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5 Rough sets: A new approach
to vagueness

Zdzistaw PAWLAK

Institute of Computer Science
Warsaw Technical University
ul. Nowowiejska 15/19
00-665 Warsaw, POLAND

Abstract. A brief exposition of the concept of a rough set is presented, with an
extensive list of literature on its related theories and applications. A rough set
is basically meant to represent a vague concept (a vaguely specified set) by two
precisely specified sets, called lower and upper approximations, with their
difference being a boundary region. Knowledge is basically defined in terms
of rough classification whose main underlying concept is an indiscernibility
relation. A measure of accuracy (vagueness) is presented. Numerous ap-
plications in a wide spectrum of fields are reviewed.

1. INTRODUCTION

The idea of a rough set (Pawlak, 1982) has been proposed as a new
mathematical tool to deal with vague concepts, and seems to be of
some importance to Al and cognitive sciences, in particular expert
systems, decision support systems, machine learning, machine dis-
covery, inductive reasoning, pattern recognition, and decision tables.

Vagueness is not a clearly understood idea and there are many
approaches to it. The rough set approach to vagueness is closely
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related to the so-called “boundary-line” view, which is credited to
Frege (1903) who writes:

The concept must have a sharp boundary. To the concept without
a sharp boundary there would correspond an area that had not
a sharp boundary-line all around.

Thus, according to Frege, a precise concept must have a sharp
boundary, whereas a vague concept is characterized by its boun-
dary-line cases. In other words, if a concept is precise, then for each
object it can be decided whether it belongs to the concept or not; for
vague concepts this is not the case.

For example, the concept of an odd (even) number is precise,
because for each number it can be decided whether it is odd (even) or
not. But the concept of a beautiful woman is vague, because for some
women it cannot be decided whether they are beautiful or not (there
are boundary-line cases).

Cantor’s set theory can deal only with precise concepts. There are
many approaches to “soften” classical set theory so that vague
concepts could be also considered. One of the most successful
approaches in this direction is the well-known fuzzy set theory of
Zadeh.

The basic idea of rough set theory consists in replacing vague
concepts with a pair of precise concepts (so that classical set theory
can be applied). This is called lower and upper approximation. For
example, the lower approximation of the concept of a beautiful
woman contains all women that are beautiful with certainty (there is
no doubt that they are beautiful), whereas the upper approximation of
this concept contains all women that cannot be excluded from being
considered beautiful. Clearly the upper and the lower approximations
are precise concepts.

With each vague concept a boundary region is associated, which
consists of all objects that cannot be placed clearly within the concept.
For example, all women that cannot be said with certainty to be
beautiful belong to the boundary region of the concept of a beautiful
woman. The “size” of the boundary region can be used as a measure of
vagueness of the vague concept. (The greater the boundary region, the
more vague is the concept; precise concepts do not have boundary
regions at all) Obviously the boundary region is the difference
between the upper and lower approximation of the concept.

Rough set theory is used mainly for data analysis. Among the types
of problems that can be solved using rough set theory in data analysis
are the following: data reduction (elimination of superfluous data),
discovering of data dependencies, data significance, decision (control)
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algorithms generated from data, approximate classiﬁt.:ation of dat:a,
discovering similarities or differences in data, discovering patterns in
data, and discovering cause—effect relationships. ‘ .

The proposed approach has proved to be very useful in practice
and many real-life applications of this concept have been implemen-
ted. Some of these are listed below:

Engineering design (Arciszewski et al. 1986, 1987) .

Generation of cement kiln control algorithm from observation
of kiln stoker actions (Mrozek, 1989) . .

Approximate (rough) classification of patients after highly
selective vagotomy (HSV) for duodenal ulcer (Greenburg,
1987; Pawlak et al., 1986) - o

Analysis of peritoneal lavage in acute pancreatitis (Stowinski et
al., 1989) ' ' .

Analysis of hierarchy of factors of a surgical wound infection
(Kandulski et al., 1990) .

