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Prefacé

This book is devoted to some areas of research in Arti-
ficial Intelligence: knowledge, imprecison, vagueness,
learning, induction and others. The topics addressed in this
book have long history and overlap with other fields like
philosophy, psychology and logic, and variety of issues have
been discussed in this context. Because we are aiming at
practical applications, therefore we avoid rather general
discussion of the considered topics and no attempt is made to
set the obtained results in more general framework.

The main issue we are interested in is reasoning from
imprecise data, or more specifically, discovering relation-
ships in data. Thus our research interest is closely related
to statistics, however our approach is entirely different:
instead of employing probability to express vagueness of data

“we propose using rough sets to this end.

‘ The idea of the rough set consists in approximation of a
set by a pair of sets called the lower and the upper approxi-
mation of this set.(cf. Pawlak, (1982)). In fact these appro-
ximations are interior and closure operations in certain
torology generated by available data about elements of the
set. In other words, the rough set approach is based on know-
ledge of an agent (or group of agents) about some reality and
his ~akility to discern some phenomena, processes, object
etd@d hus the approach is based on the ability to classify

l btained from observation, measurements etc.

The rough set concept overlaps in many aspects many
other mathematical ideas developed to deal with imprecision
and vagueness, in particular"with fuzzy sets theory (cf.
Zadeh, (1965)) and theory of evidence (cf. Shafer, (1976)).
Interesting comparison of rough sets and fuzzy sets has been
published by Dubois and Prade (cf. Dubois et al. (1990), and
discussion of the relationship between rough sets and the the
evidence theory can be found in Grzymala-Busse (1988) and
Skowron (1989). Also it is worthwhile to mention a comparison
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of the rough set theory and discriminant ;analysis made by
Krusinska, Slowinski and Stefanows&?/izgx Krusinska, et al.

(1990)) . ;// ' //

The idea of the rough set(hgéegg;ﬁéd to be very useful
in practice and many real life SppTEbations of this concept
have been implemented. Exemplary applications are listed
below: medical data analysis (cf. Pawlak et al. (1985), Fibak
et al. (1986), Slowinski et al. (1988), (1990), Kandulski et
al.(1990)), generation of a cement kiln control algorithm
from observation of stoker’s actions (cf. Mrézek (1987),
(1989)), aircraft pilot performance evaluation (cf. Krasowski
(1988)), geology (cf. Reinhard et al. (1989), (1990)),
pharmacology (cf. Krasinski (1990)), vibration analysis (cf.
Nowicki et al. (1990), synthesis of switching circuits (cf.
Rybnik (1990)). |

Very promising results have been also obtained while
using rough sets in voice recognition, approximate classifi-
cation and others.

There are up to now about 400 articles and rapports
published on rough sets theory :and its applications. (Sele-
cted list of papers on rough sets is enclosed at the end of
the book). Further research on the theory and applications of’
rough sets is under development.

The book is composed of two parts.

In the first part/; the basic ideas underlying the rough
set theory and related subjects are given and the contents is
organized according to the mathematical very natural struc-
ture of the material presented. Not all issues discussed in
this part have direct -ra?Eisgl_gggliggglgg§;h£2b6rdéf]howe—
"the considered conceptsla elaborate

pFoblems seems to be justified.

ver to understand
presentation of some

The second part contains some applications of thé'dis—
cussed ideas, however they are not the real life ones but the
aim of this part is meant to be rather illustrative as to how
the concepts introduced previously can be used to formulate
and solve various problems, and does not cover the discussion
of variety of important details which occur when more reali-
stic tasks are considered.

The book is intended primarily for computer scientists

7



[

interested in artificial intelligence however specialists
from other fields who 4dre interested in data analysis may
also find some parts of the book worth reading. | .

No previous knowledge on rough sets is needed to under-
stand the book, however some familiarity with basic knowledge
of set theory and logic is necessary in order to follow the
reasoning. We realize that elaborate mathematical formulation
of results is sometimes not welcome in computer science com-
munity, we believe however that precision of presentation is
badly needed in many areas of artificial intelligence, there-

fore we try to formulate our claims in ecise mathematical

language and provide proofs of basi } eorems. Secondly our

intention is of making the book a¢ grence book in the
area of rough sets and their applicatitns, therefore precise
definitions and proofs of some theorems seem to be justified.
The proofs however are not necessary to follow the applica-
tions discussed in Part 2, and can ba,skipped by those who

are not interested in formal aspect of rough sets theory.
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Motto: " knowing is a relation of the
organizm to something else or to a
part of itself".Bertrand Russell, in

An Inquiry into Meaning and Truth

PART 1

THEORETICAL FOUNDATIONS

1, KNOWLEDGE

1. Introduction

Theory of knowledge has long lasting and rich history
(cf., Hempel (1952), Hintika (1962), Hunt (1974), Hunt et.
al. (1966), Popper (1959), Russell (1940)).

Various‘aspects of knowledge are widely discussed issues
nowadays, mainly by logicians and Artificial 1Intelligence
(AI) researchers. There is, however a variety of opinions and
approaches in this area, as to how to understand, represent
and manipulate knowledge (cf. Aikins (1983), Bobrow (1977),
Bobrow et al. (1977), Brachman et al.(1980), Brachman et al.
(1986), Buchanann et al.(1984), Davis et al. (1982), Halpern
(1986), (Hayes-Roth et al. (1978), Holland et al. (1986),
McDermott (1978), Minski (1975), Newell (1982).

Intuitively, knowledge can be perceived as a body of
information about some parts of reality, which constitute our
domain of interest. This definition, however fails to meet
precision standards and at a closer look it has multiple
meanings, and it tends to mean one of several things depend-
ing on the context and the area of interest.

We propose here a formal definition of the term
"knowledge" and we show some of its basic properties. We do
not aim to give full account of the concept of knowledge and
we realize that the proposed understanding of knowledge might
seem to be not sufficiently general to cover various under-

"
- Il s L] _ s . | ] A s e — aan F ] e ——

standingrof this concept in current literature, in particular
in widely assumed paradigm of knowledge in the AI community
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nowadays - yet it seems to be of interest for a variety of
domains, like machine learning, pattern recognition, decision
support systems, expert systems and others. K

The concept of knowledge presented here is rather close
to that considered in some areas of cognitive sciences, than
that discussed in AI. We do not, however, aim to form a new,
general theory of knowledge, in contrast for example to
Holland (cf. Holland et al. (1986)), but we have in mind
rather practical applications.

We advocate here a rough set concept as a theoretical
framework for discussions about knowledge, particularly when

imprecise knowledge is of primary concern.

2. Knowledge and Classification

our claim is that knowledge is deep-seated in the clas-
sificatory abilities of human beings and other species. For
example, knowledge about the environment is primarily manife-
sted as an ability to classify a variety of situations from
the point of view of survival in the real world. Complex

classification patterns of sensor als probably form

fundamental mechanisms of every living beihg. Classification
on more abstract levels, seems to iég’ ssue in reasoning,
learning and decision making, not to—mention that in science
classification it is of primary importance, too.

Also a robot which would be able to behave "intelligent-
1ly" in an environment, exploiting sensory signals about outer
realm and its internal states must classify possible situa-
tions and act accordingly.

We simply assume here, that knowledge is based on the
ability to classify objects, and by object we mean anything
we can think of, for example, real things, states, abstract
concepts, processes, moments of time, etc. g

Thus knowledge in our approach is strictly connected
with the variety of classification patterns related to speci-
fic parts of real or abstract world, called here the universe
of discourse (in short the universe). Nothing particular
about the nature of the universe and knowledge will be assum-

ed here. In fact knowledge consists of a family of various

A\

13




. classification patterns, of a domain of interest, which pro-
vide explicit facts about the reality - together with the
reasoning capacity able to deliver implicit facts derivable
from explicit knowledge.

In what follows we shall explain this idea in some more
detail. First we are going to discuss more precisely some
properties of classifications and reasoning about classifica-
tions will be considered later.

3. Knowledge Base

' ‘Suppose we are given a finite set U (the universe) of
objects, we are interested in. Any subset X < U of the uni-
verse will be called a concept or a category in U and any fa-
mily of concepts in U will be referred to as abstract know-
ledge (or in short knowledge) about U. For formal reason we

also admit the empty set o as a concept.

Mostly we will be interested in this book with concepts

which form a partition (classification) of a certain universe
U, i.e. in families C = {Xl' xz, cee Xn} such that Xi e U,
X; * e, X; n Xj = o for i*j, i,j=1,...,n and U X; =U.

Usually we will deal not with a single classification
but with some families of classifications over U. A family of
classifications over U will be called a knowledge base over
U. Thus knowledge base represents a variety of basic classi-
fication skills (e.g. according to colors, temperature, etc)
of an "intelligent" agent or group of agents (e.g. organisms
or robots) which constitute the fundamental equipment of the
agent needed to define its relation to the environment or
itself.

In what follows we are going to explain the idea more
precisely. ,

For mathematical reasons we shall often use instead of
classifications - equivalence relations, since these two no-
tions are mutually exchangeable and relations are easier to
deal with. Let us give now some necessary definitions.

If R is an equivalence relation over U, then by U/R we
mean the family of all equivalence classes of R (or classifi-
cation of U) referred to as categories or concepts of R, and

[x]g denotes a category in R containing an element x e U.

14
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By a knowledge base we can understand now a relational
system K = (U, R), where U is a finite set called the uni-
verse, and R is a family of equivalence relations over U.

If P < R and P # o, then n P (intersection of all equi-
valence relations belonging to P) is also an equivalence
relation, and will be denoted by IND(P), and will be called

an indiscernibility relation over P. Moreover

(X)znppy = N X)g -
R € P

Thus U/IND(P) (i.e. the family of all equivalence clas-
ses of the equivalence relation IND(P)) denotes knowledge
associated with the family of equivalence relations P, called
P-basic knowledge about U in K. For simplicity of notation we
will write U/P instead of U/IND(P) and P will be also called
P-basic knowledge, (or in short - basic knowledge, if P, U
and K is understood) provided that it does not cause confu-
sion. Equivalence classes of IND(P) are called basic cate-
gories (concepts) of knowledge P. In particular if Q € R,
then Q will be called a Q-elementary knowledge (about U in K)
and equivaience classes of Q are referred to as Q-elementary
concepts (categories) of knowledge R.

For example if elements of the universe are categorized
according to colors, “then the corresponding elementary cate-
gories would be subsets of all objects having specific co-
lors, for instance green, red etc., whereas basic categories
are combined from some elementary categories. For example if
old and ill are elementary categories, in some knowledge base
then old and ill is a basic category in this knowledge base.

In fact P-basic categories are those basic properties of
the universe which can be voiced employing knowledgé'Pl In
other words they are fundamental building blocks of our know-
ledge, or basic properties of the universe which can be ex-
pressed employing knowledge P.

The family of all P-basic categories for all s # P ¢ R
will be called the family of basic categories in knowledge
base K = (U, R).

We will also need the following notations. Let K = (U,R)

15




be a knowledge base. By IND(X) we denote the family of all
equivalence relations defined in K as IND(K) = {IND(P): & = P
< R} ~ |

Thus IND(K) is the minimal set of equivalence relations,

containing all elementary relations of K and closed under set
theoretical intersection of equivalence relations.

Every union of P-basic categories will be called
P-category.

Finally the family of all categories in the knowledge
base K = (U, R) will be referred to as K-categories.

Example 1
Suppose we are given the following set of toy blocks U =

{xl, xz, x3, x4, xs, x6, x7, x8}. Assume that these toys'have
different colors (red, blue, yellow), shapes, (square, round,
triangular) and size (small, large). For example a toy block
can be small, red and round or large, éﬁuare and yellow etc.

Thus the set of toy blocks U can be classified according
to color, shape and size, for example as shown below.

N Toys
xl, Xy, X, = are red,
Xy X, - are blue,
Xgi Xgy Xg = are yellow,
toys
Xy, Xg - are round,
Xy, Xg - are square,
X301 X410 Xq, Xg - are triangular,
and toys
Xy0 Xo, Xg - are large,
xl, x3, x4, Xg, x6 - are small.
16




, In other words by these classifications we defined three
equivalence relations Ry, R, and R, having the following

equivalence classes

U/R .= {{xll x3l x—]}l {le x4}l {Xsl x6I xs}}

<
~
X

"

{{xll xs}l {le x6}l {x3l x4l x7l xs}}

[~

~
=

li

{{le x7l xe}l {xll x3l x4l xsl xs}}

which are elementary concepts (categories) in our knowledge

base K = (U, {Rl, R2, R3}).
Basic categories are set theoretical intersections of

elementary categories. For example sets

{xll ‘x3l x7} n {x3l x4l x7l x8} = {x3l x"}
{le x4} N {le XG} = {xz}
{xsl x6l XB} N {x3l x4l x7l xe} = {xs}

are {Rl, Rz}-basic categories‘red and triangular, blue and

square, yellow and triangular respectively. Sets

{xll x3l x7} n {XBI x4l X7, xs} n {le x7l x8} = {x7}
{le X4} n {le §6} n {le x'7I xa} = {xz}
{xsl x6l x8} n {XBI X4I X7I x8} N {le x7l x8} = {x8}

are exemplary {Rl, Rz, R3}-basic categories red and triangu-
lar and large, blue and square and large, yellow and triangu-

lar and small respectively. Sets
{xll x3l x7} v {le x4} = {xll le x3l X4, x7}
{le x4} v {XSI XG' X8} = {le x4l xsl x6l x8}
{Xl' X3r X7} v {xsl X6' x8} = {Xll x3l Xsl xsl x7l x8}

are Rl-categories red or blue (not yellow), blue or yellow

17
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(not red), red or yellow .(not blue) respectively.

Note that some categories are not available in ‘this
- N
knowledge base. For example sets

{xzf x4} a {xll XS} = 0
(X0 X530 X5} 0 {X,, Xg} =@

are empty which means that categories blue and round and red
and square do not exist in our knowledge base (are empty ca-

tegories) .w

4. Equivalence, Generalization and Specialization of Know-
ledge

Let X = (U, P) and K’ = (U, Q) be two knowledge bases.
We will say that K and K’ (P and Q) are equivalent, denoted
K = K’, (P =Q), if IND(P) = IND(Q), or what is the same, if
u/p = U/Q. Hence K = K’, if both K and K’ have the same
set of basic categories, and consequently - the set of all
categories. This means that knowledge in knowledge bases K
and K’ enables us to express exactly the same facts about the
universe.

Let X = (U, P) and K’ = (U, Q) be two knowledge bases.
If IND(P) ¢ IND(Q) we say that knowledge P (knowledge base K).
is finer than knowledge Q, (knowledge base K’), or Q is coar-
ser than P. We will also say, that if P is finer than Q, then
P is specialization of Q, and Q is generalization of P.

For example if P, Q e R, and both U/P and U/Q are clas-
sifications of the universe with respect to color, but the
classification U/P contains one category of, say green ob-
jects, whereas the classification U/Q contains more catego-
ries of green objects, each referring to specific shadow of
green, {(and similarly for other coiors) - than Q is speciali-
zation of P, and P is generaliiation of Q, provided that
every category of shadow of green in U/Q 1is included in the
category of green in U/P.

Thus generalization consists in combining together some

categories, whereas specialization lies in splitting catego-
ries into smaller units.

18
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1t is worthwhile to mention, that if all equivalence
classes of an equivalence relation are single element sets,
then the relation is an equality relation and in such case
the relation represents the most accurate (precise) know-
ledge, which might seem to be the most desirable situation,
but this is often not the case.

Let us turn back to the éxample of colors. Precise dis-
tinguishing of colors, unable us to form one color category,
say green. Thus in order to have categories, like green ,red,
small, tall, hot, cold etc. we have to have the ability to
combine object into groups ignoring "small" differences bet-
ween them, or in other words group them together according to
some similarities. (Usually similarity is expressed by a dis-
tance function, but in our approach“we avoid numerical cha-
racterization of imprecision employing quantitative concepts
(classification) to this end, instead). Hence finer categori-
zation should not always be interpreted as an advantage, for
it may sometimes make difficult forming categories (con-
cepts).

In our philosophy, classification (partitioning) is ba-
sically used to create categoriés which are "building blocks"

of knowledge.

Summary

We have shown in this chapter that knowledge is strictly
connected with class{fication (partition), and "“building
blocks" of knowledge, categories, are classes'of‘some classi-

fications.

Exercises

1. Compute the family‘of all equivalence classes of the rela-

tion Rl n R2 N R3, i.e. U/(R1 n R 17 R2 and R3

are as in the Example 1.

5 N R3), where R

2. Are the following sets

{x5}

19




xsl XS}
{xll XS’ XG’ x7}
concepts in this knowledge base.

3. Check whether the knowledge bases K = (U, R
K, = (UI Rll
Xar Xy xs}, and

1° Ry, R3) and

Rz)' are equivalent or not, where U = {X,, X,

U/Ry, = {{xy, X3}, {Xy, X,, Xg}}

U/R

2 {{xl}l {le x3I x4l xs}}

U/R3 - {{xl’ x4}l {le X3}. {xs}}'

4. Give examples of two knowledge baseg Kl and Kzsuch that Kl

is finer then Kz‘

5. Give real life examples of generalization and specializa-

L}

tion of knowledge.
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2. IMPRECISE CATEGORIES, APPROXIMATIONS AND ROUGH SETS

1. Introduction

Fundamental concepts in the proposed theory of knowledge
are classifications and categories. In fact categories are
features (i.e. subsets) of objects which can be worded using
knowledge available in a given knowledge base. Certainly some
categories can be definable in one knowledge base but unde-
finable in another one. Thus, if a category is not definable
in a given knowledge base, the question arises whether it can
be defined "approximately" in the knowledge base. In other
words we. want to address here the central point of our
approach, the vague categories.

There is a variety of conceptions of vagueness in logi-
cal and philosophical literature (cf. Balmer et al. (1983),
Black (1937, 1963), Fine (1975), Kohl (1969), Russel (1923)).
The one presente& here is a direct consequence of the assumed
understanding of knowledge and is based on the idea of a
rough set, which will be our major concern in this chaptegf

In the next section we will examine the idea more precisely.

2. Rough Sets _

Let X < U, and R‘be an equivalence relation. We will say
that X is R-definable, if X is union of some R-basic catego-
ries; otherwise X is R-undefinable.

The R-definable sets are those subsets of the universe
which can be exactly defined in the knowledge base K, whereas
the R-undefinable sets cannot be defined in this knowledge
base. _

The R-definable sets will be also called R-exact sets,
and R-undefinable sets will be also said to be R-inexact or
R-rough.

Set X ¢ U will be called exact in K if there exists an
equivalence relation R € IND(K) such that X is R-exact, and X
is said to be rough in K, if X is R-rough for any R € IND(K).

Rough sets can however be defined approximately and to
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this end we will employ two exact sets referred to as a lower

and an upper approximation of the set.
In the next chapter we are going to examine the idea

more closely.

Remark

The idea of the rough set was proposed by the author in
Pawlak (1982). By now number of papers have been published on
rough set theory, but we will not go into details about rough
sets and we confine our shelf only to some basic properties
needed in the remainder of this book. _

This chapter is an extended version of Pawlak (1989).
More about rough sets can be found for example in Iwinski
(1987), Nieminen (1988), Novotny (1985a, 1985b, 1985c), and
Obtulowicz (1988).

3. Approximation of Sets

As we already demonstrated in the previous section some
categories (subsets of objects) cannot be expressed exactly
by employing available knowledge.'Hence we arrive at the idea
of approximation of set by another sets, which will be dis-

cussed in detail in this section. Suppose we are given know-

ledge base K = (U,R). With each subset X ¢ U and an equiva¥

lence relation R € IND(K). we associate two subsets:

RX = U{Y € U/R: Y <& X}

RX = U{Y e U/R: Y n X = o}

called the R-lower and R-upper approximation of X respective-
ly.

Remark.

The lower and upper approximations can be also presented
in an equivalent form as shown below:

X
>
It

{x € U: [x]R S X}

o)
>
I

{x € U: [x]p 0 X = o}
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or

\

x € RX if and only if [x]R < X

x € RX if and only if (x)p n X *= 0

Set BNp(X) = RX - RX will be called the R-boundary of X.

The set RX is the set of all elements of U which can be
with certainty classified as elements of X, in the knowledge
R; Set RX is the set of elements of U which can be possibly
classified as elements of X, in employing knowledge R; Set
BNR(X) is the set of elements which cannot be classified
either to X or to -X having knowledge R.

We shall also employ the following denotations:

POSR(X) = RX, R-positive region of X
NEGR(X) = U - RX, R-negative region of X.
BNR(X) - R-borderline regijon of X.

If an object X € POSR(X), then x will be called a
R-positive example of X, and similarly for NEGR(X) and
BNy (X) .

The positive regjon POSR(X) or the lower approximation
of X is the collection of those objects which can be classi-
fied with full certainty as members of the set X, using know-
ledge R.

Similarly, the negative region NEGR(X) is the collection
of objects with which it can be determined without any ambi-
guity, employing knowledge R,'that they do not belong to the
set X, that is, they belong to the complement of X. n

The boundary region is in a sense undecidable area of
the universe, i.e. none of the objects belonging to the boun-
dary can be classified with certainty into X or -X as far as
knowledge R is concern.

Finally, the upper approximation of X consists of

objects with which knowledge R does not allow us to exclude
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the possibility that those objects may belong to X. Formally,

the upper approximation is the set theoretical union of posi-
tive and boundary regions.

The following property 1is obvious:

Proposition 1.
a) X is R-definable if and only if RX = RX.

b) X is rough with respect to R if and ony if RX # RX. =

" Let us also observe that RX is the maximal R-definable

set contained in X, whereas RX is the minimal R-definable set
containing X.

