xs): ab, ab, b.

Hence PRIHE;HG;(A,{0,1},x&)={c},




PRIME_MG,(R,{0,1},x,)={b,C},
PRIME_MG,(A,{0,1},x,)={b,c},
PRIME_MG, (R, {0,1},x_) =PRIMNE_MG,(R,{0,1},x,)={b}.

Now we can compute the disjuncts of ¢ by taking in Table 1
the traces of all prime implicants of those discernibility
functions in rows 1,2,4,5 and 6.  In this way we obtain:

b + ¢, ==> 8,={1} + 3,={0} + 3,={0,1}

The above rule is A-optimal. We have also
Bel,({0,1}) =|(b + c))p|/|U| = 5/8.

The formula b1 + c, describes the set of all objects in A

which can be classified on the basis of knowledge included in
conditions a,b,c as belonging with certainty to the set of
objects with decision 0 or 1. ’

Let us now construct the A-optimal rule of the form
¢ => 9,={1} + 3,={0} + 8,={0,1} + 8,={0,2}

In order to construct ¢ we consider the discernibility matrix
for the information system (U,A4) with rows and columns labelled
by the values of a function dZ: U ~—> {0,1} defined by

dz(xj)=0 for j=8 and dz(xj)=1 otherwise.
Hence the value cg(xj) = 1 iff 6A(xj)n{0,1}:z. In this way we
obtain Table 5.
Let us now consider the following discernibility matrices:

MG_(R,{0,1},x ),
MG (R,{0,1},x,),
MG_(R,{0,1},x.),
MG (R, {0,1},x,),
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G, (A, {0,1},x ),
MG_(R,{0,1},x,),
MG (R,{0,1},x ).

1 1 1 1 1 1 1 0

x, x, X, x, X, X, X, X,
1x| o b c ab | abc | abc c ac
1 X, b ] bc a ac ac bc abc
1 X, c bc ] abc ab ab ] a
1 x, ab a abc 2 c c abc bc
1 X, abc ac ab c 2 ] ab b
1 X, abc ac ab c 2 2 ab b
1 x, c bc ] abc ab ab ] a
0 x, ac abc a bc b b a ]

Table 5

They have the following non-empty entries:

HG3(A,{0,1},x1): acj;
HC%(A,{O,l},xZ): abc;
HG3(A,{0,1},X3): a;
HGa(A,{O,l},x‘): bc;
HG3(A,{0,1},x5): b.
MG (R,{0,1},x ): b;
HG3(A,{O,1},X7): a.

Hence the discernibility functions corresponding to these

discernibility matrices are defined by a+c, a+bsc, a, b+c, b,
b, a, respectively.
We have
PRIME_MG_(R,{0,1},x )={a,c},
PRIME_MG (R, {0,1},x,)={a,b,c}

PRINE_MG_(R,{0,1},x )={a},

16




PRIME_MG_(R,{0,1},x )={b,C},
PRIME_MG_(R,{0,1},x,)=PRIME_MG (R,{0,1},x,)={b},
PRIME_MG,(R,{0,1},x )={a}.

Now we can compute the disjuncts of ¢ by taking in Table 1
the traces of all prime implicants of those discernibility
functions in rows 1,2,3,4,5,6 and 7, respectively. In this way
we obtain:

a, + b + c ==> 3,={1} + 8,={0} + 8,={0,1} + 8,={0,2}
The above rule is A-optimal. We have also
P1,({0,1}) =|(a, + b + c)),lsU| = 7/8.

The formula a, + b1 + C describes the set of all objects in A

which can be classified on the basis of knowledge included in
conditions a,b,c as possibly belonging to the set of objects
with decision 0 or 1.

Conclusions

Let us observe that the introduced numerical coefficients
are computable from a given decision table. The discussed
methods of decision rules generation are implemented in our

system for classifying objects. The complexity of the method is

; of the same order as for the reduct set generation. In many
3 tested practical applications the method was successful despite
i,of that the complexity of the reduct set generation (in worst
%;case analysis) is high (exponential with respect to the number
?of objects). Moreover, the large number of computed reducts can
ﬁbe treated as a signal that our conditions are inappropriate for

‘defining a given classification. In fact, this corresponds to a
alituation when the generated rules would have many disjuncts on
the left hand side of the decision rule with each disjunct
supported only by a few examples. This implies that the
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attributes chosen for decision taking are not suitable for
expressing the characteristic properties of the decision classes
and a searching process for some new, more appropriate,
attributes (classifiers) is necessary. We investigate procedures
for classifiers searching from formulae sets of modal and
temporal logics [11].

We propose to investigate also logics with belief
functions. The semantics of these logics is based on so called
decision table maps. These are some kinds of Kripke models with
worlds indexed by information vectors defined by a given
decision table A, the accessibility relation between worlds
defined by the inclusion relation between information vectors
and with a special structure attached to any information
vector. Any such a structure is defined by the restriction of A
to the information 1labelling that structure and contains
restricted to that table belief functions. We will investigate
this kind of 1logics as candidates for expressing new
classifiers, i.e. we would like to verify a hypothesis that

formulas of those 1logics can be often more suitable for
expressing characteristic properties of object classes than
those given in decision table.

The well known rule of evidence combination from
independent sources of information is the Dempster-Shafer rule
[7]. It was shown in [9] that this rule is related to an
independent product of decision tables. In the case of that
product two descriptions seen as contradictory (on the basis of
evidence from independent sources) are eliminated. Quite often
i one can not assume that the evidence sources are independent.
If an object is classified by two sources into A,={6,,6,} and
g;“A-‘,={63,84} and the first source eliminates the hypothesis 6,
because of not sufficient knowledge to judge if 6, holds and
the knowledge of the second source to judge about 65 is enough
deep then the hypothesis 8; should not be eliminated. Hence, in
general, the combination rule should be based not only on the
bpa functions but also on properties of knowledge embedded in

18




both sources. We will investigate special logics for this kind
of reasoning.
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