Aircraft pilot performance evaluation (Krasowsklz %988)

Analysis of relationship between structure and activity of drugs
(Krysidski, 1990) ' .

Study of water runoff from a river basin (Reinhard et al., 1989)

Control of water—air relation on a polder (Reinhard et al., 1989)

Vibration analysis (Nowak et al., 1990)‘

Switching function minimization (Rybnik, 1990)

Machine learning is one of the most important ﬁe}ds of a.rfiﬁcigl
intelligence, and a growing number of researchers are myolved in this
area. There are a variety of approaches to machine learning; however,
at present no commonly accepted theoretical foundations have been
developed. It seems that the rough set approach can be usqd as
a theoretical basis for some problems in machine learning. Some ideas
concerning the application of rough sets in this area have been
published by Grzymata-Busse (1988, 1989), Hadjimichael (1989),
Orlowska (1986), Pawlak (1986a, b, 1987), Pawlak et al.'(1988),
Pettorossi et al. (1987), Ras and Zemankova (1986), Wasilewska
(1990a, b), and Wong et al. (1986a, b). . .

The concept of a rough set has also inspired a variety of logical
research: Jian-Ming and Nakamura (1990), Konikowska (1987),
Krynicki (1989, 1990a, b), Krynicki and Tuschnick (1990), Nakamura
and Jian-Ming (1988), Orlowska (1985a, b, 1989), Pawlak (1987b),
Rasiowa (1985, 1986a, b), Rauszer (1985, 1986), Szczerba (1987),
Vakarelov (1981, 1989) Wasilewska (1988, 1989), and others. Most of
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this research has been directed toward creating logical tools to deal
with approximate reasoning.

Algebraic properties of rough sets have been studied by Comer
(1991), Grzymata-Busse (1986), Iwinski (1987), Nieminen (1988),
Novotny and Pawlak (1985-1991), Obtulowicz (1988) and Pomykata
and Pomykala (1988).

The rough set concept overlaps in many areas with other mathe-
matical ideas developed to deal with imprecision and vagueness, in
particular with fuzzy sets. Fair comparison of rough sets and fuzzy
sets can be found in Dubois and Prade (1988). Some remarks on
comparison of fuzzy sets and rough sets can be also found in Chanas
and Kuchta (1990), and Wygralak (1989). The relation of rough set
theory to the Dempster-Shafer evidence theory has been discussed by
Grzymala-Busse (1988) and Skowron (1989).

2. PRECISE AND VAGUE KNOWLEDGE

As we mentioned in the introduction, in the proposed approach we
replace vague concepts with a pair of precise concepts. In other words,
we would like to represent some concepts by means of other concepts.
To this end we will need some operations on families of concepts. We
must introduce here the idea of knowledge, which is simply a family of
concepts (as a language in formal linguistics is defined as a set of
sentences, or a theory in logic is understood as a set of theorems).
Thus, any family of concepts will be called knowledge. If all concepts
are precise the corresponding knowledge is precise; otherwise the
knowlege is vague. More exactly, let U be a finite set called the
universe of discourse (in short, the universe). Any subset X of
U (X 2 U), will be called a concept in U and any family F of concepts
in U(F < P(u), P(U) is the family of all subsets of U), will be referred
to as knowledge about U. It seems natural to assume that the family
F is closed under the set theoretic union, intersection and comp-
lement, that is if X and Y are conceptsin F,so are X,u Y, X n Y, and
-X.

Suppose we are given knowledge F about U and a concept Y < U.
Now we may ask whether Yis precise or vague in F. Of course, if
Y < F, then Y is precise in F, otherwise Y is vague in F. How we can
approximate the vague concept Yin F? It seems to be justifiable to
approximate the concept Y from below and from above as follows:
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The lower approximation of Y in F, denoted F Y, is the union of
all exact concepts X in F that are included in Y.

The upper approximation of Yin F, denoted FY, is the intersection
of all exact concepts X in F that include ¥.

For practical and mathematical reasons, which will not be discussed
here, we will assume a somewhat modified definition of approxima-
tion of vague concepts by means of precise concepts. The idea of
approximation will be based not on arbitrary families of concepts, but
on families of concepts that form classifications (partitions).