Thus categories are items of information which can be
expressed by available knowledge. In other words, categories
are subsets of objects having the same properties expressible
in terms of our knowledge. In genef’al, not all subset of
object form categories in a given knowledge base, i.e. con- I
cepts which can be expressed by the knowledge, therefore such
subsets may be regarded as rough categories (i.e. imprecise

'or approximate categories) which can be only roughly defined
employing our knowledge - by using two exact categories -the
lower and the upper upper approximation.

Hence the concept of approximation allows us to speak
precisely about imprecise notions.

4. Properties of Approximation

Direétly from the definition of approximations we can

get the following properties of the R-lower and the R-upper
approximations:

Proposition 2.

1) RX € X € RX
2) Re = Re = @; RU =RU = U

3) R(X vY) = RX v RY

4) R(X nY) = RX n RY

26
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5) X £ Y implies RX s RY
6) X <Y implies RX ¢ RY

‘ 7) R(X v Y) 2 RX v RY

8) R(X nY) S RX n RY
9) R(-X) = -RX
10) R(-X) = -RX '

11) RRX = RRX = RX

12) RRX = RRX = RX

Proof.
la) If x € RX, then (x] < X, but x € [(x) hence x € X ang
RX < X.

ib) If x € X, then [x] n X # & (because x € [x] n X)
hence x € RX, and X s RX.

2a) From 1) Re € ¢ and @ ¢ Re (because the empty set jis
1
included in every set) thus Re = o.

*

2b) Assume Re #= @. Then there exists x such that x e Ro.
Hence [x] n e # o, but [(x] n @ = o, what contradictg

the assumptiop, thus Rz = o.

2c) From 1) RU € U. In order to show that U € RU let ys
observe that if x € U, then [x] € U, hence x € RU,
thus RU = U.

2d) From 1) RU 2 U, and obviously RU € U, thus RU = U,

3) x e R(XuY) iff [x) n (X uY) =0 Iiff [X] A X u
(x] nY # 02 iff [xX) n X 2o Vv [x) nY = & 1iff x ¢ Rx
vV X € RY iff x € RX v RY. Thus ﬁ(x v Y) = RX U RY.

4) x e R(X nY) 1iff (x] € X nY iff ([x) € X A [X) € vy
iff x € RX n RY.
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5) Because X ¢ Y iff X n Y = X by virtue of 4) we have
R(X nY) = RX iff RX n RY = RX which yields RX € RY,

6) Because X € Y iff X uY = Y, hence R(X v Y) = RY and
by virtue of 3) we have RX uRY = RY and hence
RX < Ry.

7) Since X< XvyY and YSXvY, we have RX £ R(XvY)
‘and RY € R(X v Y) which yields RX v RY € R(X v Y).

8) Since X nY s X and X n.Y ¢ Y, we have R(XnY) € RX
and R(X n Y) € RY hence R(X nY) € RX n RY.

9) x € R(x) iff [x) € X iff [x] n =X = o iff x & R(-X)
iff x € -R(-X), hence R(X) = -R(7X).

10) By substitution -X for X in 9) we get R(X) = -R(-X).

l1la) From 1) RRX s RX, thus we have to show that
RX ¢ RRX. If x € RX'then ([x] € X, hence R([x] € RX
but R(x) = [x]), thus [x] <€ RX and x e RRX, that is
RX < RRX.

11b) From 1) RX S RRX, thus it is enough to show that
RX 2 RRX. If x € RRX, then ([x] nRX =9, i.e. there
exists y € (x]) such that y € RX, hence [y] £ X but
[x]) = [y)], thus [x}) § X and x € RX which is to mean
that RX 2 RRX.

12a) From 1) RX € RRX. We have to show, that RX 2 RRX.
If x € RRX, then (x) nRX * o and for some y € [X]

y € RX, hence [y)nX=o but ([x] = [y]), thus

[xX)] nX =202, i.e. X € RX, which yields RX 2 RRX.

12b) From 1) RRX € RX. We have to show, that RRX 2 RX.
If x e RX then [x] n X # . Hence (x] < RX (because
if y e [x], then (y]nX=(x]nX=o, i.e. y e RX)
and x € RRX, which gives RRX 2 X.wm
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' Example 1. 7 .

For the sake of illustration let us consider a very
simple example depicting the' introduced notions. Suppose we
are given an knowledge base K = (U, R), where U = Xy, Xy,
,x8},' and an equivalence relation R € IND(K) with the
following equivalence classes :

E; = {xy, x,, xg}

E, = {x;, X5, X5}
Ey = {x,)
E, = {xg}

U/R= {El' EZ' E3, E4}

Let
X1 = {xl, ¥4, x&} and X2 =‘{x2; xg}.
R(X1 v XZ) = E1 ﬁ
RX, = o, RX,= o. ,
Hence
| R(X; v X,) > RX, v RX,.
Lgt
Yl = {xl, x3, xs} and Y2 ={x2, x3, x4, x6}.
ﬁ(yl nY,) =E,
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Hence

R(Y, nY,) c RY; nRY,. .

Let us briefly comment on some properties of approxima-
tions.

The properties 7) and 8) are of great importance for
they do not allow for step by step computation of approxima-
tions. In fact they say that in general the knowledge includ-
ed in a "distributed" knowledge base is less than in the in-
tegrated one. Or in other words dividing the knowledge base
into smaller units in general causes loss of information.
This is a quite obvious remark, however what is interesting
here, that this property is a logical, formal consequence of
a assumed definition of the knowledge/base and imprecision,
expressed in the form of approximations.

The properties 9) and 10) are also of interest and
demonstrate the nature of the relationship between the lower

and the upper approximation of sets.

Remark.
Let us note that each knowledge base K = (U,R) uniquely

defines a topological space TA = (U,DIS(R)), where DIS(R) is
the family of all open and closed sets in TA (topology for
U), and U/R is a base for TA' The R-lower and the R-upper
approximation of X in A are interior and closure operations
in the topological space T, respectively.

The topology generated by the equivalence relations,
differs however from the general topology because properties
RRX = RX and RRX = RX are not valid in the general topology,
where we have instead RRX = RRRRX and RRX = RRRRX, reSpecti—
vely.

More about the topology dgenerated by the equivalence
relation can be found in Wiweger (1988) and Skowron (1988).

5. Approximations and Membership Relation

The concept of approximations of sets leads to a new
conception of membership relation. Because definition of a
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set in our approach is associated with knowledge about :the -
set, hence also a membership relation must be related to the
knowledge. Formally this can be defined as follows:

X if and only if x € RX

X €p

x ER X if and only if x € RX
where €, reads "x surely belongs to X with respect to R " and
ER - "y possibly belongs to X with respect to R ", and will

be called the lower and the upper membership relation
respecﬁively. |

Both membership relations again are referring to our
knowledge, i.e. whether an object belongs to a set depends

upon our knowledge and it is not an absolute property.

Immediately from Proposition 2 we obtain the following
properties of membership relations.

Proposition 3

1) x € X implies x € X implies x € X

2) XsY 'implies (x € X implies X € Y and x € X implies
X e€Y)

3) x € (XuY) if and only if x e X or x e Y ‘.

4) x € (XnY) if and only if x e X and x € Y

5) x e Xor x € Y implies x € (XuY)

6) x € (XnY) implijes x €e Xand x e Y

7) ¥ € (-X) if and only if non x € X

8) x € (-X) if and only if non x € X ]

For simplicity we dropped the subscript R in the above
formulas. |

The membership relation is a basic issue when speaking
about sets. In set theory absolute Kknowledge is re‘q.uired
about elements of the universe, i.e. we assume that each
element of the universe can be properly classified to a set X
or its complement for any X € U. In our philosophy, this is
not the case since we claim that the membership relation is
not a primitive notion but one that must be based on know-

ledge we have about objects to be classified. As a consequen-
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ce two membership relations are necessary to express the fact

that some objects of the universe cannot be properly classi-
fied employing available knowledge. That is still another ex-
planation of the fact that imprecise categories cannot be
precisely defined by available knowledge.

It should be quite obvious that precise categories do
not require two membership relations, but that one "classi-
cal" membership relation suffices.

In. the case when R is an equality relation, all three
membership relation are the same and coincide with ordinary
set theoretical membership relation.

. 6. Numerical Characterization of Imprecision

Inexactness of a set (category) is due to the existence
of a boundary region. The greater the poundary region of a
set, the lower is the accuracy of the set. In order to ex-
press this idea more precisely we introduce the accuracy
measure

, card RX
an(X) = =
card RX

where X = o.

The accuracy measure aR(X) is intended to capture the
degree of completeness of our knowledge about the set X.
Obviously 0 = aR(X) < 1, for every R and X s U; if aR(X) = 1
the R-boundary region of X is empty and the set X is
R-definable; if aR(X) <1 the set X has some non-empty
R-boundary region and consequently is R-undefinable.

Of course some other measures can also be defined in or-
der to express the degree of inexactness of the set X.

For example, it is possible to use a variety of on (X)

defined as

Pr(X) = l-ap(X)

and referred to as a R-roughness of X. Roughness as opposed
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~ to accuracy represents the degree of incompleteness of know-
ledge R about the set X.

¢

Example 2.

We shall illustrate the above introduced notions by

means of simple examples. Assume the knowledge base and the
equivalence relation as in Example 1 i.e.

Ey = {Xy0 X4 Xg}

E, = {xg}

Let us illustrate the above introduced notions for the
following three sets:

Xy = {xy, x4, x5} ‘

Xy = X350 Xg}

15 By YV Ey = Axy, X5, Xy, X5, X5, Xg)

~BNR(X1) = E1 V] E2 = {xl, x2, x4, x5, X x8}

NEGL(X,) = E; v E, = {X5, X}

ap(X,) = 0/6 = 0
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RX, = Ej = {x3}

RX, = E, v By = {X,, X5, Xg: X5}

BNR(XZ) = E2 = {xz, Xgo x7}
NEGL(X,) = E; Vv E, = {Xy, X4, Xg, Xg}

ap(X,) = 1/4
RX, = E; v E, = {X;, X}

,_RX3 = E1 v E3 V) E4 = {xl, x3, x4, x6, x8}

BNR(X3) = El = {xl, X, Xg
NEGR(X3) = E2 = {xz, Xg, x7}

aR(X3) = 2/5 [

A brief intuitive comment on the accuracy measure is in
order. !

The numerical value of imprecision is not pre assumed,
like in probability theory or fuzzy sets - but is calculated
, on the basis of approximations which are the fundamental con-
cepts used to express imprecision of knowledge. Thus the as-
sumed numerical representation of imprecision is a consequen-
ce of limited knowledge (ability to classify objects). As a
result we do not require from an agent to assign precise nu-
merical values to express imprecision of his knowledge but
instead imprecision is expressed by dquantitative concepts
(classifications).

The numerical characterization of imprecision will be
used to express exactness of concepts and are of great value

in many practical applications.

7. Topological Characterization of Imprecision
- Besides characterization of rough sets by means of nu-
merical values (accuracy coefficient), one can also introduce
an interesting characterization of rough sets employing the
notion of the lower and the upper approximation. It turns out
then that there are four important and different kinds of
rough sets defined as shown below: ’
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a) If RX # ¢ and RX # U, then we say that X is roughly

R-definable

b) If RX = & and RX # U, then we say that X is
internally R-undefinable

c) If RX *+ o and RX = U, then we say that X is
externally R-undefinable

d) If RX = ¢ and RX = U, then we say that X is totally
R-undefinable

The intuitive meaning of this classification is the
following:

If set X is roughly R-definable, this means that we are
able to decide for some elements of U whether they belong to
X or -X.

If X is internally R-undefinable, this is to mean that
we are able to decide whether some elements of U belong to
~-X, but we are unable to decide for any element of U, whether
it belongs to X or not. ‘ |

If X is externally R-undefinable, this means that we are
able to decide for some elements of U whethér they belong to
X, but we are unable to decide, for any element of U whether
it belongs to -X or not.

If X is totally ﬁ-undefinable, we are unable to decide
for any element of U whether it belongs to X nor -X.

In other words, set X is roughly definable if there are
some objects in the universe which can be positively classi-
fied, based on the information available to us as belonging
to the set X. This definition also implies that there are so-
me other objects which can be negatively classified without
any ambiquity as being outside the set X.

External R-undefinability of a set refers to the situa-
tion when positive classification is possible for some
objects but is impossible to determine that an object does
not belong to X.

The following example will depict the classification of
rough sets in more detail:
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Example 3, v 4
Let K = (U, R) where U = {xo, e ,xlo} and R € IND(K)

with the following equivalence classes:

E, = {xo,xl}

E, = {xz,xs,xg}

E3 = {x3,x5}

E, = {X,,Xg}

E5 = {X7,x10}

The sets

Xy = {XgiXyiX4.Xg}
Y1 = {x3,x4,x5,x8}

= r /
A {xz,xB,xs,xé,xg}

are examples of R-definable sets.

THE sets

>4
[l

B H
o = {XgiX3i X4 X5,Xg, X4}

~
|

2 = X% Xgi X0}

Z2 = {xz,x3,x4,x8}

are examples of roughly R-definable sets. The corresponding

approximations, boundaries and accuracies are:
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gxz = E3 v E4 = {x3,x4,x5,x8}

ﬁxz =E) VE; VE, UVE; = {X,,X),X3,X,,Xg,X,Xg
- BNR(XZ) = E‘1 v ES = {xo,xl,x7,xlo}
' aR(xé) = 4/8 = 1/2
! : BY; = Eg = {X7.%)}

RY2 = El v E4 v Es = {xo,xl,x4,x7,x8,xlo}
BNR(Yz) = E1 v E4= {x4,x7,x8,xlo}
aR(Yz) = 2/6 = 1/3

R2, = E4 = {x4:xg}
RZ2 = Ez V) E3 v E4 = {xz,xa,x4,x5,x6,x8,x9}

BNR(ZZ) = E2 V] E3 = {xz,x3,x5,x6,x9}
aR(zz) = 2/7
The sets

X3 = (XQrX i XpiX3.Xy0Xq)

. 1
Y3 = {X10X5/X3,Xg1Xg:Xg,X 0}

Z., = {xo,xz,x3,x4,x8,xlo}

are examples of externally R-indiscernible sets.

The corresponding approximations, boundaries and accura-
7

cies are as follows:
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EXa = El = {XO'xl}

RX3 = U
BNR(X3) = Ez v E3 v E4 v Es = {x2,x3,x4,xs,x6,x7,x8,x9,xlo}
aR(X3) = 2/11.

RY3 =U

BNR(YB) = El v E3 v E4 v Es = {xo,xl,x3,x4,xs,x7,x8,xlo}

ap(Y,) = 3/11

BZy = By = {xg.xg}
§z3 =U
BNy (Z5) =’El VE,uE;uUE;= {xo,xl,xz,x3,x5,x6,x7,x9,x10j
g (Z,) = 2/11.
The sets
! X, = {xo,xé,x3}

X4= {xllxz Ix4lx7}

Zy =UXpuX3iX,)

are examples of internally R-indiscernible sets.
Below upper approximations of these sets are given :

RX4 = El v Ez v E3 = {xo,xl,xz,x3,x5,x6,x9}

=FE VE, VE, vE_ = {xo,xl,x

4 1 Y Es s ¥ Eq 21Xy 1 Xg1Xg1Xg,Xg,X,4}

RY
RZ4 = E2 v E3 v E4 = {xz,x3,x4,x5,x6,x8,x9}.

Certainly lower approximations of these sets are empty
sets and accuracy is equal to zero.

Below, are given examples of sets which are totally

R-indiscernible:
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X, = {xo,xz,xz,x4,x7}
Yg = {X1:Xg:Xg1XgiX )
— | ]
- zs - {xolx21x4lx51x7}

Next..we give an interesting property of the defined

topological classification of sets.
Proposition 4

a) Set X is R-definable (roughly R-definable, totally

R-undefinable) if and only if so is -X;
b) Set X is externally (internally) R-undefinable, if
and only if, -X is internally (externally)

R-undefinable.

Proof.

' -
| a) If X is R-definable, then RX # ¢ and RX # U. Because

RX # o = there exists x € X, such that [ij € X 1iff
[X]R n=-X=o iff R(-X)=U ; similarly, R(-X) =U
iff there exists y € X, such that [YlpnRX =¢ iff
[¥1p € - R(X) iff (y)p € R(-X) iff R(-X) ® e.

The proofs of remaiping cases are similar. "

We would like to conclude this section with the follow-
ing remark. We have introduced two ways of characterizing
rough sets. The first is that of accuracy coefficient and the

second - the classification of rough sets given in this
section.

The accuracy expresses how large is the boundary region

of the set but says nothing about the structure of the

boundary, whereas the classification of rough sets gives no
information about the size of the boundary region but provi-

des us with some insight as to how the boundary region is
structured.

In addition to that observe that there is the relation-

ship between both characterizations of fough sets. First, if
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the set is internally or totally indiscernible, then the .
accuracy of this set is zero. Secondly, if the set is ex-
ternally or totally indiscernible, then the accuracy of its
complement is zero. Thus by Xnowing the accuracy of a set we
are still unable to tell exactly its topological structure
and conversely the knowledge of the topological structure of
the set gives no information about its accuracy.

Therefore, in practical applications of rough sets we
combine both kind of information about the boundary region,
that is, of the accuracy coefficient as well as the informa-
tion about the topological classification of the set under
consideration.

The introduced classification of rough sets means that
there are four fundamental varieties of imprecise categories.
Thus imprecision is not a primitive concept since the intro-
duced topological classification of ‘Fough sets indicates
internal structure of imprecise categories.

8. Approximation of Classifications
Because we are basically intersted in classifications,
thus it is 1nterest1ng to have the notion of approximation of

c1as=1f1catzons. This is a 51mple extension of the definition

of approximation of sets. Namely if F = {Xl, Xz, N ,Xn} is
a family of sets, then RF = {RX,, 3X2, -+« +BX } and
RF = {ﬁxl, ﬁxz, . ,ﬁxn}, are called the R-lower and the

R-upper approximation of the family F.
We will define two measures to describe inexactness of appro-
ximate classifications.

The first one is the extension of the measure defined to
describe accuracy of approximation of sets, which is the
following:

The accuracy of approximation of F by R is defined as

Z card RX,
ap(F) = -

by R is the following:
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Z card RX

wR(F) =
card U

The accuracy of classification says what percentage of
possible decisions when classifying objects employing the
knowledge R is at most correct.The quality of classification
says what percentage of object can be rectly classified

shall use both

to classes of F employing knowledge
measures in what follows.
It is also interesting to describe inexactness of clas-
sification using topological means, as in the case of sets.
To this end in what follows we shall quote (with slight modi-
fications) = interesting results of Grzymala-Busse.(cf.

Grzymala-Busse (1988))

Proposition 5

Let F = {Xy, Xo0 wnes X}, where n > 1 be a classification of
U and let R be an equivalence‘_ relation. If there exists
ie {1, 2, ... ,n} such that BXi = 2, then for each j = i and,
je {1, 2, ... ,n} ﬁxj #= U. (The opposite is not true).

Proof.

If Bxi * @, then there exists x e X such that (x]p < Xi,
which implies [x]Rrwxj =26 for each j = i. This vyields
ij N [x]R= eand consequently §Xj # U for each j = i.=

Example 4.

Let R be an equivalence relation on U = {xl, Xor Xq4 X4y

61 Xa1 X8},~with the equivalence classes as below

X, = {x;, x5, x

3¢ X5}

X2 = X0 x4

X3 = {xg, x5, xg}

and let the classification ¢ = {Yl, Y, Y3} be given, where
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Yl = {Xl' x2, x4}

Y, = {x3. Xg, Xg)

Y3 = {x6, X7}.
Because BYI = X2 = {xz; x4} =_e, then RY2 = Xl U X3 =
{xl,.xz, Xgr Xgi x7} = U, and RY3 = x3 = {x6, Xor x8} = U. =n
Proposition 6

Let F = {Xl, X2, e ,Xn}, where n > 1 be a classifica-
tion of U and let .R be an equivalence relation. If there
exists i1 € {1, 2, ... ,n} such that ﬁxi = U, then for each
j# i and j € {1, 2, ... ,n} ij = d. (The opposite is not
true). '
Proof.

A

1f ﬁxi = U, then for every x € X we have [x],n X, *o.
This implies that (x]p < Xj does not hold, for each j = i and
consequently ij = o for each j = i.s

Example 5,

Assume an equivalence relation as in Example 4, and the
following classification C = {Zl,_zz,'ZB}, where

Zl = {xl, x2, x6}

W B WP WP WP W W e e —

2y = Axqs %4}

Z3 = {XS’ x7, xs}

Because RZ, = X, vX,v X, = U. then RZ, = e and RZ, =e. =

Direct consequences of the above propositions are the
following interesting properties.
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Proposition 7

Let F = {X X ,Xn}, where n > 1 be a classifica-

1' 2' e & o
tion of U and let R be an equivalence relation. If for each
ie {1, '2, «es ,n} gxi # & holds, then ﬁxi # U for each
) i e€{1, 2, ... ,n} . (The opposite is not true). =

Proposition 8

Let F = {X,, X,, ...
tion of U and let R be an equivalence relation. If for each
ieq{x, 2, ... ,n} ﬁxi = U holds, then RX; = for each
i e€{1, 2, ... ,n}. (The opposite is not true).m

,Xn}, where n > 1 be a classifica-

These propositions say that classification with all external-
ly or internally undefinable classes do not exist and they

coincide with classifications having all classes totally un-
definable.

Thus approximation of sets and approximation of families
of sets (in this case classifications) are two different is-
sues, and equivalence classes of approximate classifications
can not be arbitraryﬁsefs, but they are strongly related.
Intuitively this meaﬁéﬁ ﬁi\t if we have positive examples of
every category in t ipproximate classification, then we
must have also negative examples for each category. For
example if categories are say, colors red, green, blue etc
and if we have examples of red, green, blue etc, objects in
our knowledge base thén we must also also have examples of
not red, not green, not blue etc, objects in the knowledge
base.

