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The recent publication of 2 monograph on the theory and the handbook on applications,
new developments and comparison with related methodologies® underline a dynamic growth
of the rough sets methodoiogy.

Roman Slowiiski
Jerzy Stefanowski
Guest Editors

* Z. Pawlak, Rough Sets — Theoretical Aspects of Reasoning about Data Kluwer Academic
Publishers, Dordrecht 1991; .

Intelligent Decision Support — Handbook of Applications and Advances of the Rough
Sets Theory, R. Slowinski {ed.), Kluwer Academic Publishers, Dordrecht 1992,
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Motto: “Apart [rom the
known and the unknown,
what else is there?”
(Harold Pinter in The
Homecoming)

“The central problem of
our age is how to act
decisively in the absence
of certainty” '
(Bertrand Russell)

ROUGH SETS
Present State and the Future

ZDZISLAW PAWLAK®

Abstract. The paper presents the basic philosophical assumptions undetlying the rough
sets theory, gives its fundamental concepts and discusses briefly possible areas of applications,
Finaly further problems are shortly oulined.

1. PHILOSOPHY

The rough set philosophy bears on the idea of classification. Any living
organism or robot (an agent), in order to behave rationally in the outer
realm, must have the ability to classily real or abstract objects (for example
the sensory signals). In order to classify one has to postpone some differences
between objects, thus forming classes of objects which are not noticeably
different. These indiscernibility classes can be viewed as basic building blocks

* Institute of Computer Science, Warsaw University of Technology, Nowowicjska 15/19,
00-665 Warsaw, Poland.



158 Zdzislaw Pawlak

(concepts) used to build up a knowledge about reality. For example if
objects are classified according to color, then the class of all objects classified
as red form the concept of redness. Thus our assumption is that any agent
is equiped with mechanisms of variuos classification patterns and clementary
concepts associated with those classifications form his basic knowledge about
the world and himsheif, Thus knowledge in the presented approach can be
understood as an ability to classify. Hence, formally knowledge can be
defined as a familily of partitions of a fixed universe or, what is the same
from mathematica! point of view, as a family of equivalence relations. The
presented view of knowledge is of semantic nature, where granularity of
knowledge (indiscernibility of some objects) is of primary importance — in
oposit to widely spread syntactic definition of knowledge in which formal
aspects of knowledge are assumed as a starting point of the definition (cf.
[3]). This can be also worded that in the rough set theory data are set
before the language.

The most important issue addressed in the rough sets theory is the
idea of imprecise knowledge. In this approach knowledge is imprecise if it
contains imprecise concepts. But what are the imprecise concepts? The
answer is straightforward. A concept which can be expressed (defined) in
terms of the assumed classification patterns is crisp or precise, otherwise
the concept is imprecise or vague. It turns out that the imprecise concepts
can be however defined aproximatelly in the available knowledge by employing
two precise concepts called their lower and upper approximation; the lower
approximation of a concept consists of all objects which surely belong to
the concept whereas the upper approximation of the concept consists of all
objects which possibly belong to the concept in question. Difference between
the lower and the upper approximation is a boundary region of the concept,
and it consists of all objects which cannot be classified with certainty to
the concept or its complement employing available knowledge. This view
on vagueness can be attributed to Frege, who writes:

The concept must have a sharp boundary. To the concept without a sharp
boundary there would correspond an area that has not a sharp boundary-line
all around (cf. [7])

The idea of approximations is the basic tool in the rough set philosophy.

2. THE THEORY

The concept of the rough set has inspired variety of research of both
theoretical and practical nature. Logical research on approximate reasoning
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seems to be more feasible and number of papers have been published in
this area. The basic idea here is that conclusions are drown with some
approximation only and are not exact as in the case of ,classical” logic.
Rough sets approach contributed already to this area of rescarch, but the
ultimate aim needs more research {cf. e.g. [6,8,32]). More references to this
area of research can be found in [27].

Besides, investigations having direct practical use, like efficient algorithms,
complexity of basic algorithms, comparison to other theories (e.g. like fuzzy
sets, theory of evidence, statistics and others) are of great importance and
are by now rather in the early state of development (cf. [4, 5, 6, 8, 12, 16,
28, 29, 39, 46, 48]).

In order to present the above ideas formally we need a suitable method
of representing classifications. To this end we will use the concept of an
information systems, known also as an attribute-value systems or an knowledge
representation systems.

Information system is a finite table with rows labelled by objects, columns
are labelled by attributes, moreover with each attribute a finite set of its
values, called domain of the attribute, is associated. To each object and an
attribute a value of the attribute is associated. For example if the object
were an apple and the attribute — color, then the corresponding entry in
the table could be red.