The reason we consider classification as a basis for definition of
knowledge is that our belief is that knowledge is deep-seated in the
classification abilities of human beings and other species. Hence, we
assume here that knowledge consists of a family of various clas-
sification patterns, of a domain of interest, which provides explicit
facts about the reality.

The basic idea underlying classification consists in the fact that
objects being in the same equivalence class of the equivalence relation
cannot be discerned; therefore we will call these the indiscernibility
classes. Combining elements of U into indiscernibility classes can be
done deliberately or can be due to our lack of knowledge. For
example, in order to have the category of the color red we must ignore
small differences between various shades of red, otherwise it would
be impossible to form the category of the color red. On the other
hand, the clustering of objects into categories can be caused by
insufficient knowledge. Thus, knowledge about a certain set of objects
can be identified with the ability to classify these objects into blocks of
the partition induced by the indiscernibility relation. The more
knowledge we have about some objects, the more exactly we can
classify them. In the next section, we will explain these ideas more
precisely.

3. KNOWLEDGE AND KNOWLEDGE BASE

Suppose we are given a finite set U (the universe) of objects we are
interested in, and a family of classification patterns C = {C,, C;, ...
C,.}, where each C, is a disjoint family of concepts in U (i.e., subsets of
U).
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A pair K = (U, C) will be referred to as a knowledge base. Each
classification C; from C will be called an attribute in K and each
element of C; will be called a basic category of C, (in U).

For example, if we classify elements of U according to colors, then
the basic categories of the attribute color are red, green, blue, etc.

Thus, the knowledge base represents a variety of basic classification
skills (e.g., according to colors, temperature, etc.) of an “intelligent”
agent or group of agents (e.g., organisms or robots).

For mathematical reasons it is often better to use equivalence
relations instead of classifications, since these two concepts are
mutually exchangeable and relations are easier to deal with. Thus, the
knowledge base can defined now as K = (U, R), where R = {R, R,,

R,} is the family of equivalence relations over U.

Of course, the set theoretical intersection of any family of equi-
valence relations is also an equivalence relation. Any subset of
equivalence relations from our knowledge base also defines a family
of categories, which will be called elementary categories in the
knowledge base. It is obvious that any concept (subset of U) can be
expressed in the knowledge base K only if it is the union of some
elementary categories in K. Otherwise, the concept cannot be defined
in the knowledge base. In other words, elementary categories are
fundamental building blocks of our knowledge, or elementary
properties of the universe that can be expressed employing the
knowledge base.

Evidently, not every concept tan be defined in the knowledge base
using its elementary categories. This is where approximations come
into the picture.

To express approximately an arbitrary concept in the knowledge
base we define the lower and upper approximation of any concept in
U (subset of U).

The lower approximation of X < U by R (i.e., set of categories of R,
where R is a relation defined by any subset of R) is the union of
equivalence classes of R that are included in X, or formally,

RX = Y{YeU/R:Y<S X)

where U/R denotes the family of all equivalence classes of R.
The upper approximation of X < U by R is the union of all
equivalence classes of R that do not have empty intersection with X:

RX =y {YeU/R: YN\ X # o}

It is easily seen that these are special cases of definitions given
previously.
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The boundary-line region is of course defined as BN XD
= RX — RX and will be called the R-boundary of X.

Set RX consists of all elements of U that can be with certainty
classified as elements of X employing knowledge R; set RX is the set
of all elements of U that can be possibly classified as elements of
X using knowledge R; set BN (X)) is the set of all elements that cannot
be classified either to X or to —X having knowledge R.

Now we are able to give the definition of the rough set:

Set X < U is rough with respect to R if RX # RY, otherwise set
X is exact with respect to R.

Thus, a set is rough if it does not have a sharply defined boundary,
that is, it cannot be uniquely defined employmg available knowledge.

Let us note the difference between imprecision and vagueness that
results from our considerations. Imprecision is due to the indiscer-
nibility relation and vagueness is the effect of the borderline region.
Thus, imprecision and vagueness are entirely different phenomena.