This points out the difference between complement in the
x case of sets and classifications. Finally this may lead to

new concepts of negation in the case of binary and multi-
valued logics. ‘

9. Rough Equality of Sets

As we have already indicated the concept of rough set
differs essentially from the ordinary concept of the set be-
cause for the rough sets we are unable to define uniquely the
membership relation and we have two of them instead.

There is another important difference between those con-
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cepts namely that of equality of sets. In set theory, two
sets are equal if they have exactly the same elements. In our
approach we need another concept of equality of sets; hamely
approximate (rough) equality. Thus two sets can be in equal
in set theory but can be approximately equal from our point
of view. This is an important feature from practical point of
view, for often by using the available knowledge we might be
unable to tell whether two sets are equal or not (i.e. they
have exactly the same elements) but we can only say that
according to our state of knowledge that they have close

features which are enough to be assumed approximately equal
(because they differ "slightly").

In fact we introduce not one but three kinds of appro-
ximate equality of sets.

We are now ready to give the formal definitions.

Let K = (U, R) be a knowledqe base, X, Y s U and
R € IND(K). We say that

a) Sets X and Y arc bottom R-equal (X — gY) if RX = RY

b) Sets X and Y are top R-equal (X uRY) if RX = RY.

Cc) Sets X and Y are R-equal (X *p Y) if X —_ Y and

~R
X ?R Y.

It is easy to see that ~p' “g and xp are equivalence
relations for any indiscernibility relation R.

We can associate the following interpretations, with the

above notions of rough equality  (For simplicity of notation
we shall omit the sukscripts.):

a) If X - Y, this means that positive examples of
the sets X and Y are the same.

b) If X ~ Y, then the negative examples of sets X and Y
are the same.
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c) If X =AY, then both positive and negative examples of
sets X and Y are the same. '

(By positive or negative examples of a set we mean the
elements of the universe belonging to either positive or ne-

gative region of the set, respectively.)

Example 6

Let us consider knowledge base K = (U, R) where the
universe U = {xl, Xor Xq0 Xg0 Xgy Xgy Xq, xe} and the rela-
tion R € IND(K) has the following equivalence classes:

E1={x2 IX3}JE2 = {xllx4 Ixs}
E3={x6}, E4= {x7,x8}.

For sets X, = {xl,x ,x3} and X, = {xz,x3,x7} we have RX, = E

2 2 1 1l

and gx2=E1, thus X1 R Xz' i.e. Xl and Xz are bottom R-equal.

Sets Yl = {xl,x

1l

x7} and Y, = {xz,x x8} are top

3Ix4l

= RY2 = El v Ez v E;.

= {x3,x4,x6} are R-equal .

2I
Yz) because RY

2
R-equal (Y1 *R 1
Sets Z1 = {xl,xz,xs} and Z2

(2, *p Z,) because RZ, = RZ, = E, and RZ, = RZ, = E,v E,v Ej.

7

The following exemplary properties of relations Zr' R

and ~p are immediate consequences of the definitions:

Proposition 9.
For any equivalence relation we have the following

properties:

1) XY ifXnY—-XandXnY-Y
2) X=2Y if XvyY=Xand XvY ==Y
3) If X = X’ and Y = Y;, then X vY =« X’ vY'
4) If X — X’ and Y - Y’, then X n Y — X' nY’

5) If X =Y, then X v -Y = U
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6) If X - Y, then X n -Y - o

7) If XS Y and Y = 2, then X = o
8) If X <Y and X = U, then Y = U

9) X =Y if and only if =X — -Y

10) If X —eor Y —-—e, thenXnY - o

11) If X =Uor Y «=U, then X v Y =U ]

Let us note that if we replace — by = (or conversely)
the above properties are not valid.

Ncw we are in the position to express lower and upper
approximations of sets in terms of rough equalities as stated

in the following proposition:

Proposition 10, ’
For any equivalence relation R

a) RX is the intersection of all Y ¢ U such that X -, Y.

b} RX is the union of all Y ¢ U, such that X *p Y. .

We shall concludé this section with the remark that the
concept of approximate equality of sets refers to the topo-
logical structure of sets being compared but not to the
elements they consist of. Thus the sets having quite dif-
ferent elements can be roughly equal in this context. What
really matters here is the fact of having the same lower
or/and upper approximation by different sets which is a kind
of topological characterization. Let us also mention that the
definition of rough equality refers to our knowledge about
the universe.

Thus in our approach the notion of equality of sets is
of relative character. For example two sets can be exactly
equal in one approximdation space and they can be approximate-
ly equal or not equal in another one. This simple observation
is confirmed by every ones experience: things are equal or
not equal from our point of v1ew/depeﬁd&ﬂg=what we know about

0()7’0@\0(3 O

_.__.__.__—.,.ﬁ—-/

46

!

BB B E R R E E E E EEEEEEE™EY




N
.

s =eu wow sun 55 SN N

them.

At the end let us note that equality of precise.catego-
ries can be expressed employing usual equality of sets, and
the above defined approximate equalities are necessary only
when speaking about equality of imprecise categories.ﬁ

Let us also note that if' R is an equality relation then,
all three above defined rough equalities of sets coincide
with "classical" set theoretical equality of sets.

10. Rough Inclusion of Sets

One of the fundamental notion of the set theory is the
inclusion relation. ‘Analogous' rnotion can be introduced in
rough sets framework. The rough inclusion of sets is defined
here in much the same way as the rough equality of sets.

The formal definition of rough inclusion is as follows.

Let K= (U, R) be a knowledge base, X, Y U, and
R € IND(K). We will say that:

a) Set X is bottom R-included in Y (X ¢, Y) if RX S RY.

1

b) Set X is top R-included in Y (X ER Y) if RX € RY.

c) Set X is R-included in Y (X ER Y), if X c_Y and

Xcpv.

R

F

One can easily see that Spe ER and ER are ordering rela-

tions. For simplicity we shall omit the subscript R.

In fact we have, as in the case of rough equality of

sets, three rough inclusion relations of sets, called the
lower, upper and rough inclusion relation respectively. The

intuitive meaning of these inclusions is the following:

a) X ¢ Y means that the positive examples of the set X

are also positive examples of the set Y.

b) X ¢ Y means that negative examples of set Y are
also the negative examples of the set X.

c) If X < Y, then both a) and b) hold.
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It shoulCi pe quite clear by now that rough inclﬁsion of
sets does not imply the inclusion of sets.

The examF’ le below depict the concept of rough inclusions.

Example 7

Let us
this knowled9® base set X, = {x,, X,, Xg, X5} is bottom

consider the knowledge base as in Example 4. In

R-includea 37 P set X, = {Xy, X3, X0 Xg}, (X; gp X;) be-
cause RX, = £3 and RX, = E) VE,;. Set ¥, ={x,, X3, x;} s
top .R—lnclxﬂied' in the %?t Vo= AXys X5 X5k, (ry ER 2) be-

EluE and RY2 =Elu£‘2uE4. Set Zl— {XZ’ x3}

cause RYl .
. » n = X
is R-included in Z, = {Xx;, X5, X5, X5}.

ely from the definitions we can derive the fol-

Immediat®
properties:

lowing simpl€

Proposition 11-
¢ ¥, then X c Y, X cYand X ¢ Y.

1) If X

2) If X € y and Y ¢ X, then X - Y.
3 1£ x ¢ ¥ a9 < X, then X =Y.
4)IszYandY§XlthenX=Y_

t

sy x ¢ v ff

6) X ¢

7y 1f xe¥, X = X and ¥ oYY, then Xt g yr.

gy 1f xey, X=X’ and ¥ =¥y, then X! < vr

9) If xeY s X = X’ and Y = Y/ then X’ -C: ye.

10) If X' = xand Y/ C Y, then X' vuY' C XuyY.

11) If X' & X and ?’ c Y, then X’ n Y’ < Xnvy.

12y xnvY % cXur.

13) e x ¢ ¥ and X = Z, then Z ¢ Y.

14y 1£ x ¢ Y @nd X = Z, thenz y.

15) 1f X ¢ ¥ and X = Z, then Z < Y. ]
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The above properties are not valid if we replacé - by =
(or conversely).

It is interesting to cémpare the properties of rough in-
clusion with that of ordinary set theoretical inclusion but,
we leave this to the interested reader.

The intuitive motivation behind the introduced notions
is the following: if X and Y are imprecise categories, and X
is top (bottom, roughly) included in Y, then Y is more a ge-
neral category then X, however three sub cases should be
distinquished in this case, inclusion of positive examples of
the concept (lower inclusion), - inclusion of negative
examples of the concept (upper inclusion) and both, i.e. in-~
clusion of negative and positive examples (rough inclusion).

In the case when R is an equality relation, all three
inclusions reduce to ordinary inclusion.

Summary

It is interesting to compare the the concept of the
rough sets with that of conventional set. Basic properties of
roughs sets, like membership of elements, equality and inclu-
sion of sets are related to our knowledge about the universe
of discourse expressed by the indiscernibility relation. Con-
sequently whether an element belongs to a set or not is not
an objective property qf the element but depends upon our
knowledge about it. Similarly equality and inclusion of sets
are not decidable in absolute sense but depend on what we
know about the sets in question. In general all properties of
rough sets are not. absolute but are related to what we know
about them. In this sense the rough set approach could be
viewed as a subjective counterpart of the "classical" set
theory.

Because we are aiming at formal investigation of cate-
gories, the above given definitions and properties can be in-
terpreted in terms of categories. In particular the classifi-
cation, rough equality rough inclusion of rough sets can be
interpreted as classification, rough equality and rough in-
clusion of rough (approximate) concepts.
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Excercises _ :
1.Suppose we are given an equivalence relation R with the

following equivalence classes:
X1 = {xz, Xgr Xgo x8}
X2 = {xl, x3}
X3 = {xs, x7, xg}

Compute the lower and upper approximation, the boundary and
the accuracy for sets

Yy = {xy, X5, X5}
Yz = {xz, x3, X7} 2
Y3 = {Xz' x3, xs}

; Y4 = {xl, xz, x3, x6}.

2. Give topblogical classification for sets Y Y Y and

1’ "2’ 73

Y, considered in Example 1.

3.Give proper (lower or upper ) membership relation for

and set Y. (Y

elements x 9 1

Yy Y,)-

17 Xar X3 X4 Xgi Xgo Xq4 Xgy X 27

4. Check whether the following pairs of sets are roughly
equal or not.

2y = Xy X3, X4 X5 Xq, Xg}
Z, = 1x30 X5, X4, X5}

23 = {Xy0 X34 X4, X5, Xg}

2y = X140 X3, Xg, Xg)}
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ZG {xl' x6' x7l xg}

5. Check whether the following pairs of sets. are roughly

included or not.

Vl = {xl, Xz, X3, x41 xsl x8}

Vz = {xz' X4, xs' X6I x7’x8’ xg}
Vy = {xy, Xy, X5, X4, Xg}

V4 = {Xz' Xqr Xg x8}

Ve = {Xy, Xy, X5, Xg1 Xq Xg}

Ve = {X3, Xg1 X5, Xg} ‘

6. Give examples of classification illustrating Proposition 7
and 8.
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3. REDUCTION OF KNOWLEDGE

1. Introduction

A fundamental problem we are going to address in this
section is whether the whole knowledge is always necessary to
define some categories available in the knowledge considered.
This problem arises in many practical applications and will
be referred to as knowledge reduction. Its significance will
be clearly seen in the second part of the book, where various
applications are discussed.

It is interesting to note that the problem of reduction
of knowledge is strictly related to the general concept of
independence discussed in mathematics as formulated by Mar-
czewski (cf. Marczewski (1958) see als? an overview paper by
Glazek (1979)), however results of independence theory can
not be used in our approach, for they do not address problems
which are relevant to issues connected with knowledge reduc-
tion. Some mathematical problems connected with knowledge re-
duction are considered in the;paper by Los (cf. Los (1979)).

2. Reduct and Core of Knowledge
In reduction of knowledge basic role is played, in the
proposed approach, by two fundamental concepts - a reduct and
the core. Intuitively a reduct of knowledge is its essential
part, which suffices to define all basic concepts occurring
in the considered knowledge, whereas the core is in a certain
sense its most important part. Examples given in the second
part of the book will make these ideas more clear, and in
section we confine ourselves to formal definitions of
ddct and the core, hefore however we need some auxiliary
otions, which are given next.
Let R a family of equivalence relations and let R € R.
We will say that R is dispensable in R if IND(R)=IND(R-{R});
otherwise R indispensable in R.

The family R is independent if each R e€ R is indispens-
able in R.
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Remark. The defined concept of independence is a special case
of independence introduced by Marczewski (cf. Marczewski

(1958), see also an overview paper by Glazek (1975)).

Proposition 1

If R is independent and P s R, then P is also inde-
pendent. '

Proof. The proof is by contradiction. Suppose Q ¢ P and Q is
dependent, then there exists S c¢ Q such that IND(S) = IND(Q)
which implies IND(S v (P - Q)) = IND(P) and Su (P - Q) c P.
Hence P is dependent, which is a contradiction.s

Q S P is a reduct of P if Q is independent and IND(Q) =
IND(P).

Obviously P may haQe many reducts.

Set of all indispensable relations in P will be called
the core of P, and will be denoted CORE (P).

The following is an important property establishing the
relationship between the core and reducts.

Proposition 2

CORE(P) = {L RED(P)
where RED(P) is the family of all reducts of P.

Proof.

If Q is a reduct of P and Re P - Q, then IND(P)=IND(Q),
Q<SP - {R} <P. Note that, if P, Q, R are sets of equiva-
lence relations, IND(P) = IND(Q), and Q SR<SP, then
IND(Q) = IND(R). Assuming that R =P - {R} we conclude that R
is superfluous, i.e. R ¢ CORE(P), and CORE(P) < (1{Q: Q €
RED(P)}. '

Suppose R ¢ CORE(P), i.e. R is superfluous in P. That
means IND(P) = IND(P - {R}), which implies that there exists
independent subset S < P - {R}, such that IND(S) = IND(P).
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Obviously S is a reduct of P and R ¢ S. This shows that
CORE(P) 2 (1{Q: Q € RED(P)}.m

The use of the concept of the core is twofold. First, it
can be used as a basis for computation of all reducts, for
the core is included in every reduct, and its computation is
straightforward. Secondly, the core can be interpreted as the
set of most characteristic part of knowledge which can not be

eliminated when reducing the knowledge.

Example 1
Suppose we are given a family R = {P, Q, R} of three
equivalence relations P, Q and R with the following equiva-

lence classes:

¥
U/P ={{x1' x4l xs}l {le xs}l {x3}l {XGI x7}}

u/Q = {{xl' x3l XS}' {XG}' {le x4l x7l XB}}

U/R = {{xll xs}l {xzr x—,r x8}' {x3l X4}}

Thus the relction IND(R) has the equivalence classes
U/IND(R) = {{x;, X5}, {x,, Xg}, {x3}, {X,}, {Xg}, {x,}}.

The relation P is indispensable in R, since

U/IND(R ={P) = {{x,, X5}, {X,, X3, Xg}, {¥X3}, {x,},

{xg}} * U/IND(R).
For relation Q we have

{x7}} = IND(R), thus the relation Q is dispensable in R.
Similarly for relation R
U/IND(R -'\R) = {{Xll xs}l {le Xe}l {x3}l {X4}I
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;__. p(R), hence the relation R is also
{xgt, {x51}} U/IND(R)

dispensable in R.

That means that the classification defined by the set of

three equivalence relations.P, Q and R is the same as the

classification defined by relation P and Q or P and R. In
order to find reducts of the set R = {P Q, R} we have to
check whether pairs of sets P, Q and P, R are independent or
not. Because U/IND({P, Q}) * U/IND(Q) and U/IND({P, Q})%
U/IND(P), hence the relation P and Q are independent and con-

sequently {P, Q} is a reduct of R. Proceeding in the same way

we find that (P, R} is also a reduct of R.
Thus are two reducts of the family R, namely {P, Q} and

{P, R} and {P, Q} n {P, R} =P is the core of R.s

3. Relative Reduct and Relative Core of Knowledge

The concepts of reduct and core defined in the previous
section are of 1imited value when speaking about applica-
tions. Therefore in this sectipn we will give a .generaliza-
tion of these concepts needed for further considerations.

To this end we need first to define a notion of a posit
tive region of a classification with respect to another clas-
sification. For mathematical reasons we will use equivalence
relations instead of ,classifications, but as’ we mentioned
before these two concepts are mutually exchangeable.

Let P and Q be egquivalence relations over U.

By P-positive region of Q, denoted POSP(Q) we understand
the set

POS,(Q) = |JEX
X € U/Q

The positive region of the ‘classification U/Q with
respect to U/P is the set of all objects of the universe
which can be properly classified to classes of U/Q employing
knowledge expressed by the classification U/P.

Now we are able to give definitions of generalized con-

Cepts considered in the previous section.
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Let P and Q be families of equivalence relations over U.

We say that R € P is Q-dispensable in P, if

yd

POS yp(p) (IND(Q)) = POSIND(P_{R})(IND(Q)> /j

otherwise R is Q-indispensable in P.

If every R in P is Q-indispensable we will say that P is
Q-independent (or P is independent with respect to Q).

Family S ¢ P will be called a Q-reduct of P, if S is
Q-independent subfamily of P and POSg(Q) = POS,(Q).

The set of all Q-indispensable primitive relations in P
will be called the Q-core of P, and will be denoted as
CORE (P ).

It is easily seen that if P = Q we get the definitions
introduced in the previous section.

’
The following proposition is a counterpart of
Proposition 2.

Proposition 3

CORE, (P) =  RED(P)

where REDQ(P) is the family of all Q-reducts of P. ]

Proof of this proposition is similar to that of
Proposition 2.

Example 2.

This example will serve as an illustration of ideas
considered in this section.

Consider family R = {P, Q, R} of equivalence relations
having the following equivalence classes:

Uu/pP

{{xll X3’ X4I xsl x6’ x7}l {le xe}}
U/Q = {{xl' x3l x4l xs}l {le Xsl X7I xs}}

U/R =

{{Xll xsl XG}I {le X7I xs}l {XBI x4}}

The family R induces classification '
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Moreover assume that the equivalence relation S is given

with the equivalence classes
U/S = {{xll xsl XG}I {x3lj x4}l {le x7}l {xs}}

The positive region of S with respect to R is the union
of all equivalence classes of U/IND(R) which are included in

some equivalence classes of U/S, i.e. the set
POSR(S) = {xl, Xa10 Xyv Xgo Xg x7}.

In order to compute the core and reducts of R with res-
pect to S we have first to find out whether the family R is S
dependent or not. Accordingly to definitions given in this
section we have to compute first whether P, Q and R are dis-
pensable or not with respect to S (S-dispensable). Removing P

we get

t

U/IND(R = P) = {{Xll xs}l {x3l x4}r {le x7r XB}’ {XG}}'
Because

POS g - (p})(S) =Xy, X3, X4 Xg, {X¢} # POSL (S)

the P is S-indispensable in R.
Dropping now Q from R we get

U/IND(R - Q) = {{xl' Xsl x6}l { X3I x4}l {le xs}l {X7}}
which yields the positive region
POS g _ {Q})(S) = {X;, X3, X4, Xg, Xg, X5} = POSL(S)

hence Q is S-dispensable in R.

Finally omitting R in R we obtain
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and the positive region is

POS = @, * POSL(S),

S
(R - {R})(5)
which means that R is S-indispensable in R.
Thus the S-core of R is the set {P, R}, which is also
the S-reduct of R.m

Let us briefly comment the above defined notions.

Set POSP(Q) is the set of all objects which can be clas-
sified to elementary categories of knowledge Q, employing
knowledge P.

Knowledge P is Q-independent if the whole knowledge P is
necessary to classify objects to elementary categories of
knowledge P. | J;

The Q-core knowledge of P is the most essential part of
knowledge P, which cannot be eliminated without disturbing
the ability to classify objects to elementary categories of
g. |

The Q-reduct of knowledge P is minimal subset of know-
ledge P, which provides the same classification of objects to
elementary categories of knowledge Q as the whole knowledge
P. Let us observe that knowledge P can have more than one
reduct. '

Knowledge P with only cne Q-reduct is in a sense deter-
ministic, i.e. there is only one way of using elementary ca-
tegories of knowledge P when classifying objects to elementa-
ry categories of knowledge Q. In the case of nondeterministic
knowledge i.e. if knowledge P has many Q-reducts, there are
in general many ways of using elementary categories of P when
classifying objects to elementary'categories of Q. This non-
determinism is particularly strong if the core knowledge is
void. Hence nondeterminism introduces synonymy to the know-
ledge, which in some cases may be a drawback.

More about the discussed approach can be found in
Grzymala-Busse (1986), Novotny (1988, 1989a,b, 1990) and
Rauszer (1985, 1986, 1988, 1990).
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4. Reduction of Categories _

- Basic categories are pieces of knowledge; which can be
considered as "building blocks" of concepts. Every concept in
the knowledge base can be only expressed (exactly or appro-
ximately) in terms of basic categories. On the other hand
every basic category is "built up" (is an intersection) of
some elementary categories. Thus the question arises, whether
all the elementary categories are necessary to define the
basic categories in question.

From mathematical point of view this problem is similar
to that of reducing knowledge i.e. elimination of equivalence
relations which are superfluous to define all basic catego-
ries in knowledge P.

The problem can be formulated precisely as follows.

Let F =‘{x1,...,xn}, be a family of sets such that Xi =
U.

We say that X; is dispensable in F, if ()(F - {x;1) =
(1F; otherwise the set X; is indispensable in F.

The family G ¢ F is independent if all of its components N
are indispénsable; otherwise G is dependent. .

The fahily H s F is a feduct‘of"F; if H is independent
and ()H = ()F. .

The family of all indispensable sets in F will be called
the core of F, denoted CORE(F). The introduced above defini-
tions are counterparts of definitions given in section 2,
with the only difference’that instead of relations, we deal

now with sets.