Simple example of such table, which characterizes six stores in terms
of some factors is shown below (cf. [15]).

Store E 0 S R L P
1 high good  yes yes no 500
2 high good  no yes no — 100
3 med. good  yes yes no 200
4 low avg. yes yes yes 70
5 low goo yes yes yes 100
6 high avg. Ho no yes - 20

Objects in the table are stores numbered from one to six and attributes

are the following factors:

— empowerment of sales personnel

— perceived quality of merchandise

— segment customer base

good refund policy

— high traffic location

— store profit or loss (in millions of US dollars)

p-Eal--Rcl el
!



160 Zdzistaw Pawlak

Attribute E has the values high, medium and low; attribute S has values
good and average; attributes R, L and P have attribute values yes and no,
whereas values of attribute P are integers.

It is easily seen that each attribute in the table defines a partition of
objects, i.c. an equivalence relation, such that two objects belong to the
same equivalence class if they have the same attribute values. Thus attributes
in the information system represent various classification patterns and the
whole table can be regarded as a simple way of notation for families of
classifications, or what is the same — families of equivalence relations.

Formally an information system is a pair §=(U,A), where U is
a non-empty finite set of objects called the universe and A is a finite set
of attributes. With every attribute a set of its values, called the domain of
a, and denoted V,, is associated. Every attribute a€4, is a function a:
U — ¥, which to each object xeU uniquely associates an attribute value
from V,. Objects can be anything we can think of, for example states,
processes, moments of time, physical or abstract entities etc.

Every subset of attributes B < A defines uniquely an equivalence relation

IND (B) = {(x,)e Uk a(x) = a(y) for every aeB).

As usually U/IND(B) denotes the family of all equivalence classes of
the equivalence relation IND(B), ie. the classification corresponding to
IND(B).

The lower approximation of X < U by B is the union of equivalence
classes of IND(B) which are included in X, or formally

BX = {YEU/IND(B): Y S X}

The upper approximation of X = U by B is the vnion of all equivalence
classes of IND(B) which have not-empty intersection with X, ie.

BX = J{YeU/IND(BrYnX+¢}

The boundary-line region is of course defined as

BNy(X) = BX—BX and will be called the B-boundary of X.

Set BX consists of all elements of U which can be with certainty
classified as elements of X employing knowledge B; Set BX is the set of
all elements of U which can be possibly classified as elements of X using
set of attributes B; set BN ,(X) is the set of all elements which cannot be
classified either to X or to —X by means of attributes from B.

Now we are able to give the definition of the rough set.

A set X € U is rough with respect to B, il BX # BX, otherwise the set
X is exact (with respect to B).

Rough sets i6l

Thus a set is rough if it does not have sharp defined boundary, Le. it
can not be uniquely defined employing available knowledge.

For practical applications we need numerical characterization of vagu-
eness, which will be defined as follows:

card BX
25(X) = card BX
where X # ¢, called the accuracy measure.

The accuracy measure oy(X) is intended to capture the degree of
completeness of our knowledge about the set (concept) X.

.. QObviously 0 < ag(X) <1, for every B and X c U; if az(X)=1 the
R-boundary region of X is empty and the set X is definable in knowledge
B; if az(X) <1 the set X has some non-empty B-boundary region and
consequently is undefinable in knowledge B.

The idea of approximation of sets is the basic tool in the rough set
approach and is used to approximate description of some concepts (subsets
of the universe) by means of attributes. For example, we might be interested
whether there are factors characteristic for stores having high (above 100
Millions dollars) profit, and if not — to find the lower and the upper
characteristic of these stores. The reader is advised to answer this question
using the above given definitions.

Starting from the concept of classification we can also define a variety
of other notions fundamental to rough sets philosophy and applications —
needed to discover various relations between attributes, and objects. The
most important ones are the dependency of attributes (cause-effect relations),
redundancy of attributes and decision rule generation.

For example we may be interested whether the factor P (store profit
or loss) depends, exactly or approximately, on the remaining five factors,
i.e. whether values of factor P are determined by values of factors E, @,
S, R and L (dependency of attributes). If so, then the question arises if all
the factors really influence the factor P (redundancy of attributes), and if
not, which are the ones which matters. The most important problem is to
find a set of decision rules (exact or approximate) which determine the
stories performance.

All these problems can be easily defined and investigated within the
rough set theory, however we will drop these considerations here. More
details can be found in [10, 27, 51]. '
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3. APPLICATIONS OF ROUGH SETS

The rough sets theory has proved to be very useful in practice. Many
real life applications in medicine, pharmacology, industry, engineering, control,
social sciences, earth sciences and other have been successfully implemented.
Some of them are listed in the references [1, 9, 13, 14, 17, 18, 19, 22, 23,
25, 33, 34, 41, 42]. Besides, the book edited by professor Roman Stowinski
[36] can be used as a reference book on applications of the rough sets theory.