It is easy to show that approximations have the following

properties:

(1) RX = RX

QRO=RO=0;RU=RU=U

B)R(XuY)=RXURY

@) R(X N Y)=RXNRY

(5) X < Yimplies RX € RY

(6) X < Yimplies RX < RY

(HMRXuUY)=2RXURY

@) R(XAnY)cRXNRY

©) R(-X)=—-RX

(10) R(-X)= —RX

(11) RRX = RRX = RX

(12) RRX=RRX =RX

I would like to stress properties (7), (8), (9) and (10), but the detailed

discussion is left to the interested reader.

It is interesting to note that the lower and the upper approxima-
tions are respectively interior and closure operations in a topology
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generated by the equivalence relation R. In other words, vagueness is
strictly related to granulation of knowledge, which induces topologi-
cal structure in the knowledge base.

For practical applications we need a numerical characterization of
vagueness, which will be defined as

ag(X) = card RX /card RX

where X # O; this is called the accuracy measure.

The accuracy measure uy(X) is intended to capture the degree of
completeness of our knowledge about the set X.

Obviously, 0 < ag(X) < 1,for every Rand X € U;if ag(X) = 1 the
R-boundary region of X is empty and the set X is definable in
knowledge R; if ax(X') < 1 the set X has some nonempty R-boundary
region and consequently is undefinable in knowledge R.

4. KNOWLEDGE REPRESENTATION

The assumed model of knowledge, as a family of equivalence
relations, is very well suited to prove some mathematical properties of
the concepts introduced. However, the definition has some disadvan-
tages when considering algorithmic properties of knowledge and the
method of processing knowledge. To avoid this drawback we need
a special representation of the set of equivalence relations so that all
necessary algorithms can be easily derived. Therefore, for algorithmic
reasoning knowledge bases will be represented in tabular form,
sometimes called information system, or attribute-value system. We
will refer to it as knowledge representation system.

Knowledge representation system is a finite table with rows labeled
with elements from U, and columns labeled with elements from a set
A, called the set of attributes. With each attribute o from A a finite set
of values V, is associated, and is referred to as domain of a.

To each object x and attribute « there corresponds an entry in the
table, which is a value of attribute o associated with object X. For
example, if the object were an apple and the attribute color, then the
corresponding entry in the table could be red.

In Table 5.1,set {1,2, 3,4, 5,6, 7} is the set of objects, {a, b, c,d, e} is
the set of attributes, and the domain of each attribute is the set {0, 1,
2}.
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Table 5.1.
U a b c d e
1 1 0 0 1 1
2 1 0 0 0 1
3 0 0 0 0 0
4 1 1 0 1 0
5 1 1 0 2 2
6 2 2 0 2 2
7 2 2 2 2 2

It is easily seen that each attribute in the table defines an
equivalence relation, such that two objects x.y belong to the same
equivalence class if they have the same attribute values. Thus, su_ch
a table can be considered as representation of a knowledge ba§e with
the family of equivalence relations defined by the §et of' attributes.
Each subset of objects (concept) can be now described in terms of
attributes and their values. If the concept is exact it can be described
uniquely; otherwise, the concept can be described approximately, by
its lower and upper approximations.

Moreover, we can now easily define a variety of other concepts
needed to analyze knowledge represented by the table. We are mostly
interested in discovering various relations between attributes, for
instance, exact or approximate dependency of attributf.s (cause—eflect
relations), redundancy of attributes, significance of att_nbutes, etc. The
proposed approach has also given rise to new efficient methods of
decision rule generation from data. _

The rough set theory has proved to be a very'effectlve .tool .for data
analysis. Several systems based on the ideas discussed in this paper
were implemented on personal computers (IBM PC) and work
stations (SUN) in Poland and elsewhere, and have found many
real-life, nontrivial applications. '

It is worthwhile to observe that the rough sets philosophy is cl'os'e to
statistical data analysis and perhaps can be viewed as “deterministic
statistics.” Comparison of statistical and rough set methods can be
found in Krusinska et al. (1990).