Now we have the following counterparts of Proposition 2.

Proposition 4.

CORE(F) = () RED(F)
where RED(F) is the family of all reducts of F. n
Example 3

Suppose we are given family of three sets F = {X, Y, Z},
where

X = {x;, X5, Xg}
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Y = {xl,vx3, x4, xs, x6}

zZ = {xl,x3, x4, x6, x7}

Hence [JF =X nYn2Z= {x;, X5}.
Because

(Y(F - {X}) =Yn2Z={x, }r3, X, Xg}

rf](F - {Y}) =Xn2Z-= {xl, x3}

(V(F = {2}) =XnY={x, x;}

sets Y and Z are dispensable in the family F, hence the fa-
mily F is dependent, set X is the core,of F, families {X, Y}
and {X, Z} are reducts of F, and {X, Y} n {X, Z} = X. =

Remark
* The problem mentioned above is somewhat similar to so
called "minimal cover" (cf.for example M.R. Garey and

D.S.Johnsorn, Computers and Intractability A Guide to the
Theory of NP-Completeness, W.H.Freeman and Company 1979, San
Francisco) .=

We will also need in further chapters a method to elimi-
nate superfluous categories from categories which are union
of some categories. The idea will be of particular We will
also need in further chapters a method to eliminate super-
fluous categories from categories which are union of some
categories. The idea will be of particular interest, in the
context of minimization of instruction in decision tables,
considered in Chapter 6. The problem can be formulated in a
similar way as the previous one, with the exception that now
instead of intersection of sets we will need union of sets,
as formulated below. ' |

LetLF={Xl,...,Xn}, be a family of sets such that xi <€ U.

We say that X, is dispensable in U F, if U (F - X1 =
U F; otherwise the set X; is indispensable in U rF.
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The family G ¢ F is independent if all of its components
are indispensable; otherwise G is dependent. |

The family H S F is a reduct of U F, if H is independent
and U H =UF.

Example 4.

This example will serve as illustration of the idea dis-
cussed above. Let F = {X, Y, Z, T}, where

X = {xy, X5, Xg}

Y = {xl; Xar X0 Xg, x6}
Z = {Xy,X5, X40 Xg1 X5}
T = {xl, Xq1 Xgo x7}

Obviously UF=XuYUVUZuUuT-= {x,, x

27 3! 4' 4’ 57 6’

Xq x8}. Because we have

U (F = {X}) = U {Y, 2, T} = {xl' le x3l x4l x_4l X 57

X6, X7} = UF *

U (F - {Y}) = U {X, 2, T} = {xll X2I x3r x4l X41 > 4 57

Xgir Xo, Xg} = UF ¥

U F( - {Z}) = U {xl Yl T} = {xl’ le x3l x4l x4l > 4 5!

 Xgi Xo, Xg} = UF
U (F - {T}) = V) {X, Y, 2} = {xll X2, x3l x4l X4I X 5/

Xeo Xo, Xg} = UF
thus the only indispensable set in the family F is the set X,

and remaining sets Y, Z and T are dispensable in the family.
Hence the following sets are reducts of F: {X, Y, Z},
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(X, Y, T}y, {X, 2Z, T}. That means that the concept UF =
XvuYvuZuT, which is the union of some concepts X, Y, Z
and T can be simplified and represented as union of smaller

numbers of concepts.s

5. Relative Reduct and Core of Categories

Similarly as in section 3, we can generalize the concept
of the reduct, and the core, with respect to a specific set.
This will be needed in further chapters, in order to investi-
gate of how much knowledge is necessary to preserve some pro-
perties of categories.

Suppose we are given a family F = (X
and a subset Y < U, such that (|F s Y.

We say that X, is Y-dispensable in F, if (J(F - {X;}) s
Y; otherwise the set X is Y-indispensable in F.

..'Xn}l x‘ §U

1’- i

The family G € F is Y—independent,if all of its compo-
nents are Y-indispensable; otherwise G is Y-dependent.

The family H<F is a Y-reduct of F, if H is
Y-independent and ()H s Y.

The family of all Y-indispensable sets in F will be cal-
led the Y-core of F.We will also say that a Y-reduct (Y-core)
is relative reduct (core) with }espect to Y.

The counterpart of Proposition 3 is also valid in the
present framework as shown below:

Proposition 5.

CORE,(F) = () RED,(F)

where REDY(F) is the family of all Y-reducts of F. , .

Thus superfluous elementary categories can be eliminated
from the basic categories in a similar way as the equivalence
relations discussed in previous section in connection with
reduction of relations. |

Let us also note that if Y = (]F, we obtain the case
considered at the beginning of this section. ‘ -
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Exémple ) ; .
Consider again sets as in Example 3, and assume that T =
{Xl, X3}. In this case the T-reducts and T-core coincide with
that obtained in Example 3. v
Consider another example of the family of three sets F =

{X, Y, 2}, where

>
I

{xl, b 4 b'q

3+ Xgl
Y = {xl, x3, x4, xs, x6}_

zZ = {xl,x3, x4, x6, x7}.
and (\F=XnYn2Z-= {x;, x5}.

Let T = {x,, x5, xg} 2 (\F. Now we are able to see
whether sets X, Y, Z are T-dispensable in the family F or
not. To this end we have to compute the following:

(Y(F - {X}) =YnZ-= {x,, %3, X,, Xc}

1

XnY

(N (F - {zZ}) {X), X5, X,}.

Hence the sets X, /Y and Z are T—indispensable, thus the

. family F is T-independent, the T-core of F is the empty set,

and there are three T-reducts of the family F, {X, Y}, {X, z}
and {Y, Z}.

Summary ‘

Reducing of knowledge consists in removing of super-
fluous partitions (equivalence relations) or/and superfluous
basic categories in the knowledge ba in such a way that the
set of elementary categories in the knowledge base is pre-
served. This procedure enable u fﬁg eYiminate all unnecessa-
ry knowledge from the knowledg se, preserving only this
part of knowledge which is really useful.
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Exercises

1. Prove Proposition 3, 4 and 5.

2. The family of all indispensable sets in U F will be called
the core of U F, denoted CORE(F). Is the counterpart of
Proposition 4, i.e.the following proposition valid?

CORE(F) = (\RED(F),

where RED(F) is the family of all reducts of F.

3. Check whether the following family of partitions (or cor-

responding equivalence relations) is independent or not.

Fl = {{le x4}l {xsl xll X3}l {x6l xe}l {x7l xg}}

X
|

2 = {{xll x3’ x4}l {le xs}r {XGI,X-]l XBI xg}}

F3 = {{le X3, xs}l {xll x4l xs}l {X7I xsl xg}}

Compute the core and reducts.

J. Check whether -
a) the family {Fy, F,} is‘F3-independent
b) the family {Fl, F3} is Fz—independent
c) the family {Fz, F3} is Fl-independent

Compute corresponding cores and reducts.

5. Check whether the following family of sets is independent
or not.

X1 = {xl, Xor Xg, x6}
X, = {xz, Xq4
X3 = {xl, x3, xs, x6}
X, = {xl, XS'

Compute the core and reducts.
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k 6. Check whether

X,} is X, -independent

4

i_' a) the family {X,, X,,

x4} is X,-independent

1

b) the family {xz,-x3,

c) the family {X,, X3, X4} is Xz-independent

7. Check whether the union of sets Xl, Xz, X3, X4 is

independent or not.
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4. DEPENDENCIES IN KNOWLEDGE BASE

1. Introduction

Theorizing, besides classification, is the second most
important aspect when drawing inferences about the world.
Essentially, developing theories is based on discovering
inference rules of the form "if ... then ... ". (Sometimes
the rules can describe causal relationships). In our philoso-
phy this can be formulated as how from a given knowledge
another knowledge can be induced.

More precisely, knowledge Q is derivable from knowledge
P, if all elementary categories of Q can be defined in terms
of some elementary categories of knowledge P. If Q is deri-
vable from P we will also say that Q depends on P and can be
written P s Q. This problem will be considered in more detail
in Chapter 7 in logical setting. In this chapter we are going
to show the semantic aspects of dependency.

More about the notion of dependency considered in this
chapter can be found in Novotny et al. (1988, 1989, 1990) and
Pawlak (1985)). ‘

The articles of Buszkowski et al. (1986) and Raus:zer
(1984, 1985a,b,c, 1986, 1987, 1988) investigate the relation-
ship between functional dependencies in relational databases
and those considered here.

i
2. Dependency of Knowledge
Formally the dependency can be defined as shown below:
Let K = (U, R) be a knowledge base and let P, Q < R.

In

1) Knowledge Q depends on knowledge P if IND(P)
IND(Q).

2) Knowledge P and Q are equivalent, denoted as P
if P> Q and Q » P.

Q,

3) Knowledge P and Q are independent, denoted as P z Q
if neither P 5 Q nor Q » P hold.
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Obviously P = Q, if and only if IND(P) = IND(Q).
The following example will demonstrate the definition of

dependency.

Example 1.

Suppose we are given knowledge P and Q with the fol-
lowing partitions: U/P-= {{1,5}, (2,8}, {3}, {4}, {6}, {7}}
and U/Q = {{1,5}, {2,7,8}, {3,4,6}}. Hence IND(P) s IND(Q)
and consequently P = Q.=

It is easy to show by simple computation the following

properties.

- T

Proposition 1.

The following conditions are equivalentg

1) P> Q
2) IND(P u Q) = IND(P)
3y POSL(Q) = U
4) PX = X for all X € U/Q ' u

The Proposition 1 demonstrates that if Q depends on P,
then knowledge Q is superfluous within the knowledge base in
the sense that the knowledge P v Q and P provide the same
characterization of bbjects.

The following are also important properties of dependen-
cies: , '
Proposition 2.

If P is a reduct of Q, then P = Q - P and IND(P)=IND(Q).

[

Proposition 3.
a) If P is dependent, then there exists a subset Q < P
(P # Q) such that Q is a reduct of P.

1
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b) If P < Q and P is independent, then all basic rela-

tions in P are pair wise independent.
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c) If P s Q and P is independent, then évery subset R of
P is independent. ' "

The properties given below characterize the dependency
in more detail.

Proposition 4,
1) If P»Q, and P’/ > P, then P’s Q
2) If P=»Q, and Q' c Q, thén P=»Q’.
3) P> Qand Q = R imply P = R
4) Ps Rand Q » R imply Pu Q = R
5), P> Rv Q imply P> R and P » Q
6) P Qand QUR > T imply PUR > T

7) P> Qand R=» T imply P UR » Q‘u T . "

3. Partial Dependency of Knowledge

The derivation (dependency) can also be partial, which
means that only part of knowledge Q is derivable from know-
ledge P. The partial derivability can be defined using the
notion of the positive region of knowledge.

We will now define the partial derivability formally.

Let K = (U,R) be knowledge base and P,Q ¢ R. We say that
knowledge Q is derivable in a degree k (0 = k = 1) from know-
ledge P, symbolically P 2p Q, if -

card POSP(Q)

. card (U)

where card denotes cardinality of the set.

If k = 1 we will say that Q is totally derivable from P;
if 0 < k < 1, we say that Q is roughly (partially) derivable
from P, and if k = 0 we say that Q is totally nonderivable
from P, If P 2, Q we shall also write P = Q.

The above described ideas can also be interpreted as an
ability to classify objects. More precisely, if k = 1, then

S
.
’
.
' |
!
|

|

|

[

|

E

——
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all elements of the universe can be classified to elementary
categories. of U/Q by using knowledge P. If k # 1, only those
element of the universe which belong to the positive region
can be classified to categories of knowledge Q, employing
knowledge P. In particular, if k = 0, none of the elements of
the universe can be classified using knowledge P - to
elementary categories of knowledge Q.

More precisely, from the definition of dependency fol-
lows, if P + Q then the positive region of the partition U/Q
induced by Q covers k*100 percent of all objects in the know-
lédge base. On the other hand, only those objects belonging
to positive region of the partition can be uniquely classi-
fied. This means that k*100 percent of objects can be classi-
fied into blocks of partition U/Q employing knowledge P.

Thus the coefficient 7P(Q) can be understood as a degree
of dependency between Q and P. In other words if we restrict
the set of objects in the knowledge base to the set POSPQ, we
would obtain the knowledge base in which P » Q is a total
dependency.

Of course one could use another measure of rough depen-
dency but the one assumed here seems to be very well suited
to various applications ané it is also easy to compute and
interpret. '

The measure k of dependency P 2 Q does not capture how
actually this partial dependency is distributed among classes
of U/Q. For example some decision classes can be fully
characterized by P, whereas others may be characterized only
partially. To this end we will need also a coefficient
7P(X)=card PX/card X where X € U/Q which says how elements of
each class of U/Q can be classified by employing knowledge P.

Thus the two numbers 7P(Q) and 7P(X), X eU/Q give us ‘
full information about the "classification power" of the {|
knowledge P with respect to the classification U/Q. |

Example 2.

Let us compute the degree of dependency of khowledge Q
from knowledge P where the corresponding partitions are the

.fo}'lowj'ng: U/Q= Xl = {1}I X2 = {217}1 x3 = {316}1 X4 = {4}I
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Xy = {5,8} and U/P =Y, = {1,535}, Y, = {2,8}, Y, = {3},
¥4 = {4}, YS = {6} and Y6 = {7}.

Because gxl =0, gxz = Y6' gx3 = Y3 vY_, gx4 = Y4 and
PX, = o, thus POSp(Q) = Y, v Y, vYg vy, = {3,4,6,7}. That

is to say that only these elements can be classified into
blocks of the partition U/Q employing the knowledge P.

The proposition below is a counterpart of Proposition 3.

A - O[///ﬂ-v Qo 7L

. T o CQ ?(7[ (g
P and Q sI/P; then

Proposition 5.

1) If R K

RvuQ *m P, for some m =z max (k,1l).

2) IfRuPakQ, then R », Q and

1

P *m Q, for some 1, m s K.

3) If R 2y Q and R », P, then

1
R o Q v P, for some m = min (k,1). *

4) If R 2y Q v P, then R alQ and

R *m P, for some l, m=z K.

5) If R 2y P and P * Q, then R *m Q,

for some m = 1+k-1. .

Summary

Dependencies, in particular partial dependencies, in a

knowledge base are basic tools when drawing conclusions from
basic knowledge, for they state some of the relationships
between basic categories in the knowledge base.
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Exercises
1. Prove Propositions 1, 2, 3, 4 and 5.

2. Let U = {xl, Xor Xg0 Xu0 Xgi Xgo Xq x8} and assume that
the following partitions of U are given:

P, = {{x;, X,}, {x5, X,0 X5}, {Xg, X5, Xg}}
P, = {{x;, X, Xg}, {X 5, X3}, {Xg, X, Xg}}
Py = {{x,}, {X,, X3}, {X;, X5, Xg}, {Xg, X;}} 5
Py = Uxgs Xy X530 X4}o AXys Xgo X540 Xg}) )

‘

Compute degree of dependency between the following

> PZ’ P, > P3, P, =» P P, > P P, »P,.

partitions: P 3 4’ } 4’ Py 4

1 2
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5. KNOWLEDGE REPRESENTATION

1. Introduction

The issue of knowledge representation is of primary
importance in current research in AI and variety of
approaches can be found in this area (cf. Bobrow (1977),
Bobrow et al. (1977), Brachmann et al. (1980), Davis et. al.
(1982), Minski (1975), McDermott (1978), Newell (1982).

- our major concern in this chapter is to discuss the
issue of knowledge representation in the framework of con-
cepts introduced so far, i.e. knowledge understood as parti-
tion (classification), which can be viewed as semantic
definition of knowledge.

For computational reasons we need however syntactic re-
presentation of.knowledge. To this endr we shall employ tabu-

lar representation of knowledge, which can be viewed as a -

special kind of "formal language" used to represent equiva-
lence relations (or partitions) in symbolic form suitable for
*computer processing. Such a data table will be called Know-
ledge Representation Systems (KR-system, or KRS). (Sometimes
called alsd information systems or attribute-value system).

Knowledge representation system can be perceived as a
data table, columns of which are labelled by attributes, rows
are labelled by objects (states, processes etc.) and each row
represents a piece of information about the corresponding
object. The data table can be obtained as a result of
measurements, observations or represents knowledge of an
agent or a group of agents. The origin of the data table is
not important from our point of view and we shall be
interested only in some formal properties of such tables.

It 1is easily seen that with each attribute we can
associate an equivalence relation. For example the attribute
"color" classifies all objects of the universe into
categories of objects having the same color, like red, green,
blue etc. Hence each table can be viewed as a notation for a
certain family of equivalence relations, i.e. knowledge base.

All the problems mentioned in the previous paragraphs can be
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now formulated in terms of classifications induced by
attributes and their values. For example knowledge reduction
and reaébning about knowledge can be formulated as reduction

of attributes and detecting attribute (partial) dependencies.

t

2. Examples

Before we treat the issues mentioned above more
formally, let us give some examples of Knowledge Representa-

tion Systems, which, we hope, would make the idea closer.

Example 1,
In this KRS pathomorfological <changes in cells
organelles are listed (cf. Moore et al. (1977)).
Volumne Numerical Surface
State Density Density Density
Normal Normal Normal Normal
Proliferation Normal Increased Increased
Hypertrophy Increased Normal Normal
Hyperlasia Increased Increased Increased
Hypoplasia Decreased ‘Decreased Decreased
Atrophy Decreased Normal Decreased
Ageneration Normal Decreased Decreased
Dysplasia Increased Decreased Decreased
Dystrophy Decreased Increased Increased
Table 1

Objects in the system are states of cells of organelle
systems. The organelles systems are characterized by attri-
butes Volume Density, Numerical Density and Surface Density.s

Example 2,

Here is an information about patients suffering from
heart disease seen in one of the hospitals in Warsaw.
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Gasom- Dys- Cya- Pulmo- Heart Hepato- Edema Degree of

etry pnea nosis nary Rate megaly Disease

- . Stasis Advance
Pl 37 1l 1 1 62 0 0 1
P2 43 2 3 4 76 8 3 3
P3 42 1 2 1 71 1l 0 1
P4 43 0 3 2 80 5 1l 1
P5 48 1 3 3 92 6 3 3
P6 38 1 3 2 87 5 1 2
P7 54 0 0 0 95 1 0 2
P8 40 3 0 0 128 1l 0 0
P9 40 1 0 0 111 1l 0 1l
Pl 50 0 1l 0 68 2 1l 1

Table 2
[ |
Example 3.

In this example a characterization of various animals in
terms of Size, Animality and Color is,given (cf. Hunt et al.

(1966)) .
Size Animality Colour
Al small bear black
A2 medium bear black
A3 large dog browr
Ad small cat black
A5 medium horse black
A6 large horse black
A7 large horse brown
Table 3
a
Example 4.

The digit displays in calculators are composed of
seven elements as shown below.

a

Hh
o

o
Q
e

o}
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Then structure of each digit is shown in the information
system below.

t

Digit a b g
0 X X
l xX b4
2 X b'd X X X
3 X X X X X
4 X X X X
5 X X X X X
6 X X X X X X
7 X X X
8 X X X X X X X
9 X X X b4 X X

Table 4

Objects in the information system are digits 0,...,9 and
attributes are elements a,b,c,d,e,f,g of the display. n

Exdmp 5. :
‘ is well known digital circuits can be described in
afo of truth tables. Such tables can be treated as KNS. For *
example the following table describes a binary full adder.

o
o
.
Q
0
o]

\Jmt¥¢~ucupao
HMERHMOO0OO
HHOOKMOO
H«:»ao»aorfo
HMOOKOKERO
PFHEROKFOOO

Table 5

Objects in the system are states of the adder denoted 0,

1, 2, 3, 4, 5, 6 and 7, and the attributes are the augments

a;, bi’ sum s, , previous and current carry c. _ C.:.m

i-1’ i
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In what follows we will ignore the semantic contents of
~the table, i.e. we will consider the data table regardless of
what the objects, attributes or their values are, and we will

treat KRS in an entirely formal way.

3. Formal Definition

In this section a formal definition of Knowledge Repre-
sentation System will be given and some basic issues connec-
ted with this notion will be addressed. More about this
approéCh can be found in Novotny et al.(1983), Grzymata-Busse
(1988), Keh-Hsun Chen et al. (1984), Oriowska (1983),
Orlowska et al. (1984a,b), Pagliani (1987), Pawlak (1981a,b,
1985), Rauszer (1984, 1985a,b,c, 1986, 1987, 1988), Vakarelov
(1987, 1988), ziarko (1988). Generalization of the idea for
the case, when some data are missing in the table (so called
incomplete information systems, or incomplete data bases) are
discussed in Jeagerman (1978a,b), Lipski (1974, 1981),
Slowinski et al. (1988) and others.

Our approach to knowledge representation overlaps in many
ways with various fields (cf. Codd (1970), Salton (1968),
Wille (1982)) however many profound differences should be
noted.

Formally, knowledge representation system can be formu-
lated as follows.
Knowledge Representation System is a pair S = (U, A4),
where
U - is a nonempty, finite set called the universe.

A - is a nonempty, finite set of primitive
attributes.

Every primitive attribute aed is a total function
a:uv — Va’ where Va— is the set of values of a, called the
domain of a. ‘

With every subset of attributes B ¢ A, we associate a
binary relation IND(B), called an indiscernibility relation
and defined thus:

IND(B) = {(x,y) € UZ: for every a € B, a(x) = a(y)}.
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Obviously IND(B) is an equivalence relation and

IND(B) = n IND(a)
a B

Every subset B < A will be called an attribute. If B is:
a single element set then B is called primitive, otherwise
the attribute is said to be compound. Attribute B may be con-
sidered as a name of the relation IND(B), or in other words -
as a name of knowledge represented by an eguivalence relation
IND(B). For simplicity, if it does not cause confusion, we
shall identify attributes and the corresponding relations.