By now rough sets have been mainly used to data analysis. Data are
very often imprecise. For example in medicine body temperature, blood
pressure etc. have usually not exact numerical values but are rather expressed
as qualitatively values, like normal, above normal or below normal etc.

Rough set theory is mainly used to vague data analysis. Main problems
which can be solved using rough set theory in data analysis are data
reduction, (elimination of superfluous data), discovering of data dependencies,
data significance, decision (control) algorithms generation from data, appro-
ximate classification of data, discovering similarities or differences in data,
discovering patterns in data and the like (cf. [12, 14, 15, 18, 19, 22, 25, 33,
34, 35, 37, 38, 41, 42].

Machine learning is another important area where rough sets can be
use. There is a variety of approaches to machine learning, however by now
no commonly accepted theoretical foundations have been developed. It seems
that the rough set approach, can be used as a theoretical basis for some
problems in machine learning. Some ideas concerning the application of
rough sets in this area can be found in [2, 11, 30, 31, 44, 46, 47, 49].

Rough sets approach offers alternative methods to switching circuits
synthesis and minimization, fault diagnosis and other (cf. [20, 21]).

Image processing is also a promising field of the rough sets theory
applications. Using basic concepts of the rough sets theory one can easily
develop many basic algorithms for image processing and character recognition
like, for example thinning algorithms.

Some methodological reflections seems to be in order.

Applications of rough sets can be divided into several groups having
some common methodological features — which are listed below:

1. Data analysis. Main problems which can be solved using rough set
theory in data analysis are: data reduction, discovering of data dependencies,
data significance. This can be viewed as a counterpart of statistical data
analysis.

2. Approximate classification. In this area rough sets can be used to
decision (control) algorithms generation from data, discovering similarities or

Rough sets 163

differences in data, discovering patterns in data. This area can be regarded
as a counterpart of cluster analysis.

3. Switching cireuits. Rough sets approach offers alternative methods to
switching circuits synthesis, and minimization, fault diagnosis and others. This
is closely connected with boolean reasoning methods.

4. Image processing. Using basic concepts of the rough sets theory one
can easily develop many basic algorithms for image processing like, for
example thinning and countor finding algorithms.

5. Machine learning. Machine learning is usually meant as sort of
inductive inference, in which a sample is used to draw conclusions about
the whole universe. This is known in the Al literature as learning from
examples. Rough sets metodology seems to be very well suited for this kind
of study.

4, PROBLEMS

There is a wide spectrum of problems inspired by the rough sets
philosophy. Some of them are listed below. Evidently rough sets view can
contribute to the long lasting philosophical discussions on vagueness, uncer-
tainty, imprecision and indiscernibility. Besides, various theoretical questions
in set theory, topology and logic, which have arisen within the context of
rough sets, are also of interest. Also more practical questions need appropriate
attention. In particular problems related to incomplete, and distributed
knowledge seem of primary importance, for not very much has been done
in these areas. The developed algorithms based on the rough sets approach
are very well suited to parallel processing, especially when appropriate
hardware could be developed. Finally computing machine based on the
rough sets concept, in which decision rules would play the role of elementary
instructions is worthy consideration. Decision support systems would gain
momentum having such tools. Rough controlers seems to have also bright
future.
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A CATEGORY FOR ROUGH SETS®

MOHUA BANERIJEE", M.K. CHAKRABORTY"

Abstract. A category ROUGH for rough sets has been proposed, a subcategory {&-ROUGH
of ROUGH considered and a relationship of ROUGH with other categories studied. Some
properties of ROUGH have been proved.

1. INTRODUCTION

The concept of “rough sets™ has been proposed by Pawlak [7]. So far,
considerable research has been done involving various aspects of this new
concept. We present here a category that may capture the notion.

A rough set is often looked upon as the pair of the upper and lower
approximations of a set in an approximation space. We think such a re-
presentation captures only the extensional facet of the concept and fails to
express the notion of “rough equality”. The category proposed in this paper,
on the other hand, captures both the intention and the extension of rough
sets. Morphisms defined appear, quite naturally, to be extension-preserving.
In the first section, we have described the category and derived some of
its properties. Further studies would lead to other revelations. In the next
section, a subcategory £-ROUGH of ROUGH has been considered. In this
subcategory, morphisms are so designed that they preserve structures in the
objects more rigidly. In the last section, it has been shown that although
the category ROUGH is not a topos, it occupies a position in between
two categories which are topoi and mutually equivalent. For most of the
categorial concepts, we have followed Goldblatt [1] and Mitchell [4].
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