Keywords: rough set, indiscernibility, approximation, vagueness
knowledge representation, learning, classification




—

114 FUZZY LOGIC FOR THE MANAGEMENT OF UNCERTAINTY

BIBLIOGRAPHY

Arciszewski, T., and W. Ziarko. (1986). Adaptive expert system for prelimina-
ry engineering design. Proceedings of the Sixth International Workshop
on Expert Systems and Their Applications, Paris, pp. 695-712.

Arciszewski, T., W. Ziarko, and M. Mustafa. (1987). A methodology of design
knowledge acquisition for use in learning expert systems. International
Journal of Man-Machine Studies, 27, 23-32.

Chanas, S. and D. Kuchta. (1991). Further remarks on the relation between
rough and fuzzy sets. Fuzzy Sets and Systems. In press.

Comer, S. D. (1991). An algebraic approach to the approximation of
information. Fundamenta Informaticae. In press.

Dubois, D. and H. Prade. (1988). Rough fuzzy sets and fuzzy rough scts.
International Journal of General Systems. In press.

Fibak, J., K. Stowinski, and R. Stowiiski. (1986). The Application of rough set
theory to the verification of indications for treatment of duodenal ulcer
by HSV. Proceedings of the Sixth International Workshop on Expert
Systems and Their Applications. Avignon, April 28-30, pp. 587-599.

Frege, G. (1903). Grundgesetze der Arithmetik, Vol. 2. In Geach and Black:
(eds.y: Selections from the Philosophical Writings of Gotlob Frege.
Blackwell (Oxford), 1970.

Greenburg, A. G. (1987). Commentary on the paper by Pawlak. Computing
Reviews, 27, 413-433.

Grzymala-Busse, J. (1986). On reduction of knowledge representation
systems. International Workshop on Expert Systems and Their Ap-
plications, Avignon, April 28-30, pp. 453-478.

Grzymala-Busse, J. (1986). Algebraic properties of knowledge representation
systems. Proceedings of the First ACM SIGART International Sym-
posium on Methodologies for Intelligent Systems, Knoxville, TN, pp.
432-440.

Grzymala-Busse, J. (1987). Learning from examples based on rough multi-
sets. Proceedings of the Second International Symposium on Methodolo-
gies for Intelligent Systems, Charlotte, ORNL, pp. 325-332.

Grzymata-Busse, J. (1988). Knowledge acquisition under uncertainty—A
rough set approach. Journal of Intelligent and Robotic Systems, 1, 3-36.

Grzymala-Busse, J. (1988). Dempster-Shafer Theory Interpretation of Rough
Sct Approach to Knowledge Acquisition under Uncertainty. University
of Kansas, Department of Computer Science (Report).

Gupta, D. (1988). Rough sets and information systems. In Proceedings of the
Eleventh International Conference on Research and Development in
Information Retrieval. Baltimore, MD.

Hadjimichael, M. (1989). Conditions suggestion algorithm for knowledge
representation systems. Proceedings of the F ourth International Sym-
posium on Methodologies for Intelligent Systems. Charlotte, NC,
ORNL/DSRD-24.

Hadjimichael, M. and A. Wasilewska. (1990). Rule reduction for knowledge
representation systems. Bull. Polish. Acad. Sci. Math. In press.

Iwinski, T. (1987). Algebraic approach to rough sets. Bull. Polish Acad. Sci.
Math., 35, 673-683.