Thus all notions and properties concerning knowledgé
expressed in the previous chapters can be now voiced in terms
of attributes. For example we may now speak about reducts,
core, dependencies of attributes etc, instead of eguivalence
relations (knowlédge). A

In particular the value a(x) assigned by the primitive
attribute a to the object x can be viewed as a name (or a
description) of the primitive category of a to which «x
belongs (i.e. equivalence class of IND(a) containing x), that
is to say a(x) is the name of CX)IND(a)' The name (descrip-
tion) of an elementary category of attribute B ¢ A containing
object x 1is a set of pairs (attribute, value), i.e.
{a, a(x%j}aeB'
PX and PX will denote the lower and the upper approximation
of X respectively, etc.!

These ideas can be formulated more pfecisely in the
following way.

Let us note that there is a one to one correspondence
between knowledge bases and knowledge representation systemns
(up to isomorphism of attributes and attribute names). It
suffices to assign to arbitrary knowledge base K = (U, R) a
knowledge representation system S = (U, &) - in the following
way: ' .

If ReR and U/R=(x1,...;xk}, then to the set of

attributes A belongs every attribute ap: Uu — Va , such that

R
Va = {1,...,kK} and aR(x) =1 1f and only if x e X, for
R ‘ 1

i=1,...,k. Then all notions concerning knowledge bases can
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be easily expressed in terms of notions of knowledge
representation systems.

Thus the knowledge representation system S = ( U,A) may
be viewed as a description of a knowledge base K = (U, R)
(another description of knowledge bases will be given in
chapter 7). Each equivalence relation in the knowledge base
is represented in the the table by an attribute and each
equivalence class of the relation - by an attribute value.

Consequently rows of the table can be viewed as names of
some categories. Hence the whole table contains descriptions
of all categories of the corresponding knowledge base. In
fact the table contains also all possible rules which can be

derived from the data included in the table. Hence the know-
ledge representation system may be considered as a descrip- l
tion of all facts and rules which are available in the know-

ledge base. ,
In the example which follows we will depict how the con-

cepts discussed in the previous chapters are related to the

knowledge representation system.

£ ]

Example 6 ,
Let us consider the following KRS

U abcde
1 10220
2 011'12
3 20011
4 11022
5 10201
6 22011
7 21112
8 011001

Table 6
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The universe U consist of 8 elements numbered 1, 2, 3, 4,
5, 6, 7 and 8, the set of attributes is 4 = {a, b, c, d, e},
whereas V = Va = Vb = Vc = Vd = Ve = {0, 1, 2}.

In the table 8 elements 1, 4 and 5 of U are indiscer-
nible by attribute a, elements 2, 7 and 8 are indiscernible
by attributes b and c, and elements 2 and 7 are indiscernible
by attributes d and e.

Exemplary partitions generated by attributes in this

system are given below.

U/IND(a) = {{2, 8}, {1, 4, 5}, {3, 6, 7}}

U/IND(D)

{{1, 3, 5}, {2, 4, 7, 8}, {6}}

U/IND{c, d} = {{1}, {3, 6}, {2, 7}, {4}, {5}, {8}}

U/IND{a, b, c} = {{1, 5}, {2, 8}, {3}, {4}, {6}, {7}}

For example for the set of attributes C = {a, b, ¢} and
the subset of the universe X ='{1, 2, 3, 4, 5} we have CX =
{1, 27 3, 4, 5}, CX = {1, 2, 3, 4, 5, 8} and BN,(X) = (87. = )

Thus the set X is rough with respect to the attributes C,
which is to say that we are unable to decide whether
elements 2 and 8 are members of the set X or not, employing
the set of attributes C. For the rest of the universe
classification of elements using the set C of attributes, is
possible.

The set of attributes C = {a, b, c} is dependent. The
attributes a and b are indispensable , whereas the attribute
¢ 1is superfluous. There is only one reduct of the set C,
namely the set {a, b} which is also the core of C. Hence in
the table 6 we have the following dependency {a, b} » {c}.
(see the Proposition 4.2)

This dependency can be also computed from the definition
as follows: because the indiscernibility relation IND({a, b})
has the following blocks {1, 5}, {2, 8}, {3}, {4}, {6}, {7}
and the indiscernibility relation IND({c}) has the blocks {1,
5}, {2, 7, 8} and {3, 4, 6}, hence IND({a, b}) < IND({cC}).
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Let us compute the degree of dependency of attributes
D = {d, e} from the attributes C = {a, b, c} in Table 6. The
partition U/D consists of the following blocks, X1 = {1},
Xz = {2, 7}, Xy = {3, 6}, X, = {4}, X5 = {5, 8} and the
partition U/C consists of blocks Y, = {1, 5}, Y, = {2, 8},
Y3 = {3}, Y4 = {4}, Y5 = {6} and Y6 = {7}. Because gxl =9,
CX, =Y CX, =Y, vY cx, =Y, and CX. = o, thus POSC(D) = \

[un

2 6’ 3 3 5’ =74 4 5

Y3 v Y4 v Ys v YG = {3, 4, 6, 7}. That is to say that only

these elements can be classified into blocks of the partition

U/D employing the set C = {a, b, ¢} attributes. Hence the
degrée of dependency between C and D is 1o(D) = 4/8 = 0,5.
The set of attributes ¢ 1is D-dependent, and the

attribute a is D-dispensable, which means that the D-core of
C is one attribute set {a}. Consequently we have two
D-reducts of C, namely {a, b},and {a, c}. This means that
there are the following dependencies: {a, b} = {d, e}, and
{a, c} » {d, e} in the table. ’

Compare also examples in the previous chapter. s

Q
ance(éégAttributes

ore entering into any detail, a brief intuitive moti-

vations as .to the nature of problem discussed in this section
seems to be in order.

When speaking about attributes it is obvious that they
may have various importance in the analysis of issues being
considered. This importance can be pre assumed in advance on
the basis of auxiliary knowledge and expressed by properly
chosen "wéights". In our approach however we do avoid any
additional information beside what is included in the table
and we will try to compute from data available in the table
whether all the attributes are of the same "strength" and if’

not how they differ in the respect of the "classificatory
power", o

It is well known that for example when describing
patients in terms of symptoms, some of the symptoms may have
greater significance for the recognition of the patient
health status, then the other. In order to find out ;ng
significance of a specific attribute (or group of attributes)
it seems reasonable to drop the attribute from the table and<

- [ X R N : ‘ : . : .
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see. how the classification will be changed without this
attribute. If removing the attribute will chanée ‘the
élassification considerably it means that its significance is
high - in the opposite case the significance should be low.

The idea can be expressed more precisely employing the
concept of a positive region discussed in chapter 3. As a
measure of significance of the subset of attributes B’ < B
with respect to the classification induced by a set of
attribute C we will mean the difference

which expresses how the positive region of the classification
U/C when classifying object by means of attributes B will be
affected if we drop some attributes (subset B') from the set
B. (Instead of difference one could also take the quotient of
POSp_p,(C) and POSg(C)).

The example which follows will illustrate the concept of
significance of attributes.

i

Example 7

Let us compute the significance of the attribute a, b
and ¢ with respect to attributes d and e in Table 6. As shown
in the Example 6 POSC(D) = 0,4, where D = {a, b, ¢} and C =
{d, e}. Because U/{b, c}= {{1, 5}, {2, 7, 8}, {3}, {4}, {6}},

U/IND{a, c} = {{1,5}, {2,8}, {3,6}, {4}, {7}},  U/IND{a,b} =
{{1, 5}, {2, 8}, {3}, {4,}, {6}, {7}} and U/{d, e} = {{1},
{2, 7}, {3, 6}, {4}, {5, 8} hence  POS,__(D) = {3, 4, 6},
POS,_, (D) = {3, 4, 6, 7} and POS,_.(D) = {3, 4, 6, 7.

Consequent
Yc-p(D) =
significan

corresponding

Yoc(D) 5
since it most

uracies are: 7C_a(D) =/
fhus the attribute a ismost
ange the positive region of U/D,
i.e. without the attribute a we are unable to classify of
object 7 to classes of U/D. Note that the attribute a is
D-indispensable and attributes b and c are D-dispensable,
thus the attribute a is the core of C with respect to D
(D-core of C) and {a, b}, and {a, c} are reducts of C with
respect to D, (D-reducts of C). (Compare Example 6).
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Remark
At the end it is worthwhile to mention that the notion

of a Knowledge Représentation System apparently looks like a
relational table in the relational data base model (cf. Codd
(1970)). There is ,however, an essential difference between
these two models. Most importantly, the relational model is
not interested in the meaning of the information stored in
the table. The emphasis is placed on efficient data
structuring and manipulation. Consequently the objects about
which information is contained in the table are not repre-
sented in the table. This is in contrast with the primary
assumption of our approach presented here. In the Knowledge
Representation System all objects are explicitly represented

and the attribute values i.e. the table entries have asso-

ciated explicit meaning as features or properties of the
objects. In addition to that the emphagis in our model is put
mainly not on data structuring and manipulation but on ana-
lysis of actual dependencies existing in data, and data
reduction, which is rather closer to statistical data model.

Summary

For representing knowledge we advocate using data
tables, sometimes called information systehs, attribute-value

systems) conditions-actions tab es, Columns of such
tables are labelled with attrib d rows with object of
the universe. With each group of columns (subsets of attri-
butes) we can associate an equivalence relation whereas with
each group of rows - a set. Thus such a table can serve as a
representation of knowledge base - in which attributes repre-
sent knowledge and sets - concepts. It is easy to represent
basic properties of knowledge base like reducts, the core,
dependencies etc in terms of data tables properties which
allow the replacement of semantic definitions by syntactic

ones. Semantic approach is needed when proving some proper-

ties of knowledge, while syntactical ones are necessary to
develop algorithms.
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Excercises ; ) -
1. Compute the core and reducts of attribute for Examples 1,

'3 and 4 given in section 2 (Tables 1, 3 and 4).

2. Compute significance of attributes in examples in

Exercise 1.

3. Compute degree of dependency for arbitrary chosen‘attri~

butes in examples in Exercise 1.
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6. DECISION TABLES

1. Introduction

In this section we will consider special, important
class of knowledge representation systems, called decision
tables,
There

lay an important part in many applications.

s a vari ty of literature on decision tables and
ba 1¢;/’fact5 on” this subject can be found for example in
1974) or Hurley (1983).

.-cision table is a kind of a prescription, which speci-

Mon

Hat decisions (actions) should be undertaken when some
orfditions are satisfied. Most decision problems can be for-
mulated employing decision table formalism, therefore this
tool is particularly useful in decision making.

It turns out that the concepts introduced in previous
chapters provide a very good framework as a basis of decision
tables theory (cf.Pawlak (1985, 1986, 1987), Boryczka et al.
(1988), Wong et al. (1986)) and their applications (cf. for
example Mrozek (1987), Slowinski et al. (1988)).

In this chapter we want to discuss some basic problems
of decision tables theory in terms of rough sets philosophy.

2, Formal Definition and Some Properties
Decision tables can be defined in terms of KR-systems as
follows. )

Let K = (U, A) be a knowledge representation system and
let €, D ¢ A be two subsets of attributes called condition
and decision attributes respectively. KR-system with dis-
tinguished condition and decision attributes will be called a
decision table and will ke denoted T = (U, &, C, D), or in
short CD-decision table.

Equivalence classes of the relations IND(C) and IND(D)
will be called condition and decision classes, respectively.

With every x e U we associate a function d A-— 7V,
such that d (a) = a(x), for every a € C v D; the functlon d

will be called a decision rule (in T), and x will be referred
to as a label of the decision rule 4 .

92

|
|
|
|
l
l
)
A
n
"
»
A
"
"
n




t

- Remark

Let us note that elements of the set U in a decision
table do not represent in general any real objects but are

simple identifiers of decision rules. ' .

If dx‘is a decision rule, then the restriction of dx to
Cc, denoted dx|C, and the restriction of dx to D, denoted dxlD
will be called conditions and decisions (actions) of dx res-
pectively.

The decision rule dx is consistent (in T) if for every
y=*x, d|C = dy|C implies d_|D = dle; otherwise the deci-
sion rule is inconsistent.

A decision table is consistent if all its decision rules
are consistent; otherwise the decision table is inconsistent.

Remark.

Consistency (inconsistency) sometimes may be interpreted
as determinism (nondeterminism), but we shall not use this
interpretation in this book, except if stated otherwise.s

The following is the important property that establishes
relationship between consistency and dependency of attributes
in a decision table.

Froposition 1, ;

A decision table T = (U,A,C,D) is consistent, if and
only if C = D.m

From Proposition 1 it follows the practical method of
checking consistency of decision table by simply computing
the degree of dependency between condition and decision
attributes. If the degree of dependency equals to 1 then we

conclude that the table is consistent; otherwise it is incon-
sistent.

The next property is also important from a practical
perspective.
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Proposition 2., .

Each decision table T = (U, A, C, D) can be uniquely de-
composed into two decision tables T1 = (Ul, A, C, D) and
T, = (U A, C, D) such that C * D in ‘1‘l and C ». D in T

2 27 0 2
where U, = POSC(D) and U, = U BNC(X).
X € U/IND(C)

1l 2

The Proposition 2 have the following interpretation.
Suppose that we have computed the dependency between condi-
tion and decision attributes. If the table turned out to be
inconsistent i.e. the dependency degree was less than 1, then
according to Proposition 2 we can decompose the table_ into
two sub tables: one totally inconsistent with dependency
coefficient equal to zero and the second entirely consistent
with the dependency equal to one. This decomposition however
is possible only if the degree of depeﬁdency is greater than
zero and different from 1.

Example 1.
Let us consider Table 1 given below

U abcde

B B N BN EBE B B ¥ = W %W w =

1 10220
2 01112
3 20011
4 11022
5 10201
6 22011 ,ll
7 21112
8 01101 III
Table 1

Assume that a,b and ¢ are condition attributes and d and
e are decision attributes. In this table for instance the de-

cision rule 1 is inconsistent whereas decision rule 3 is
consistent. By employing Propositio‘)x'we can decompose the
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decision Table 1 into.the following two decision tables:

o

Ui a cde

No bW
(SRS
=N O
= ooOo
Ny
IS N

Table 2

]
o
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Table 3
2

The decision Table 2 is consistent, whereas the decision
Table 3 is totally inconsistent, which means that all deci-
sion rules in Table 2 are consistent, and in decision Table

3 - all decision rules are inconsistent.

3. Simplification of Decision Tables

Simplification of decision tables is of primary impor-
tance in many applications. Example of simplification is the
reduction of condition attributes in a decision table. In the
reduced decision table the same decisions can be based on a
smaller number of conditions. This kind of simplification
eliminates the need for checking unnecessary conditions or,
in some applications - performing expensive tests to arrive
at a conclusion which eventually could be achieved by simpler
means.

Simplification of decision tables has been investigated
by many authors (cf.Hurley (1983)), and there is a variety of
informal approaches to this problem.

The approach to table simplification presented here con-
sists of the following steps:
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1) computation of reducts of condition attributes which

is equivalent to elimination of some column from the

decision table.
2) Elimination of duplicate rows.

3) Elimination of superfluous values of attributes.

Remark.
We should note that in contrast to the general notion of

knowledge representation system rows do not represent here
description of any real objects. Consequently duplicate rows

can be eliminated as they correspond to the same decisions. =

Thus the proposed method consists in removing super-
fluous condition attributes (columns), duplicate rows and in
addition to that irrelevant values of condition attributes.

In this way we obtain "incomplete" decision table, con-
taining only those values of condition attributes which are
necessary to make decisions. According to our definition of a
decision table the incomplete table is not a decision table
and can be treated as an abbreviation of such table.

From mathematical point of view, removing attributes and
removing values of attributes are alike and will be explained
in what follows.

For the sake of simplicity we assume that the set of
condition attributes is already reduced, i.e. there are not
superfluous condition attributes in the decision table.

As we have already mentioned with every subset of attri-
butes B ¢ A we can associate partition U/IND(B), and conse-
quently set of condition and decision attributes define

partitions of objects into condition and decision classes.

to searching for relative reducts of condition classeés with
respect to decision classes. To this end we can use similar
methods to that of finding reducts of attributes.
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Similarly we can reduce superfluous values of ;ondition
attributes form a decision table.

Frém section 5.3 we know that with every subset of
attributes B ¢ A and object x we may associate set [x]B.
( [xlg denotes an equivalence class of the relation IND(B)
containing an object x, 1i.e [x]B is an abbreviation of
[X]IND(B))' Thus with any set of condition attributes C in a

decision rule d_ we can associate set [x]c=={] (x),. But
aeC

each set [x], is uniquely determined by attribute value a(x),
hence in order to remove superfluous values of condition
attributes, we have to eliminate all superfluous equivaience
classes (x], from the equivalence class [x]c as discussed in
section 3.4. Thus problems of .elimination of superfluous
values of attributes and elimination of corresponding equiva-
lence classes are equivalent. ,
The example which follows will illustrate the concepts

discussed so far.

'Example 2

Suppose we are given the following decision table

U a b c d e
# 1 1 0 0 1 1
2 1 0 0 0 1
3 0 0 0 0 0
4 1 1 0 1 0
5 1 1 0 2 2
6 2 1 0 2 2
7 2 2 2 2 2
Table 4

where a, b, c and d are condition attributes and e is deci-
sion attribute. |

It is easy to compute that the only e-dispensable condi- -
tion attribute is ¢, consequently we can remove column ¢ in
Table 4, which yields Table 5 shown below.
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Table 5

In the next step we have to reduce superfluous values of
condition attributes, in every decision rules. To this end we
have first to compute core values of condition attributes in
every decision rule.

For the sake of illustration let us compute the core-
values of condition attributes for the first decision rule,
i.e. the core of the family of sets F = {(1),, (2], (114}
{1, 2, 4, 5}, {1, 2, 3}, {1, 4}}.
| From considerations in sections 3.4 and 5.3 we have
(1)ia,b,qy = (115 0 (1] 0 [1]g = {1, 2, 4, 5} n {1, 2, 3}
{1, 4} = {1}, moreover a(l) =1, b(l) = 0 and d(1) = 1. In
order to find dispensable categories we have to drop one
category at a time and check whether the intersection of re-
maining categories is still included in the decision category
(1], = {1, 2}, i.e.

[1]p n [114°= {1, 2, 3} o {1, 4} = {1)
[1), n [114 = {1, 2, &, 5} n {1, 4} = {1, 4}
(1], n (1), = {1, 2, 4, 5} n {1, 2, 3} = {1, 2}

This means that the core vaiue is b(l1) = 0. In a similar
way we can compute rémaining core values of condition attri-
butes in every decision rule and final results are presented-
in Table 6 below.
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1‘ - 0 - 1
2 1 - - 1
3 0 - - 0
4 - 1 1l 0
5 - - 2 2
6 - - - 2
7. - - - 2
Table 6

Having computed core values. of condition attributes we
can proceed to compute value reducts.

As an example let us compute value reducts for the first
decision rule of the decision table. Accordingly to the defi-
nition given in section 3.4, in order to compute reducts of
the family F = {[1],, [1],, [1)4} = {{1, 2, 4, 5}, {1, 2, 3},
{1, 4}} we have to find all subfamilies G € F such that n G ¢

[1]e = {1, 2}. There are three following subfamilies of F

H

(1] n [1]4 = {1, 2, 3} n {1, 4} = {1}

(11, n (114 = {1, 2, 4, 5} n {1, 4} = {1, 4}

{1, 2, 4, 5} n {1, 2, 3}

(11, n (1] {1, 2)

and only two of then

{1, 2, 3} n {1, 4} = {1}

N

(11, n (114 (1], = {1, 2}

t

(1}, n (1], = {2, 2, 4, 5} n {1, 2, 3}

{1, 2} s [1], =

{1, 2}
are reducts of thé family F. Hence we have two value reducts:
b(l) = 0 and d(1) = 1 or a(l) = 1 and b(l) = 0. This means
that attribute values of attributes a and b or d and b are
characteristic.for decision class 1 and do not occur in any

other decision classes in the decision table. We see also
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that the value of attribute b is the intersection of both va-
lue reducts, b(1l) = 0, i.e. it is the core value.

In Table 7 below we list value reducts for all decision
rules in Table 1.

U a b d e

1 1 0 X 1
1’ X 0 1 1
2 1 0 X 1
27 1 X o 1

4 X 1 1 0

® @ © % 80 0880004280 sa0 o0

6 X X 2 2

67 2 X X 2
7 X X 2 2
77 X 2 X 2

777 2 X X 2
Table 7

As we can see from Table 7 for decision rules 1 and 2 we
have two value reducts of condition attributes. Decision ru-
les 3,4 and 5 have only one value reduct of condition attri-
butes for each decision rule row. The remaining decision ru-
les 6 and 7 contain two and three value reducts respectively.

Hence there are two reduced forms of decision rule 1 and
2, decision rules 3, 4 and 5 have only one reduced form each,
decision ‘rule 6 has two reducts and decision rule 7 have
three reducts.

Thus there are 4 x 2 x 3 = 24 (not necessarily different)

solutions to our problem. One such solution is presented in
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the table below.

1 1 0 X 1
2 1 X 0 1
3 0 X X 0
4 X 1 1 0
5 b4 p 2 2
6 X 2 X 2
7 2 X X 2
Table 8

Another solution is shown in Table 9
Vi

U a b d e
1 1 0 X 1
2 1 0 X 1
3 0 x'  x 0
4 X 1 1 0
5 X X 2 2
6 X X 2 2
7 X X 2 2
Table 9

Because decision rules 1 and 2 are identical and so are

rules 5, 6 and 7 so we can represent our table in the form

U a b d e

1,2 1 0 X 1
3 0 X X 0
4 X 1 1 0
5,6,7 X X 2 2 -
Table 10
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In fact enumeration of decision rules is not essential
so we can enumerate them arbitrary and we get as a final re-
sult the table below.