ROUGH SETS s

ian-Mi d A. Nakamura. (1990). A semantic decision method for
Han thl,:ﬁg’gl(gi)? i:::iisoernibility rclat(ion. Fundamenta Informaticae. In press.
Kandulski, T., B. Litewka, A. Mrbzek, and K. Tuk_allo. (1990). ‘An a@tcmpt
to establish the hierarchy of factors of a surgical wound infection by
means of the rough set theory. Bull. Acad. Sci. Biol. In press.
Konikowska, B. (1987). A formal language for reasoning about indiscer-
nibility. Bull. Polish Acad. Sci. Math., 35, 239—]25(;. ing rough et
i H. (1988). Aircraft pilot performance evaluation usin| ets.
Krasg:% dlil;s(crtati)()n, Techn?cal Uplfivcrsity of Rzesz6w lgPolanc.i) IntPohsh.
in _R. Stowinski, and J. Stefanowski. (1990). Discriminant versus
Kms:ngllsl’ slzt’sl:lp?)}roach to vague data analysis. J ournal of Applied Statistics
and Data Analysis. In press. .
Krynicki, M. (1989)),. Linearly ordered quantifiers. Bull. Polish Acad. Sci.
Math., 37 (6), 295-303. ‘ . .
Krynicki, M. (1990a). Quantifiers determined by partial order. Zeitschrift feur
Grundlagen der M athematik und Logic, 36, 79—8?.
Krynicki, M. (1990b). A note on rough concept logic. Fundamenta Infor-
maticae, 13, 227-235. ) o o
Krynicki, M. and H. P. Tuschnik. (1990). An axlo.mansatxon of the logic with
rough quantifiers. J ournal of Symbolic Logzc..ln press. .
Krysinski, 1. (1990). Rough set approach to a_,nz'llyms of relationship between
structure and activity of quaternary imidazolium compounds. Arz-
neimittel-Forschung Drug Research, 40 (ID), 7, 7.95—799. . .
Mrozek, A. (1989). Rough set dependency analysis among attnbutgs in
computer implementation of expert inference models. International
Journal of Man-Machine Studies, 30, 457-473. ' o
Nakamura, A. and Gao Jian-Ming. (1988). Modal logic for similarity-based
data analysis. Hiroshima University Technical Report, C-26.
Nieminen, J. (1988). Rough tolerance and tolerance black boxes. Fundamenta
icae. In press.
Novigt;’,'mﬁfc and Zp Pawlak. (1985a). Characterization of ' rough top
equalities and rough bottom equalities. Bull. Pol. Acad. Sci. Math., 33,
- -97.
Novc()%mi),’hgdl. and Z. Pawlak. (1985b). On rough equalities. Ibid., 33 (1-2),
Novgtgn;,o?\;i. and Z. Pawlak. (1985¢c). Black box analysis and rough top
equalities. Ibid., 33 (1-2), 105-113. ‘ Ihid
Novotny, M.and Z. Pa\a:l:_aiii §1987). Concept forming and black boxes. Ibid.,
. 35(1-2),13 . .
Novc]:{t?;'f‘l;ris. a1(1d Z). Pawlak. (1988a). Partial dependency of attributes. Bull.
Polish Acad. Sci. Math., 36 (1-8), 453-458. ) ‘
Novotny, M. and Z. Pawlak. (1988b). Independence of attributes. Ibid., 36
59-465.
Novg;?,’:d. and Z. Pawlak. (1991). On super_reducts. Ibid. In press.
Nowak, R., R. Stowinski, and 1. Stefanowski. (1990). Rough sets b?sed
diagnostic classifier of reducers. Maintenance Management 1 nternational
Submitted).
Obtl.(ll(:lWiCZ, A.)(1988). Rough sets and Heyting algebra valued sets. Bull.
Polish Acad. Sci. Math., 35, 667-673.




116 FUZZY LOGIC FOR THE MANAGEMENT OF UNCERTAINTY

Orlowska, E. (1985a). Logic of indiscernibility relation. Bull. Polish Acad. Sci.
Math., 475-485.

Orlowska, E. (1985b). Logic approach to information systems. Fundamenta
Informaticae, 8, 359-378.

Orlowska, E. (1986). Semantic analysis of inductive reasoning. Theoretical
Computer Science, 43, 81-86.

Orlowska, E. (1989). Logic for reasoning about knowledge. Zeitschr. f. Math.
Logik und Grundlagen d. Math., 35, 559-572.

Orlowska, E. and Z. Pawlak. (1984). Logical foundations of knowledge
representation. Institute of Computer Science, Polish Academy of Sciences
Reports, 537, 1-106.

Pawlak, Z. (1982). Rough sets. International Journal of Computer and
Information Sciences, 11, 341-356.

Pawl;% ZS.8(61986a). Learning from examples. Bull. Pol. Acad. Sci. Tech., 34,

Pawlak, Z. (1986b). On learning — A rough set approach. Lecture Notes in
Computer Sciences, Springer-Verlag, 208, 197-227.

Pawlak, Z. (1987a). Rough logic. Bull. Pol. Acad. Sci. Tech., 35, 253-258.

Pawlak, Z. (1987b). Learning from examples—The case of an imperfect
teacher. Bull. Pol. Acad. Sci. Tech., 35, 259-264.

Pawlak, Z., K. Stowinski, and R. Stowinski. (1986). Rough classification of
patients after highly selective vagotomy for duodenal ulcer. Int. Journal
of Man-Machine Studies, 24, 413-433.

Pawlak, Z., S. K. M. Wong, and W. Ziarko. (1988). Rough sets: Probabilistic
versus deterministic approach. International Journal of Man-Machine
Studies, 29, 81-85.

Pettorossi, A., Z. Ras, and M. Zemankova. (1987). On learning with imperfect
teachers. Proceedings of the Second ACM SIGART International Sym-
posium on Methodologies for Intelligent Systems, pp. 256-263. New York:
North-Holland.

Pomykata, J. and J. A. Pomykata. (1988). The stone algebra of rough sets.
Bull. Pol. Acad. Sci. Math., 36, 495-508.

Ras, Z. and M. Zemankova. (1986). Learning in knowledge based systems,
a probabilistic approach. Proceedings of the 1986 CISS, Princeton, NJ,
pp- 844-847.

Rasiowa, H. (1986). Rough concepts and multiple valued logic. Proc. of 16th.
Intl. Symp. on Multiple Valued Logic, Washington DC, IIIE Computer
Society Press, pp. 228-288.

Rasiowa, H., and G. Epstein. (1986). Approximation reasoning and Scott’s
information systems. In Proceedings of the Second International Sym-
posium on Methodologies for Intelligent Systems, pp. 33-42. New York:
North-Holland.

Rasiowa, H. and A. Skowron. (1985). Rough concept logic. Proc. of the 5th
Symp. on Computer Theory, Zaboréw, December 3-8, 1984. Lecture
Notes in Computer Science, Springer-Verlag, 208, 288-297.

Rasiowa, H. and A. Skowron (1986a). The first step towards an ap-
proximation logic. Meeting of the Association for Symbolic Logic,
(Chicago 1985 ), Journal of Symbolic Logic, 51, 509.

Rasiowa, H. and A. Skowron. (1986b). Approximation logic. Proc. of

ROUGH SETS 117

Mathematical Methods of Specification and Synthesis of Software
Systems Conf. 1985, 31, 123-139. Berlin: Akademie-Verlag.

Rauszer, C. M. (1984). An equivalence between indiscernibility relations
in information systems and a fragment of intuitionistic logic. In Lecture
Notes in Computer Science. Berlin: Springer-Verlag, pp. 298-317.

Rauszer, C. M. (1985a). Dependency of attributes in information systems.
Bull. Pol. Acad. Sci. Math., 33, 551-559.

Rauszer, C. M. (1985b). An equivalence between theory of functional
dependencies and fragment of intuitionistic logic. Bull. Pol. Acad. Sci.
Math., 33, 571-679.

Rauszer, C. M. (1985c). An algebraic and logical approach to indiscernibility
relations. ICS PAS Reports (1985), no. 559.

Rauszer, C. M. (1986). Remarks on logic for dependencies. Bull. Pol. Acad. Sci.
Math., 34, 249-252.

Rauszer, C. M. (1987). Algebraic and logical description of functional and
multivalued dependencies. Proc. of the Second Int. Symp. on Method-
ologies for Intelligent Systems, Charlotte, 1987, pp. 145-155. New York:
North-Holland.