1 0 X 1
2 X X 0
3 1 1 0
4 X X 2 2
Table 11

This solution will be referred to as minimal, and will

be discussed in more detail in the next chapter.

The presented method of decision table simplification
can be named semantic, since it refers to the meaning of the
information contained in the table.In the next section we
will present another method of decision table simplification,
which could be called syntactic, because it reefers to purely
formal properties of decision tables - which leads to simpler

algorithms and programs.

Summary
In order to simplify a decision table we should first

find reducts of conditions attributes, remove duplicate rows
and then find value-reducts of condition attributes and
again, if necessary, remove duplicate rows. This method leads
to a simple algorithm for decision table simplification or
generation of decision rules (algorithms) from examples,
“which according to our experiments, out performs other
methods, in terms of achievable degree in the number of con-
ditions and what more, gives all possible solutions to the
problen.

We conclude this section with the following remark.
As we have seen, a subset of attributes may have more .
that one reduct (relative reduct), hence the simplification
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of decision tables does not yield ynique results. Thus some

decision tables possibly can be optimized according to pre

assumed criteria.

Exercises
1. Given a decision table as below.

U a b o d e

W ® N &6 U & W e
O N ON O N O N O
M B OO O M O O N
H B N O B H PO
o O P NN O N O M
O N O O O O N N O

Table 12

where a, b and ¢ are condition attributes, whereas d and e
are decision attributes.

a) Decompose the table into consistent and inconsistent

b)

c)

d)

part.

Compute degree of dependency between the condition
and denison attributes.

Check whether the set of condition attributes is

dependent or not with respect of decision attributes.

Compute the core and reducts with of condition

attributes with reépect to decision attributes.

Simplify the decision table, i.e. find all redundant
values of condition attributes. -
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f) Check whether the set of decision attributes is
dependent or independent.
\iv
e) Compute the significance of condition attributes with

respect to decision attributes.
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7. REASONING ABOUT KNOWLEDGE

1. Introduction

The concept of the rough set have inspired a variety of
logical research (cf. Jian-Ming et al.(1990), Konikowska
(1987), Nakamura et al.(1988), Orlowska (1984, 1985a,b, 1989),
Pawlak (1987), Rasiowa et al. (1985, 1986a,b),}3§usz¢r".‘é1985;,7 o
1986), Szczerba (1987), Vakarelov (1981, 19897 é’h“%‘%i:h‘éi/s;)s':\ SV
Most of the above mentioned 1logical research has been
directed to create deductive logical tools to deal with
approximate (deductive) reasoning.

In contrast to the above line of research we propose in
this chapter 1logic which is of inductive character (cf.
Ajdukiewicz (1974)) and is inténded as a tool for data ana-
lysis, suited to the ideas presented in the previous chapters

of the book, i.e. our main concern is in discovering depen-

dencies in data and data reduction, which is rather closer to
statistical then deductive methods, however to this end we
shall use deductive tools.

Let us explain these ideas more exactly.

Our main goal, as we have emphasized many times in this
book, is reasoning about knowledge concerning certain reali-
ty. We have assumed that knowledge is represented as a value-

attribute table, called Knowledge Representation System.

Representation of knowledge in tabular form, has great
advantages 1in particular for its clarity. The considered
algorithms of knowledge analysis (reduction, dependencies
etc.) discussed so far are rather complex.

It turns out that the data table may be also looked at
from different angle, namely as a set of propositions about
the reality and consequently can be treated by means of logi-
cal tools, which will be developed in this chapter. We offer
two possibilities here, one based on normal form representa-
tion of formulas and the second employing indiscernibility to
investigate whether some formulas are true or not. The latter
approach, referring to indiscernibility, 1leads to simple
algorithms for data reduction and analysis, and is funda-
mental to our philosophy.In fact the data table can be viewed
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as a model for special logic, called here decision logic,
which will be used to derive conclusions from data available
in the knowledge representation system. We will be basically
concerned in discovering dependencies in knowledge Qnd also
in knowledge reduction, as formulated in Chapters 3 and
Chapter 4, and to this end, in contrast to semantic approach
employed previously, now we shall use syntactical tools
available in the propoéed logic.

One of the chief implications of the presented philoso-
phy is that our main concern is the fundamental notion of the
decision logic, the decision algorithm, which is a set of de-
cision rules (implications). Because an algorithm is usually
meant as a sequence (not set) of instructions/{dgcision ru-
les), thus the decision "algorithm" fails to<§§§§/the usual
understanding of the notion of an algorithm, nevertheless,
for the lack of a better term, we will stick to the proposed
terminology.

Still one more important remark concerning the decision
algorithm seems in order. Formulas can be true or false but
the decision algorithm, which is a set of formulas, can not
have attributes of truth or falsity. Instead consistency and
inconsistency will be the basic features of decision algo-
rithms. In other words our account, in contrast to philosophy
of deduction, stress rather consistency (or inconsistency) of
data then their truth (or falsity), and our main interest is
not in investigation of theorem proving mechanisms in the
introduced 1logic, but in analysis, in computational terms
(decision algorithms, or condition-action rules), of how some
facts are derived from data.

With the above remarks in mind we start in the next
section considerations on a formal language for Kknowledge
representation.

2, Language of Decision Logic

The language of decision 1logic (DL-language) we are
going to define and discuss here will consists of atomic for-
rulas, which are attribute-value pairs, combined by means of
sentential connectives and, or, not etc. in a standard way,
forming compound formulas.
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Formally the language is defined inductively as follows.

First we start with the alphabet of the language which

consists of

a) A - the set of attribute constants
b) v = U v, - the set of attribute value constants

a € A

c) Set { ~ , v ,~ , — , =} of propositional connectives,
called respectively negation ,disjunction,

conjunction, implication and equivalence respectively.

The propositional connectives symbols may be considered
as abbreviations of the 1logical connectives "not", '"or",
"and", "if ... then", "if and only 1if".

Let us note that the alphabet of the language contains

no variables and its expressions will be built up only from
the above symbols, 1i.e. attribute and attribute value
symbols, logical connectives and some auxiliary symbols 1like
parenthesis - which means that formulas in the DL-language
are in fact sentences.
Moreover, we should pay attention to the fact that sets
-A and Va are treated as sets of names of attributes and
attribute values respectively. Hence in order to distinguish
if necessary, attributes and attribute names we will use
bold and italic alphabets respectively. For example color is
the attribute and color is the attribute constant (name)}
The case of values of attributes is quite similar. For
examplé, if one of the values of the attribute color were
- red, then the corresponding attribufe value constant would be
red. ‘ o
Next we define the set of formulas in our language,
which are defined below. _
' The set of formulas of DL-language 1is the least set
satisfying the following conditions:
1) Expressions of the form (a, v), or in short a, .
called elementary (atomic) formulas, are formulas of the
DL-language for any a € 4 and v « Va'
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2) It and ¥ are forrulas of the DL-language, then so

are ~0, (¢ v ¥), (& A ¥), (2 — V), and (¢ = ¥).

3. Semantics of Decision Logic Language

Formulas are meant to be used as descriptions of objects
of the universe. Of course some objects may have the same de-
scription, thus formulas may describe also subsets of objects
obeying properties expressed by these formulas. In particular
atomic formula (a, v) 1is interpreted as a description of all
objects having value v for attribute a. Compound formulas are
interpreted in the usual way. ‘

In order to exﬁress this problem more precisely we de-
fine Tarski’s style semantics of the DL-language employing
the notions of a model and satisfiability. By the model we
will simply mean the KR-System S =(U; A). Thus the model S
describes the meaning of symbols of predicates (a, v) in U,
and if we properly interpret formulas in the model then each
formula becomes a meaningful sentence, expressing properties
of some objects.

This can be voiced more\precisely using the the concept
of satisfiability cf a formula by an object, which follows
next.

An object x € U satisfies a formula ¢ in S = (U, &), de-
noted x F:S ¢ or in short x = ¢ , if S is understood, iF and
only if the following corditions are satisfied:

(1) x |=(a,v) 1iff f(a,x)=v
(2) X = ~¢ iff nonx = ¢
(3) x ¢ vy iffx ¢ 'cl>rx =
(4) X = ¢ A ¢ iff x = ¢ and x |= ¥
As a corollary from the above conditions we get
(5) x =¢ - ¢y iff x = ~¢ v ¥
(6)X|=¢4E¢Iiffx]r=¢—>wandx =y — ¢
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If ¢ is a formula then the set |¢:|S defined as follows
6l = {x e U: x =¢ ¢}

will be called the meaning of the formula ¢ in S. Thus the
meaning is a function whose arguments are formulas of the
language and whose values are subsets bf the set of objects
of the system.

The following is an important proposition which explains
the meaning of an arbitrary formula.

Proposition 1

(a) [(a, v)|g = {x eU: a(x) = v}

(b) |~¢lg = = I¢lg

() lo v ¥lg=l¢lgv [¥g

(d) ¢ A ¥|g = |¢|lgn [¥]g

(e) |¢ — ¥|lg =~ |¢lg v [¥]g

(£) |¢ = ¥lg = l¢lgn |¥gv - |elgv-|¥g "

Thus meaning of the formula ¢ is the set of all objects
having the property expressed by the formula ¢, or the
meaning of the formula ¢ 1is the description in the
KR-language of the set of objects |[¢]..

We need also in our logic the notion of truth.

A formula ¢ is said to be true in a KR-systenm S, F=S ¢,
if and only if [¢[, = U, i.e. the fornula is satisfied by all
objects of the universe in the systenm S.

Formulas ¢ and ¥ are equivalent in S if and only if |¢]g
= |W|S.

The following proposition gives simple properties of the
introduced notions.
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Proposition 2’
(a) f=g ¢ iff |0lg

i
c

|
Q

(b) }=s~¢ iff |¢']S -
() g ¢ — ¥ iff [o]g ¢ |V]g
(d) =g ¢ =y iff |¢]o = |[¥]g n

At the end let us stress once more that the meaning of
the formula depends on the knowledge we have about the uni-
verse, i.e. on the knowledge representation system. In parti-
cular a formula may'be true in one knowledge representation
system but false in another one. However, there are formulas
which are fggg:gﬁggpéhdent of the actual values of attributes
appearing in them, but depend only oé their formal structure.
They will play special role in our considerations. Note, that
in order to find the meaning of such formula, one need not to
be acquainted with the knowledge contained in any specific
knowledge representation sxstem because their meaning is de-
termined ‘by its formal ,structure only. Hence, 1if we ask
whether a certain fact 1is true in the light of our actual
knowledge (represented in a given knowledge representation
system), it is sufficient to use this knowledge in an appro-
priate way. However, in case of formulas which are true (or
not) in every possible knowledge representation system, we do
not need in fact any particular knowledge but only suitable

logical tools. They will be considered in the next section.

4. Deduction in Decision Logic :/”&”C4L

In this section we are going//io study the deductive
structure of <the decision logig::g this erd we have td
introduce some axioms and inference rules.

Before we start a detailed discussion of this problemn,
let us first give some intuitive background‘for the proposed
solution.

The language introduced in the previous section was
intended to express knowledge contained in a specific know-

ledge representation system. However, the same language can
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be treated as a common language for many knowledge :epfe-
sentation systems with different sets of objects but with
identical sets of attributes and identical attribute values
sets. From syntactical aspects, all the languages of such
systems are identical. However, their semantics differ due to
the different sets of objects and their properties are repre-
sented in specific knowledge representation systems, in which
the meaning of formulas is to be defined.

In order to define our logic, we need to verify the se-
mantic equivalence of formul do this we need to end up
with suitable rules for transforming formulas without
changing their meanings are necessary. Of course, in theory
we could also verify the semantic equivalence of formulas by
computing their meaning accordingly to the definition, and
comparing them in order to check whether they are identical
or not. Unfortunately, such a procedure would be highly un-
practical, though - due to the finiteness of the considered
knowledge (tables) - it 1is always possible. However, this
method cannot be used for verifying the equivalence of formu-
las in every knowledge representation system because of the
necessity of computing the meanings of these formulas in an
infinite  number of systems. Hence suitable axioms and
inference rules are needed to prove equivalence of formulas
in a formal way.

Basically axioms will correspond closely to axioms of
classical propositional calculus, however some specific
axioms connected with the specific properties of knowledge
representation systems are also needed - and the only
inference rule will be modus ponens.

- Thus the set of all axioms of DL-logic consists of all
propositional tautologies and some specific axioms.

Before we list specific axioms which hold in each con-
crete knowledge representation system with given 4 and Vv, we
need some auxiliary notions and denotations.

We will use the following abbreviations:

A ¢ =4f 0 and ¢ v 1

¢ =af

Obviously =1 and = 0. Thus 0 and 1 can be assumed to
denote falsity and truth respectively. .
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Formula of the form
(ay, vi) A (ay, V2) A eee A (ag, Vn),

where v, € Vai, P = {al, Bys see an}, and P s A, will be
called a P-basic formula or in short P-formula. A-basic for-
mulas will be called basic formulas.

Let P < A4, ¢ be a P-formula and x € U. If x = ¢, then ¢

will be called the P-description of x in S. The set of all
A-basic formulas satisfiable in the knowledge representation
system S = (U, A) will be called the basic knowledge in S.
We will need also a formula ZS(P), or in short Z(P), which is
disjunction of all P-formulas satisfied in S; if P = 4 then
Z(4) will be called the characteristic formula of the
KR-system S = (U, 4).

Thus the characteristic formula of the system represents
somehow the whole knowledge contained in the system S.

In other words each row in the table, is in our language
represented by a certain A-basic formula, and the whole table
'is now represented by the set of all such formulas so that
instead tables we can now use sentences to represent know-
ledge. »

Example 1
Let us consider the following KR-system

U a b c
1 1 0 2
2 2 0 3
3 1 1 1
4 1 1 1
5 2 1 3
6 1 0 3
Table 1

The following are all basic formulas (basic knowledge)
in the KR-system. For simplicity we will omit the symbol of
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disjunction A 1n basic formulas: al bo c2, 5 o C3r 1 Py oy

a, b1 Cyr ay bo Cqye

The characteristic formula of the system is

For the sake of illustration let us give meanings of

some formulas in the system.

| (a, b)) = {1, 2, 3, 4, 6}
lbo - Czl = {1, 3, 4, 5}
la, = by| = {1, 2, 3, 4, 5, 6} =

Now 1let us give specific axiom of DL-logic.

(l) (al V) A (a, U)
Vv = U

mn

0, for any a € &, v,u € Va and

(2) V (a, v) = 1, for every a € A

v eV
a
(3) (a, v) = VY (a, u), for every a € A
uepvy
a
u=v

We will also need the following proposition.

Proposition 3
F=S ZS(P) =1 , for any P < A.

The axioms of the first group are counterparts of propo-
sitional calculus axioms. The axioms of the second group re-
quire a short comment, for they are characteristic to our no-
tion of the knowledge representation system.
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The axiom (1) follows from the assumbtion that each
object can have exactly one value of each attribute. For
e#ample, if something is red, it cannot be either blue or
green.

The second axiom (2) follows from the assumption that
each attribute must take one of the values of its domain for
eQery object in the system. For example, if the attribute in
question is color, then each object must be of some color
which is the value of this attribute.

The axiom (3) allows us the get rid of negation in such
a way that instead of saying that an object does not posses a
given property we can say that it has one of the remaining
properties. For example instead of saying that something is
not red we can say that it is either green, or blue or violet
etc. Of course, this rule is admissible due to the finiteness
assumption about the set of values of each set of attributes.

The Proposition 3 means that the, knowledge contained in

the knowledge representation system is the whole knowledge
available at the present stage, and corresponds to so called
. closed word assumption (CWA).

Now we are ready to define basic concepts of this
section.

We say that a formula ¢ is derivable from a set of for-
mulas Q, (i.e.from Zs) denoted Q |- ¢ , if and only if it is
derivable from axioms and formulas of Q, by finite applica-
tion of the inference rule (modus ponenes).

A formula ¢ is a theorem of DL-logic, symbolically |—¢,
if it is derivable from the axioms only.

A set of formulas Q is consistent if and only if the
formula ¢ A -¢ is not derivable from Q.

The set of theorems of DL-logic is identical with the
set of theorems of classical propositional calculus with
specific axioms (1-3), in which negation can be eliminated.

5. Normal Forms

Formulas in the KR-language can be presented in a spe-
cial form called normal form, which is similar to that in
classical propositional calculus.

Let P ¢ A be subset of attributes and let ¢ be a formula
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in KR-language.

We say that ¢ is in a P-normal form in S, (in short in
P-normal form) if and only if either ¢ is 0 or ¢ is 1, or ¢
is a disjunction of non empty P-basic formulas in S. (The
formula ¢ is non-empty if [¢|. = o).

A-normal form will be referred to as normal form.

The following is an important property of formulas in
the DL-language.

Proposition 4 TN

Let ¢ be a formula in DL-language and let P contdinSal
attributes occurring in ¢. Moreover assume axioms (1)-(3) and
the formula ZS(A). Then, there is a formula ¥ in the P-normal
form such that |—¢ = y.u

Example 2
Below are given normal forms of formulas considered in
Example 1.
a; v bo ¢, = a, bo c, va, bl c, v a, bO Cq
(a2 bl) = a, bo €, v a, bO c; v &, bl €y v a, bO €,
b0 — Cc, = a; bo ¢, v a, bl c, v a, bl C,
a, = bo = a, b0 €y v a; bl =5

Examples of formulas in {a,b}-normal in Table 1 are

given next.

oi}
I
o
Il
o]
h]
o
<
[\
o

The following are exanmples 'of formulas in {b, c}-normal
forms in Table 1.




Thus in order to compute the normal form of a formula we
have to transform the formula by means of propositional cal-

‘culus axioms and the specific axioms for a given KR-system.

6. Decision Rules and Decision Algorithms

In this section we are going to define two basic concept
in the DL-language, namely that of a decision rule and a de-
cision algorithm.

Any implication ¢ — ¢ will be called a decision rule in
the KR-language; ¢ and ¥ are referred to as the predecessor
and the successor of ¢ — Y respectively.

If a decision rule ¢ — ¥ is true in S we will say that
the decision rule is consistent in S, otherwise the decision
rule is inconsistent in S. -

If ¢ — ¥ is a decision rule and ¢ and ¥y are P-basic and
Q-basic formulas respectively, then the decision rule ¢ — ¥
will be called a PQ-basic decision ruie, (in short PQ-rule),
or basic rule when PQ is known.

If ¢1 — Y, ¢2 — Y, .. ¢n — Y are basic decision ru-
'les then the decision rule ¢l v ¢2 VAR ¢n — Y will be
called compination of basic pecision rules ¢l — Y, ¢2 — Y,

¢n — Y, or in short combined decision rule.

A PQ-rule ¢ — Y is admissible in S if ¢ A Y 1is satis-
fiable in S. ”

Throughout the remainder of this paper we will consider

admissible rules only, except when the contrary is

stated. The following simple property can be employ to check

whether a PQ-rule is true or false (consistent or incon-
sistent)

Proposition 5
A PQ-rule is true (COnsistént) in §, if and only if all
——

{P v Q}-basic fofmulas(ﬁiiéﬁ/Eccur in the {P v Q}-normal form
of the predecessor of the rule, and\gEEEEj;IEE\in the {Pu

Q}-normal form of thé successor of the rule; otherwise the
rule is false (inconsistent) in S.m




Example 3

The rule bo — . 1s false in Table 1, bécause the

2

{b, c}-normal form of b0 is b0 C., V b0 Cqys {b, c}=-normal form °

2
of <, is bo Y and the formula bo C, does not occur in the
successor of the rule.

On the other hand the rule a, — C, is true in the

table, because the {a, c}-normal form of a, is a whereas

2C

2 3/

the {a, c}-normal form of c, is a, ¢, v a, c,.s
Any finite set of decision rules in a DL-language, is
referred to as a decision algorithm in the Dl-language.

Remark

We recall, as already mentioned in the Introduction,
that by an algorithm we mean a set of instructions (decision
rules), and not as usually - a sequence of instructions. Thus
our conception of algorithm differs from the existing one,
and can be understood as generalization of the latter.s

Now we are going to define the the basic concept of this
section.

Any finite set of basic decision rules will be called a
basic decision algorithm.

If all decision rules in a basic decision algorithm are
PQ-decision rules, then the algorithm 1is said to be
" PQ-decision algorithm, or in short PQ-algorithm, and will be
denoted by (P,Q).

A PQ-algorithm is admissible in S, if the algorithm is
the set of all PQ-rules admissible in S.

A PQ-algorithm is complete in S, if for every x e U
there exists a PQ-decision rule ¢ — ¥ in the algorithm such
that x= ¢ A ¥ in S; otherwise the algorithm is incomplete in
S.

In what follows we shall consider admissible and
complete PQ-algorithms only, if not stated otherwise.

The PQ-algorithm is consistent in S, if and only if all
its decision rules are consistent (true) in S; otherwise the
algorithm is inconsistent in S.
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Remark
Sometimes consistency (inconsistency) may be interpreted

as determinism (indeterminism), however we shall stick to the
concept of consistency (inconsistency) instead of determinismn

(nondeterminism), if not stated otherwise. n

Thus when we are given a KR-system, then any two arbi-
trary, nonempty subsets of attributes P, Q in the system, de-
termine uniquely a PQ-decision algorithm - and a decision
table with P and Q as condition and decision attributes res-
pectively. Hence a PQ-algorithm and PQ-decision table may be
considered as eqﬁivalent concepts. |

Example 4

Consider the KR-system shown below.

2

U a b c d e
1l 1 0 2 1 1
2 2 1l 0 1 0
3 2 1 2 0 2
4 1 2 2 1 1
5 1 2 0 0 2
Table 2
Assume that P = {a,b,c} and Q = {d,e} are condition and

decision attributes respectively. Sets P and Q uniquely asso-
ciate the following PQ-decision algorithm with the table:
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If we assume that R = {a,b} and T = {c;d} are condition
and decision attributes respectively, the then RT-algorithm
determined by Table 2 is the following:

Of course both algorithms are admissible and complete.