Rauszer, C. M. (1988). Algebraic properties of functional dependencies. Bull.
Pol. Acad. Sci. Math., 33, 561-569.

Rauszer, C. M. (1990). Reducts in information systems. Fundamenta Infor-
maticae. In press.

Reinhard, A., B. Stawski, and T. Weber. (1989a). Application of rough sets to
study the water outflow from the river basin. Bull. Pol. Acad. Sci. Tech.,
37, 97-104.

Reinhard, A., B. Stawski, W. Szwast, and T. Weber. (1989b). An attempt to use
the rough sets theory for the control of water-air relation on a given
polder. Bull. Pol. Acad. Sci. Tech., 37, 339-349.

Rybnik, J. (1990). Minimization of partially defined switching functions using
rough sets. Manuscript.

Skowron, A. (1989). The relationship between rough set theory and evidence
theory. Bull. Pol. Acad. Sci. Math., 37, 87-90.

Stowifiski, K., R. Stowinski, and J. Stefanowski. (1989). Rough sets approach
to analysis of data from peritoneal lavage in acute pancreatitis. Medical
Informatics, 13, 143-159.

Stowiniski, K. and R. Slowinski. (1990). Sensitivity analysis of rough clas-
sification. International Journal of Man-Machine Studies, 32, 693-705.

Szczerba, L. W. (1987). Rough quantifiers. Bull. Pol. Acad. Sci. Math., 35,
251-254.

Vakarelov, D. (1981). Abstract characterization of some modal knowledge
representation systems and the logic NIM of nondeterministic infor-
mation. In Jorraud, Ph. and V. Sgurev (eds.): Artificial Intelligence,
Methodology, Systems, Applications. Amsterdam: North-Holland.

Vakarelov, D. (1989). Modal logic of knowledge representation systems. In
Lecture Notes on Computer Science. Berlin: Springer-Verlag, 363, 257-271.

Wasilewska, A. (1988). On correctness of decision algorithms in information
systems. Fundamenta Informaticae, 11, 219-239.

Wasilewska, A. (1989). Syntactic decision procedures in information systems.
International Journal of Man-Machine Studies, 50, 273-285.




118 FUZZY LOGIC FOR THE MANAGEMENT OF UNCERTAINTY

Wasilewska, A. (1990a). Conditional knowledge representation  sys-
tems — Model for an implementation. Bull. Pol. Acad. Sci. Math. In press.

Wasilewska, A. (1990b). An inductive learning system. Bull. Pol. Acad. Sci.
Math. In press.

Wong, S.K.M. and J. H. Wong. (1987). An inductive learning system-ILS.
Proceedings of the Second ACM SIGART International Symposium on
Methodologies for Intelligent Systems, pp. 370-378. Amsterdam: North
Holland.

Wong, SK.M. and W. Ziarko. (1987). INFER—An adaptive decision
support system based on the probabilistic approximate classification.
The Sixth International Workshop on Expert Systems and their Ap-
plications, Avignon, 1, 713-726.

Wong, S.K.M., W. Ziarko, and R. L. Ye, (1986a). Comparison of rough set
and statistical methods in inductive learning. International Journal of
Man-Machine Studies, 24, 53-72.

Wong, S.K.M., W. Ziarko, and R. L. Ye. (1986b). On learning and evaluation
of decision rules in context of rough sets. Proceedings of the First ACM
SIGART International Symposium on Methodologies Sor Intelligent
Systems, Knoxville, TN, pp. 308-324.

Wygralak, M. (1989). Rough sets and fuzzy sets—some remarks on inter-
relations. Fuzzy Sets and Systems, 29, 241-243,

Ziarko, W. (1987). On reduction of knowledge representation. Proceedings of
the Second International Symposium on M ethodologies for Intelligent
Systems (Colloguia Programm), pp. 99-113. Charlotte, ORNL.

Ziarko, W. (1991). The discovery, analysis and representation of data
dependencies in databases. In Knowledge Discovery in Databases, AAAI
Press.