7. Truth and Indiscernibility

In order to check whether a decision algorithm is con-
sistent or not we have to check whether all its decision
not. To this end we could employ

rules are true

Proposition /5 er . the following propositions gives a

{

much simple! od to solve this problem which will be used

in what follows.

Proposition 6

A PQ-decision rule ¢ — ¥ in a PQ-decision algorithm is
consistent (true) in S, if and only if for any PQ-decision
rule ¢’ — Y’ in (P,Q), ¢ = ¢’ implies ¥y = y’.»

Remark

Note that in this proposition order 4f\ terms is im-
portant, since we require £quality of expx ons.

Let us also remark order to check whether a deci-

sion rule ¢ — ¥ is true or not we have to show that the pre-
decessor of the rule (the formula ¢) discerns the decision .
class Yy from the remaining decision classes of the decision
algorithm in question. Thus the concept of truth is somehow
replaced by the concept of indiscernibility.s

120




We will depict the ébove ideas by the following example.

Example 5
Consider again the KR-system as in Example 4

U a b c d e

1 1 0 2 1 1

2 2 1 0 1 0

3 2 1 2 0 2

4 1 2 2 1 1

5 1 2 0. 0 2

Table 3

with P = {a,b,t} and Q = {d,e} as gondition and decision
attributes  respectively. Let us check whether the

PQ-algorithm

is consistent or-not.

Because the predecessors of all decision rules in the
algorithm are different, (i.e. all decision classes are dis-
cernible by predecessors of all decision rules in the algo-
rithm), then all decision ruleg'in the élgorithm are con-
sistent (true) and cdnsequently the algorithm is consistent.

This can be also seen directly from Table 4.The RT-algorithm,
where R = {a,b} and T = {c,d}
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is inconsistent because the rules
a. b, - c. d

a2 b1 - c2 do

have the same predecessors and different successors, i.e. we
are unable do discern decisions g d1 and c, d0 by means of

conditions a, bl' Thus both rules are inconsistent (false) in

the KR-system. Similarly, the rules

a1 b2 - c2 d1

a1 b2 — co do

are also inconsistent (false).

There is only one consistent rule a, bo — c, d1 in the
TR-algorithm and consequently the algorithm is inconsistent.
This is visible much £ when representing the decision
algorithm as decision table €01t

U a b c d

1l 1 0 2 1

4___ 1 __2.__2. __1

2___2__.1 __0 __1

3 2 1 2 0

5 1 2 0 0
Table 4
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For simplicity we rearranged the rows, and separated de-
cision classes by underlining. g ™
| ' / A

We will often treat decision tables_aé a convenient way
of representation of decision algorithms, for this form is
more compact and easy to follow? the DL-language. Note
however that formally decision algorithms and decision tables

are different concepts.

8. Depenedency of Attributes

Now we are ready to define the most essential concept of
our approach - the dependency of attributes. ’

We will say that the set of attributes Q depends to-
tally, (or in short depends) on the set of attributes P in S,
if there exists a consistent PQ-algorithm in S. If Q depends
on P in S we will write P *g Q or in s?ort P > Q.

It can be easily seen that the concept of dependency of
attributes corresponds exactly to that introduced in
chapter 4.

We can also define partial dependency of attributes.

We say that the set of Qttributes Q depends partially on
the set of attributes P in S if there exists only an incon-
sistent PQ-algorithm in S.

Similarly as before we are able to define the degree of
dependency between attributes.

Let (P,Q) be a PQ-algorithm in S. By a positive region
of the algorithm (P,Q), denoted POS(P,Q) we mean the set of
all consistent (true) PQ-rules in the algorithm.

In other words the positive region of the decision algo-
rithm (P,Q) is the consistent part (possibly empty) of the
inconsistent algorithm.

Obviously a PQ-algorithm is inconsistent if and only if
POS (P,Q) # (P,Q) or C%EEE) is the same card (POS (P,Q)) =
card (P,Q). Flha

With every PQ-decision algorithm we can associate a
number k = card (POS (P,Q)) / card (P,Q), called the degree
of consistency of the algorithm, or in short the degree of
the algorithm, and we will say that the PQ-algorithm has the
degree (of consistency) k.

123



[ |

Obviously 0 =, k = 1. 1f a PQ-algorithm has degree k we
can say that the set of attributes Q depends in degree K on
the set of attributes P, and we will write P 1 0.

Naturally the algorithm is consistent if and only if k =
1, otherwise, i.e. if k = 1, the algorithm is inconsistent.

All these concept correspond exactly to those discussed
in chapter 4.

For example the degree of dependency between attributes
{a, b, c} and {d, e} in the algorithm considered in Example 5
in the previous section 1is 1, whereas the dependency between
{a, b} and {c, a} is 0.2, because there is only one cor-
sistent (true) decision rule out of five decision rules in
the algorithm. - _

Let us note that in the consistent algorithm all deci-
sions are uniquely determined by.conditions in the decision
algorithm, which is not the case in inconsistent algorithm.

In other words all decisions in a consistent algorithm are

discernible by means of conditions available in the decision

algorithm.

9. Reduction of Consistent Algorithms
The problem we are going to consider in this section,

concerns simplification of decision algorithms, more exactly

we will investigate whether all condition attributes are ne-
‘cessary to make decisions. The problem corresponds exactly to
that discussed in Section 3.3, however now the question of
attribute reduction will be formulated in logical terms. In
this section we will discuss the case of a consistent
algorithm. '

Let (P,Q) be a consistent algorithm, and a € P.

P We will say that the attribute a is dispensable in the

‘algorithm if and only if the algorithm ((P-{a}),Q) is

consistent; otherwise the attribute a is indispensable in thé
algorithm (P,Q). _

If all attributes a e P are indispensable in the
algorithm (P,Q), then the algorithm (P,Q) will be called
independent.

- The subset of attributes R ¢ P will be called a reduct
of P in the algorithm (P,Q), if the algorithm (R,Q) is inde-
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.pendent and consistent.

If R is a reduct of P in the algorithm (P,Q), then the
algorithm (R,Q) is said to be a reduct of the algorithm
(P,Q).

The set of all indispensable attributes in an algorithm
(P,Q) will be called the core of the algorithm (P,Q), and
will be denoted by CORE (P,Q).

Remark
.~ The reader is advised to interpret all the above defini-

tions in terms of indiscernibility. [

Let us also note that the counterpart of the proposition
2 in chapter 3 is also valid here.

Proposition 7
CORE (P,Q) = RED (P,Q) !
where RED (P,Q) is the set of all reducts of (P,Q). =

If all rules in a basic decision algorithm are reduced,
then the algorithm is said to be reduced.
The following example will illustrate the above ideas.

Example 6
Let us consider the following KR-system

U a b c d e

1 1 0 2 1 1

2 2 1 0 1 0

3 2 1 2 0 2

4 1 2 2 1 1

5 1 2 0 0 2
Table 5

and the PQ-algorithm in the system shown below, where P = {a,

b, c} and Q = {d, e} are condition and decision attributes
respectively.
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as in Example 4, where P = {a, b, c} and Q = {d, e} are con-
dition and decision attributes respectively.

Let us first compute reducts of condition attributes in
the algorithm. It is easy to see that the set of attributes P
is dependent in the algorithm, and the core attribute is c.
Hence there are two reduct of P, namely {a,c} and {b, c}. The
PQ-algorithm can, be reduced” then /jas

a, c. — d1 e

1 72 1

or




The above considerations can be easily followed,
employing tabular form of representing algorithms, for the
basic operations on algorithms can be traced easily, when

using this kind of notation. e eo[
The PQ-algorithm given in this example can béyﬁresen%/égj/uq

the following decision table

U a b [ d e

1 1 0 2 1 1

A___ 1 ___2____2_ __1 __1

2___.2___.___°o __1 __0

3 2 1 2 0 2

5 1 2 0 0 2
Table 6

in which for simplicity we rearranged the decision rules and
the decision classes are separated by underlining.

In order to find core set of attributes we have to drop
condition attributes, one by one and see whether &hus fLe
obtained decision table (algorithm) is consisted or not.

Removing the attribute a we get the table [§;‘\\ ch4)4£%§u~4(

U b c + d e
1 0 2 1 1
4a___2___ 2 __1__1
2 1 0 1 0

Table 7
which is consistent. Dropping attribute b we get again con-
sistent decision table

U a c d e
1 1 2 1 1
4___1.__2.__1___1
t 2___2...0 __1__0
- 3 2 2 o
| 5 1 0 0

Table 8 B




\vedl
" However when dropping attribute ¢ the result isYincon-
sistent table

U a b d e

1 1 0 1 1

4 __.2___1 __1

2__..2___.1 1 __0

3 2 1 0 2

5 1 2 0 2
Table 9

Rules 4 and 5 are inconsistent and so are rules 2 and 3,
therefore the attribute ¢ is the core of the set of condition
attributes {a, b, ¢}, and there are two reducts of this set
of attributes, {a, c} and {b, c}. Thus the algorithm has two
reduced forms as shown in tabular form in Tables 7 and 8. =

10. Reduction of Inconsistent Algorithms

In the case of ihconsistent PQ-algorithm in S the reduc-
tion and normalization goes in a similar way.

Let (P,Q) be inconsistent algorithm, and a € P.

An attribute” avis/dispensable in P,Q-algorithm, if POS
(P,Q) = POS ((P - ,Q0); otherwise the attribute a is
indispensable in (P,Q).

The algorithm (P,Q) is independent if all a € P are
indispensable in (P,Q).

The set of attributes R € P will be called a reduct of
(P,Q), if (R,Q) 4is independent and POS (P,Q) = POS (R,Q).

As befoy e set of all indispensable attributes in
(P, Q) will be“called the core of (P,Q), and will be denoted
by CORE (P,Q). In this case fheorem 9 _4s also valid.

Thus the case of the conSistent algorithm is a special

£>l¥~f(§L . 722L9,~zu~

case of the inconsistent one.

Example 7

Consider again KR-system as shown in Table 3, and the
following set of condition and decision attributes T = {a, b}
and W = {c,d}. The corresponding TW-algorithm will have the
form
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U a b c d

1 1 0. 2 1

4a___ 1 __.2.._2._.1

2 __2___1.__0 __1

3 2 1 2 0

5 1 2 0 0
Table 10

As mentioned before, the only consistent (true) decision
rule'is the rule number 1, i.e. a, b0 — c, dl. Hence the po-
sitive region of the TW-algorithm consists only of this rule.
In order to see whether the attribute a or b is dispenséble
or not we have to drop each of the attributes and check
whether the positive region of the algorithm has changed or
not, which is demonstrated below.

Removinq attribute a we get the same positive region

Table 11

whereas when removing attribute b we changed the positive
region, which is now the empty set, because all decision ru-
les in the algorithm are inconsistent (false).

U a c d
1 1 2 1
4___ 1 __2___1
2___2.__0___1
3 2 2 0
5 1 0 0
Table 12 o

129




Hence the attribute a is dispensable, whereas the attri-
bute b is the core and the reduct of the algorithm and conse-
quently the reduced <£for-of this algorithm is as follows

/74/..0 A
U b c d
1 0 2 1
4___2___2.__.1
2____ 1.0 __1
3 1 2 0
5 2 0 0

Table 13
+at

This means the the algorithm

a1 b0 — c2 d1

o S .
has only one reduced for;\ég;;ﬁ below

bo — c2 dl
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11.  Reduction of Decision Rules |

The purpose of this section is to show how the decision
logic can be used further simplification of decision algo-
rithms by elimination of unnecessary conditions in each deci-
sion rule of a decision algorithm separately, in contrast to
reduction performed on all decision rules simultaneously, as
defined 1in the previous sections. ' This idea corresponds
exactly to that discussed earlier in section 3.4.

Before we give the necesgary definitions, let us first
introduce auxiliary denotatif ¢ is P-basic formula and
Q ¢ P, then by ¢/Q we mean the Q-basic formula obtained from
the formula ¢ by removing from ¢ all elementary formulas
(a, Va) such that a € P - Q.

Let ¢ — ¥ be a PQ-rule, and let a € P. We will say that
the attribute a is dispensable in the rule ¢ — y if and only
if ’

F=S ¢ — ¥ implies F=s ¢/ (P-{a}) > ¥
otherwise the attribute a is indispensable in ¢ — y.

If all attributes a € P are indispensable in ¢ — y then
¢ — ¢y will be called independent.

The subset of attributes R € P will be called a reduct
of PQ-rule ¢ — ¥, if ¢ — ¥ is independent and s ¢ ¥
implies F=S ¢/R — Y.

If R is a reduct of the PQ-rule ¢ — y, then ¢/R — y is
said to be reduced.

The set of all indispensable attributes in ¢ — y will
be called the core of ¢ — ¥, and will be denoted by
CORE (¢ — y¥).

One can easily verify, that this idea corresponds
exactly to that introduced in chapter 3, and that the
following theorem is true.

Proposition 8

CORE (P — Q) = n RED (P — Q),
where RED (P — Q) is the set of all reducts of (P > Q). =

Example 8 JCj;)
As we already mentioned we are going no liminate -
unnecessary conditions in each decision rule of a decision
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algorithm separately, i.e.computelb€ore and reducts of each
decision rule in the algorithm.

There are two possibilities available at the moment.
First we may reduce the algorithm, i.e. drop all dispensable
condition attributes in the whole algorithm and afterwards
reduce each decision rule in the reduced algorithm, i.e. drop
all unnecessary conditions in each rule of the algorithm. The
second option consists in reduction at the very beginning de-
cision rules, without elimina¥igmr” attributes from the whole
algorithm. w3

Let us-first discuss the first option, and as an example
consider the KR-system

U a b c d e

1 1 0 2 1 1

2 2 1 0 1 0

3 2 1 2 0 2

4 1 2 2 1 1

5 1 2 0 0 2
Table 14

and the PQ-algorithm in the system shown below, where P = {a,
b, ¢} and Q@ = {d, e} are condition and decision attributes
respectively - as in Example 4.

a, b, c, — d1 e

2 1

az b1 c0 — dl e0

a, b co — d0 e2

+
We have to eliminat;\éfiecessary conditions in each rule
of the algorithm separately. ’
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Let us start with the first rule a, b, ¢, — d, e,. The
core of this rule is the the empty set, because a, b and c¢

are dispensable in the rule, i.e. the following decision
rules b0 €y, — d1 €, a3 ¢, & d1 €, and a, b0 — dl e, are
true. In other words either of the conditions bo c,, a, ¢, or

1

a, b. uniquely determine the decision dl e There are two

1 0 1°
reducts of the rule namely {b} and {a,c}. Hence the rule
a; by <, 1
bo — dl €, or a, ¢, — d1 €,

Each of the remaining four rules have one core attribute

- dl e, can be replaced by either one of rules

c, and consequently two reducts {a, c} and {b, c}. Thus, for
example the second rule, a, bl €y — d1 €, has two reduced

forms a., ¢ and b1 c

2 0 0] 0 0o
Let us summarize the above considerations in tabular

— d1 e — dl e

form. Table 15 contains cores of each decision rule.

a b c

U d, e

1 - - - 1 1

2 - - 0 1 0

3 - - 2 0 2

4 - - 2 1 1

5 - - 0 0 2
Table 15

In Table 16 all reduced decision rules are listed.

U a b c d e
1 - 0 - 1 1
S S JUUOL JUUE JUUOE
: .é....;....é....i....é
SOUUESUUUE SO SO SOPL.
; .é....;....é....é....é
37 - 1 2 0 2
;....i....;....é....i....i
S SUTESUUE JURE JONE OO
: .i . L....b....é....é
57 - 2 0 0 2
Table 16
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Because each decision rule in the algorithm have two
reduced forms, hence in order to simplify the algorithm we
have to choose one of them, and as a result we get the
algorithm with reduced decision rules as shown for example in
Table 17.

U a b c d e

1 - 0 - 1 1

2! - 1 0 1 0

3 2 - 2 0 2

47 - 2 2 1 1

5 1 - 0 0 2
Table 17

which can be also presented in the DL-language as

a, C

1 o —_ do e

2

) Note that rules 1’ and 4 are identical, hence choosing
of the rules we obtain decision algorithm with smaller

number of decision rules, as shown for example in Table 18

U a b c d e

%:. 1 - 2 1 1

?:'::%...fi....é....i....é

: 2..‘.:....5....6.. .é

5 1 - 0 0 2
Table 18
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or in decision logic

C

0

notation

——>d1

— dl

- d0

— d0

We may also first reduce the algorithm and then reduce

further decision rules in the reduced algorithm. In this case

the above example of decision algorithm would be reduced as

follows:

As already shown in

reduced forms

and

b,

)

—_ dO

Example 6 the algorithm has two

which can be presented in tabular form
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U a c d e
4___1___2.__1 __1
2___2_..0___ 1 __0
3 2 2 0 2
5 1 0 0 2
Table 19
and !/?; /)
U /gga{' c d e
1 "o 2 1 1
4____2___2.__1___1
2. 1.0 __1.__0
3 1 2 0 2
5 2 0 0 2
Table 20

All decision rules in the decision algorithm shown in

Table 19 are alread educed, hence the algorithm cannot be

simplified fur the decision algorithm in Table 20

rules 2, 3, 4 and 5 are are already reduced, whereas in the

rule 1 the condition c, can be eliminated and the rule will

have the form b0 — d1 e.. Thus the algorithm takes the form

1
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12. Minimization of Decision Algorithms

In this section we will consider whether all dec131on
rules -are necessary in a decision algorithm, or more exactly
we aim at elimination of superfluous decision rules associa-
ted with the same decision class. It is obvious that some de-
cision rules can be dropped without disturbing the decision
making process, since some other rules can overtake the job
of the eliminated rules. This is equivalent to the problem of
elimination of superfluous sets in union of certain sets,
discussed in Chapter 3.4., which become more evident as the
study progress. Before we state the problem more precisely
some auxiliary notions are needed.

Let 4 be a basic algorithm, and let S = (U,A) be a
KR-system. The set of all basic rules in 4 having the same
successor ¥ will be denoted Aw, and ?w is the set of all pre-
decessors of decision rules belonging to Aw

A basic decision rule ¢ — ¥ in 4 is dispensable in 4,
if |=SV?WEV{5PW
all formulas in ?w; otherwise the rule is indispensable in 4.

- {¢}}, where V?w denotes disjunction of

If all decision rules in #£, are indispensable then the set of

v
rules Aw is Sg~ d independent.
A subsgtd’/of decision rules of Aw is a reduct of 4w if
all decision rules in A& are independent and F=S % ?w =V ?é'

A set of decision rules A is reduced, if reduct of 4

€ mae> =il ”

Now we are ready to give the basic definition of this
section.
' ‘A basic algorithm 4 is minimal, if every decision rule
in 4 is reduced and for every decision rule ¢ — y in 4, Aw
is reduced.

Thus in order to simplify a PQ-algorithm, we must first
reduce the set of attributes, i.e. we present the algorithm
in a normal form (note that many normal forms are possible in
general). The next step consists in the reduction of the p
algorithm, i.e. simplifying the decision rules. The fasy
step removes all superfluous decision rules from the
algorithm. '

The example which follows will depict the above defined -
concepts.
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Example 9
Spouse we are given the following KR-system

U a b c d e

1 1 0 0 1 1
2 1 0 0 0 1
3 0 0 0 0 0
4 1 1 0 1 0
5 1 i 0 2 2
6 2 2 0 2 2
7 2 2 2 2 2
Table 21

and assume that P ={a, b, ¢, d} and Q = {e} are condition and
decision attributes respectively. ’

It is easy to compute that the only e-dispensable condi-
tion attribute is c. Thus Table 22 can be simplified as shown
in Table 23 below.

1 1 0 1 1
2 1 0 0 1
3 0 0] 0 0
4 1 1 1 0
5 1 1 2 2
6 2 2 2 2
7 2 2 2 2
Table 23

In the next step we have to reduce the superfluous
values of attributes, i.e. reduce all decision rules in the
algorithm. To this end we have first computed core values of
attributes, and the result is presented in Table 24.
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1 - 0 - 1
2 1 - - 1
3 0 - - 0
4 - 1 1l 0
5 - - 2 2
6 - - - 2
7 - - - 2
Table 24

In the table below we have listed all value reducts

1l 1 0 b ¢ 1
1’ X 0 1 1
2 1 0] X 1
2/ _l___x'_ _0 __1
3 0 X X 0
4___x___1 __1.__0
5 X X 2 2
6 2 1 X 2
6’ 2 X 2 2
6’7" x 1 2 2
7 2 2 X 2
7 2 X 2 2
77" X 2 2 2
Table 25

As we can see from the table in row 1 we have two
v reducts of condition attributes - a, b0 and b0 dl‘ Similarly
, for the row number 2 we have also two reducts --a1 bo and

al do. There are two minimal sets of decision rules for
decision class 1, namely
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1) albO — €,

2) bodl — €,

ald0 — e1
or

bod1 v ald0 —e‘el
For decision class 0 we have one minimal set of

decision rules

bldl - e0
or

ao v bldl — eo

For the decision class 2 we have also one minimal
decision rule

Finally we get two minimal decision algorithms

alb0 - e1

a, — €

0 0

bldl - eo

d2 — e2
and

bod1 — e,
ald0 — e,
aol—a €5
bldl — e,
d2 — e,
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The combined form of these algorithms are

albo — e1

a. v bldl — eo

0

d2 -— e2
and

bodl v ald0 — e,

a0 v bld1 — eo

d2 - e2

a2

Summary

All the concepts introduced in previous chapters can be
also worded in terms of decision logic. As a result we obtain

much simpler putation algorithms for knowledge reduction,

dependencie

It is worthwhile to stress that the basic role is played
here by a relationship between truth and indiscerndbiliy,
strictly speaking the concept of truth is repla our
approach by the concept of indiscernibility. The relationship
between truth and indiscernibility, is of principal
importance from algorithmic point of view, because it allows
to replace checking whether some implications (decision
rules) are true or not - by investigation of indiscernibility

of some elements of the universe. Note also the highly
parallel structure of algorithms in this setting.

Excercise

1. Give meaning of the following formulas

a1 v (bo —ecl)
a, v (b0 A co)
a; — (b2 — c,)

a4,

1]
e
>
(9]
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in ;the KR-systems below

1 0 1

2 2 0

3 0 1

4 2 2

5 0 1
Table 26

1 2 0 2
2 1 2 1
3 0 2 1
4 0] 1 1
5 0] 2 0
Table 27

2. Compute for the formulas given in Exercise 1, and Tables
26 and 27, P-normal forms for P = {a, b, ¢}, {b, c}, {a, c},
{a, b}, {a}, {b} and {c}.

3. Give PQ-decision algorithms for P and Q as listed below

P Q

{a, b} {c}

{c} {a, b}
{a} : {b}

{a, c} {b} .

{a, ¢} {b, ¢}
{a, b, c} {a, b, c}

which are admissible in Table 26 (27).

142




4. Check which algorithm are consistent and inconsistent. For

inconsistent algorithms give the degree of inconsistency.

(Degree  of " dependence between condition and decision

algorithms) .

5. Compute reduced forms for each algorithm in Exercise 3.
6. Compute minimal forms for each algorithm in Exercise 3.
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"PART II

APPLICATIONS

8. DECISION MAKING

1. Introduction

In this chapter we are going to illustrate in detail
some of the basic ideas discussed in the previous chapters.

Many problems related with decision making are of the
following nature: given a decision table - find all minimal.
decision algorithms associated with the table.

It is worthwhile to mention that this problem can be
also seen as learning from examples, or as it is often called
in the AI folklore =~ as decision rule generation from
examples. We shall however stick to our terminology, since it
seems more consistent and self explanatory.

There are many methods available to solve this problem
(cf. Quinlan (1979), Cendrowska (1987))y > Recently several
methods based on rough set philosoph proposed (cf.
Mrozek (1987), Grzymala-Busse (1988), ‘Pawlak (1988), Boryczka

et al. (1988), Slowinski (1988), Ziarko (1987)), which seem
to be superior to other methods.

The rough set approach offers all solutions to the pro-
blem of decision table simplification and yields fast compu-
ter algorithms, and has found real 1life application in
various fields (cf.for example Fibak et al. (1986), Krysinski
(1990), Pawlak et al. (1986), Slowinski et al. (1989)).

2, Optician’s Decisions Table
The example, which follows (cf. Cendrowska (1987)), con-
cerns optician’s decisions as to whether or not a patient is
suitable for contact lenses wear. The set of all possible de-
cisions is listed in Table 1.
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Table 1
The table is in fact a decision table in which a, b, ¢’

and d are condition attributes whereas e is a decision attri-
bute.

The attrlbuté\e represents optician’s decisions, which
are the followtanx

1. Hard gontact lenses
2. Soft contact lenses
3. No contact lenses
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i 1

These decisions are based on some facts concerning the -
v )

patient, which are expressed by the condition attributeékf
given below together with corresponding attribute values.  _.

a - Age
1 - young
2 - pre-presbyopic
3 - presbyopic

o
1

spectacle

1 - myope

2 - hypermetrope
astigmatic

0
|

1 - no
2 - yes

Q
|

tear production rate
1 - reduced
2 - normal

The problem we are going to discuss here is the elimina-
tion of conditions from a decision table, which are unneces-
sary to make decisions specified in the table.

In our approach the problem can be expressed as simpli-
fication of the decision table (described in Chapter 6) or
finding of minimal decision algorithms associated with the
decision table (described in Chapter 7). _

The first method is based on some operations on indis-
cernibility (equivalence) relations and has algebraic flavor,
whereas the second - is embedded in 1logic. The algebraic
approach to decision table simplification is straightforward,
howev@lgorithms based on this method are sometimes not

WAL
and gives faster algorithm hen/the algebraic method, but

very efficient. The logical ;p%ijjfh is easier to implement
its intuitive meaning seems taibe not so obvious as in the
previous case. Therefore, for the sake of clarity we recom-
mend combination of both methods, employing decision tables
notatio@kyénd logical algorithms. This means that we treat
decision table as a set of formulas, which can be treated in
logical way. For example row 1 in Table 1 can be considered

as the formula a, b, c d2 — e In order to see whether

1 71 72 1’
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this formula is true or not we could check the inclusion
!al . c, d | < |e | however this procedure is rather
inefflClent It is better to employ in this case Proposition
7.6, i.e.?tp check whether there is in the table another
implication with the same predecessor and different succes-
sor. Because this is not the case, the implication is true.
The above presented approach will be used in the forthcoming

chapters.

3. Simplification of Decision Table

In view of what has been said so far our problem con-
sists in :

of

a) checking whether elementary categories of decision
attributes (decision categories) can be defined (expressed)
in terms of basic categories defined by the set of all condi-

tion attributes (condition categories).

b) reduction of the set of condition categories necessa-
ry to define decision categories.

Obviously problem a) reduces in our case to the question
whether decision attribute e depends on condition attributes
a, b, c and d, i.e:iwﬁether the dependency {a, b, c, d} = {e}
holds. Because all-“conditions in the table are dlfféfent
hence according to Propositions 7.6 and 7.7, there 1sltbtal
dependency between condition and decision atgifbutes, i.e.
the dependency {a, b, ¢, d} =» {ehk(is valld.\'That- eans that
elementary categories of the atf/{bute e (dec151on catego-
ries) can be uniquely defined by the cateqories of condition
attributes (condition categories), or in other words, that*éia
values of decision attribute e are uniquely determined by
means of values of condition attributes a, b, izéﬁd d.

As to the problem b) one can compute t the set of
condition attributes is e-independent, wha;”;;;;>§ﬂét none
of the condition attribute can be eliminated, as a whole,
without déstroying the classificatory properties of the deci-
sion table, that is removing any of the condition attributes
from Table 1 makes this decision table inconsistent. Let us
analyze this in detail.
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Removing attribute a in Table 1 we get the following

decision table

U b o] d e
1 1 2 2 1
2 2 2 2 1
3 1 2 2 1
4 e 22 1
5 1 1 2 2
6 2 1 2 2
7 1 1 2 2
8 2 1 2 2
e 2_ ..l 2. 2
10 1 1 1 3
11 1 2 1 3
12 2 1 1 3
13 2 2 1 3
14 1 1 1 3
15 1 2 1 3
16 2 1 1 3
17 2 2 1 3
18 2 2 2 3
19 1 1 1 3
20 1 1 2 3
21 1 2 1 3
22 2 1 1 3
23 2 2 1 3
24 2 2 2 3
Table 2

which is inconsistent because we have in Table 2 the follow-
ing pairs of inconsistent decision rules

b2 c, d2 — e, (row 2)

b. c

5 d2 — €, (rows 18 and 24)

2
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This me
mine unlquel
aean—-netbe

cemiet

that the condition b c d2 does not,deter-'

2

o

{i:élther decision el-nef e3 Thus the attribute

pped

Slmllarly removing attribute

following decision table

e
Cﬁitribatg;’b we get the

U a c d e
1 1 2 2 1
2 1 2 2 1
3 2 2 2 1
. 3.2 .2 _______1
5 1 1 2 2
6 1 1 2 2
7 2 1 2 2
8 2 1 2 ;2
3 2 2
10 1 1 1 3
11 1 2 1 3
12 1 1 1 3
13 1 2 1 3
14 2 1 1 3
15 2 2 1 3
16 2 1 1 3
17 2 2 1 3
18 2 2 2 3
19 3 1 1 3
20 3 1 2 3
21 3 2 1 3
22 3 1 1 3
23 3 2 1 3
24 3 2 2 3
Table 3

In this table the following pairs of decision rules are

inconsistent

(1)

a

a

2

2

C

C

2

2

d2 — e (rule 3)

d2 — e, (rule 18)
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(i)

(iii)

1

w

V)

w

(rule 4)

(rule 24)

(rule 9)

(rule 20).

This means that pairs of decisions e

1’

e

not be distinguished by means of conditions a

3
3

and

C

1

e
d20

2’

e

3

can

Similarly removing the attribute ¢ from Table 1 we get

Table 4

U

b

d

W

W NN B =

W W WwWwwwNnNnNDR N B R

T

NN R RN DN RN

N NNV

I = o N S S S S S T O UP S

Table 4
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in which the

(rule

(rule

(rule

(rule

(rule

(rule

(rule

(rule

(rule

(rule

(rule

(rule

following pairs of rules are inconsistent

1)

5)

2)

6)

3)

7)

4)

20)

24)

Finally dropping the attribute d in Table 1 we get
(W.//Table 5
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2

i3 e 2

1

Qo322

10
11
12
13

3

14

15

16
17

18
19
20
21
22

23

24

Table 5

in which there are the following pairs of inconsistent

rules

al.b1 c, — ey (rule 1)

(1)

v

a; by ¢, — ?zz(rule/zﬁ

a, b2 c, — € (rule 2)

(ii)

a, b2 c, — e, (rule 13)
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a. b, ¢, — e, (rule 15)

2 71 2 1
(iv) a, b1 c, = €& (rule 4)
a, b1 c, — e, (rule 21)
(V) a, b ¢, — e, (rule 5)

a. b, c, — e_ (rule 10)

171 71 3

(vi) a, b2 c, ™ e, (rule 6)

a, b2 c, — &, (rule 12) Y
(vii) a, bl c, — e, (rule 7)

a, b1 c, — &, (rule 14)
(viii)a2 b2 c, — &, (ru;e 8)

a, b2 €, — €, (rule 16)
(ix) a, b2 c, — e, (rule 9)

a. b, c, — e, (rule 22)

As we can see from the analysis no the condition

dition attributeé independent.

attributes can be ri moved from Table 1. Hence the set of con-
It is interesting to note, that dropping of various con-
dition attributes we introdu ég" consistency of different
"dépth™, We shall discuss this problem in more detail in the
Q&%ﬁgE- ection of this chapter.
Coming back to our initial problem of simplification of

decision table we have now to check whether we can eliminate
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some elementary condition categories, i. ., some superfluous
values of condition attributes in Table T this end first
we have to compute e-cores of each elementary condition cate-
gory. In other words we have to check which values of condi-
tion attributes are indispensable in order to discern values
of decision attribute. Because value core is the set of all
indispensable values with respect to e, hence in order to
check whether a specific value is dispensable or not (i.e.
whether it belongs to the core) we have to remove the value
from the table and see if the remaining values in the same
row uniquely determine decision attribute value in this row.
If not this value belongs to the core. Speaking in logical
terms we have to compute core values of each decision rule in
the decision table, i.e. find all those condition attribute
values in the decision rule which make the decision rule
false.

For example in the first decision rule a, b1 c d2 — e

values c2 and d2 are core values because the rules

l 1

b, c d2 -— e

1 72 1

a, ¢ d2 — e

1 72 1

are true, whereas the rules

a1 b1 d2 — e1

a1 b1 c2 — e1
are false. (see Proposition 7.6).
All core values of each decision rule in Table 1 are

given in Table 6.
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1 - - 2 2 1
2 1 - 2 2 1
3 - 1 2 2 1
4 - 1 2 2 1
57T =TT =STTTTTYITTTTT 2 T 2
6 - - 1 2 2
7 2 - 1 2 2
8 - - 1 2 2
9 - 2 1 2 2
100 T =TT =TT =STTTTTYTTTTTTTTTS
11 - - - 1 3
12 - - - 1 3
13 - - - 1 3
14 - - -, 1 3
15 - - - 1 3
16 - - - 1 3
17 - - - - 3
18 2 2 2 - 3
19 - = - - 3
20 3 1 1 - 3
21 - - - 1 3
22 - - - 1 3
23 - - - - 3
24 3 2 2 - 3
Table 6

Now we can easily compute all e-reducts of condition
elementary categories, or what is the same, reduct values of
condition attributes of each decision rule. From Proposition
8 follows that in order to find reducts of decision rules we
have to add to the core values of each decision rule such
values of condition attributes of the rule, that the prede-
cessor of the rule is independent and the whole rule is true.

For example the first rule a, b, ¢ d2 — e

171 72 1
du . . .
cts a; c, d2 — €, 5 d2 — e,, since both decision

rules are true and predecessor of each decision rule is inde-

has two re-
and b1 c
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Table 7 which follows.
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3

23
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It can be seen from the table that decision rules 1, 6,

,:j;7 19 and 23 have-two reducts, and the remaining decision
8,11‘ | / .

Vru;eé have one redu gach

In order to f mlnlmal decision algorithm we hawve to

’remove from the table/all superfluous decision rules (see

~_section 7.10).
- From Table 7 we see that in the first decision class de-

‘cision rules and 1’ are superfluous, because these rule are
identical ules 2, 3 and 4 respectively. In the second
decision class rules 6 and 5 are identical, rules 6’, 8“ and
9.are also identical and so are rules 8 and 7, hence it is
enough to have one representative rule from each group of
identical rules. Similarly we can remove superfluous decision
rules from decision class three and we obtain the following

set of minimal decision rules (minimal decision algorithm) as
shown in Table 8.

U a b (o d e
1/,2 1 X 2 2 1
1,34 X___l____2___2________1
5,6 1 X 1 2 2
7,8 2 X 1 2 2
67,80,9 X __.2___.1 __ .2 ________ 2
10-17,19’

21,22,23 x X b4 1l 3
177,18 2 2 2 X 3
19,20 3 1 1 X 3
237,24 3 2 2 X 3

Table 8

Let us note that there is only one minimal solution to
this problem.

Because enumeration of the decision rules is not
essential we can get from Table 8 the following Table 9.
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U a b c d e
1 1 X 2 2 1
2 X lo__.2___2 _______1
3 1 X 1 2 2
4 2 X 1 2 2
8 e X___2_ 1 __.2________ 2
6 p 4 X X 1 3
7 2 2 2 X 3
8 3 1 1 X ‘3
9 3 2 2 X 3
Table 9

Crosses in the table denote "don’t care" values of
attributes. What we have obtained finally is the minimal set
of decision rules (minimal decision algorithm) which is
equivalent to the original table, as far as the decisions are
concerned. That means that in the simplified table only the
minimal set of conditions, necessary to make decisions
specified in the table, are included.

It is worthwhile to stress once more that there is only
one solution to the discussed problem. In general many solu-~
tions are possible, as we will see in the next chapter.

4. Decision Algorithm

As we already.stated before we are not interested in de-
cision tables but rather in decision algorithms, and tables
are used only sob venient way of notation for decision

algorithms. Tabular

rm Jof presentation of decision
algorithzzf:}llows‘us4§§;~ ompu ion ofj truth of decision
T PO el 0
rules a consequently way of decision algorithms
simplification. We could for example start simplification of
Table -1, by replacing all rows in the table by appropriate
decision rules and by application of Proposition 7.6 obtain
final form of minimal decision algorithm. The tabular nota-
tion of decision algorithms is however more "transparent" and

leads to simpler computer algorithms (which can be also
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1mp1emented in parallel).

Thus our final result presented in Table 9 can be re-
written as minimal decision algorithm in normal form:

a, ¢, d, — €

Combining all decision rules for one decision class we
get the following decision algorithm:

v bl) c, d2 — e,

(a, v a, Yiﬁji:yl d, — e,

d1 v (a bl cl) v ((a2 v a3) b2 c2) — e

3 3

5. The Case of Incomplete Information

It may happen that for some reason values of some attri-

ndt available while maklng decisions. The problem

to make—decisions. In order to answer this questlon let us
come back to the problem of elimination of attributes consi-
dered in section 3.
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Lack of attribute a makes only two decision rules incon-

sistent

b2 ¢, d, — €, (row 2)

2
b €, d, — e, (rows 18 and 24)

— 2 3
i .
LengwVfg
tad the rest of decision rules unaffected (true) and
constitute positive region of the decision algorithm. Hence

is 21/24 = 7/8. The

e

the degree of dependency ({bcd} =» (e}

-y

ts removal\ causes six
D VI CE I
;/fhe degree of depen-

attribute b is more significant for~
decision rules to be inconsistentithu
dency {acd} = {e} 18/24 = 3/4. Removing attribute c¢ makes

twelve rules inconsistent and consequently the depen Y

{abd} =» {e} is wvalid in the degree 12/24 = 1/2. Thé/\lg@
attribute d, when drepped
sistent, which yie dggaé-
to 6/24 = 1/4; thus
one, since without the attribute only six out

auses eighteen rules to be incon-
ee of dependency {abc} =» {e} equal
e attribute d is the most significant

decision rulé;\remain true, 1i. -3 en ble us tgﬁgk
decisio @ e}éas without the ribute a

twenty fo decision rules are consistent,
attribute affects rather not v much the positive region of
the decision algorithm, i. :)it ability to make consistent

decisions.

Summary

The example considered_in this chapter shows how know-
ledge about certain dom?ifigggh be analyzed and reduced using
rough sets approach. Th ain problem in this case was to
reduce the original knowledge (decision Table 1) in such a

way that decisions specified in Table 1 can be made using
minimal set of conditions.

" In summary, to simpligy
find reducts of conditi

(decision rules) and t

a decision table we should first

tributes, remove duplicate rows

find value-reducts of condition
attributes and again, if necessary, remove redundant decision
rules. This method leads to a simple algorithm for decision
table simplification or generation of minimal decision
algorithm from examples, which, according to our experiments,
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hievable degree in

ef forms other methods, in t of

! : V +
fumber of conditions and whatimpre ,“Ygives all possible

the
solutions to the problem. ——

Let us stress once more that minimal decision algorithm

Te)

corresponding to Table 1 could be also obtained without deci-
sion tables notation used in the presented example - employ-
ing directly the logical tools introduced in Chapter 7, howe-

ver as we mentioned in the beginning of is chapter the ta-
bular notation seems to be more clear the pure logical
notation and wy A< more important - is easer to implement,

bécause tables are more convenient data StrUCtQESS for compu-
ter implementation then 1logical formulas;” and also the

: /
"inference rule " (proposition Ziiiififms‘téggﬁph more useful

& { -7
when data have tabular form, tggn he “elassical rules of

inference.

Exercises Y
1.Check whether the following decision rules are consistent

371 71 3

or not in Table 1. Use both semantic and syntactic methods,
i.e. compute meanings of decision rules according to Proposi-
tion 7.1 (e) and Proposition 7.6.

2. Compute degree of dependency for the following

a=e ab = e ac » e

b=e bc = e bc s e

cC = e ad = e cd »> e

ds=s e cd = e bd » e
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For siﬁplicity we omitted parenthesis {, } in decision,

rules.
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9. DATA ANALYSIS

1. Introduction

In this chapter we shall consider several examples of
decision tables, which can be obtained as a result of obser-
ables con-

vatio or measurements, in contrast to decision

in Chapter 8, which represented explic inowledge
\/g nt or group of agents.
First we shall analyze generation of control algorithm
for a rotary clinker kiln from observétion of a stoker deci-

sions who controls the kiln (cf. Mrdézek (1988)). Our aim is

to derive from this observations computer control algorithms,
. Qve
whlcé s

ler.

le to mimic stoker'’s berformance as kiln control-
will see that this problem reduces to decision (con-
trol) algorithm derivation from observational data given in a
form of a decision table.

This example illustrates several vital points connected
with the application of rough set concept to the analysis of
knowledge of a human operator and may serve as an illustra-
tion of wider class of similar tasks.

The next example considered in this chapter concerns data
about patients suffering fro certain disease. This simple
example is suppose to depi gx, nother situation when data_is
collected by observation r measurement. In reali YS the
application of rough set philosophy to this kind of proBiems
is much more complicated and f/é r ader is advised to see the
papers of Pawlak et al.(198 MLA owinski et al.(1988) and

also references given in the ) ious Chapter.

2. Decision Table as Protocol of Obsevations

In this section we will 'analyze stoker’s decisions,
while controlling the clinker kiln.

For our purpose, the details of cement kiln operation

are not important and we give only brief information neces-

sa to understand the forthcoming considerations. For mnuch

g¥%€ r detail the reader is advised to consult the paper of
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[ T

The aim of the stoker is to keep the kiln in a “proper"

state, and what is the "proper" state is basically determined
by his experience. To this end he has to control values of
two parameters of the kiln, namely the kiln revolutions (KR)
and the coal worm revolutions (CWR). The values of these

Ht'parameters are sct by the stoker upon observations of four

parameters of the kiln, namely burning zone temperatpre
(BZT) , burning zone color (BZC), clinker granulation ( ),an
kiln inside color (KIC). Thus actions of the stoker can be
described by a decision table, where BZT, B2C, CG and KIC are
condition attributes, and KR and CWR are decisiom-attributes.

Each ination of condition attrlbut//\ alues cor-
responds vecific kiln state, and in eac state of the

kiYn., appropfriate action must be taken in order to obtain

ce . of required quality. The stoker has control of the
rotation speed of the kiln, which gan be set to two values,
and the temperature of the kiln, which is set indirectly by
control of heating coal consumption measured in rgyoi;tion
speed of the coal worm. ’ ;

All attributes and their values are listed bé€low.Fo /the
sake of simplicity we will denote attributes by \lowér case

italic letters, as shown in what follows.

Thus we have the following condition attributes:

Burning 2one Temperature (BZT)

Burning Zone Color (BZC)
Clinker Granulation (in burning zone) (CG)
Kiln Inside Color (KIC)

R, O O n
!

The domains of these attributes are coded as follows:

Burning Zone Temperature

1 - (1380 - 1420°)
2 - (1421 - 1440°)
3 - (1441 - 1480°)
4 - (1481 - 1500°C)
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Burning Zone Color

scarlet

dark pink
bright pink

very bright pink

O & W NN =
|

rose white

Clinker Granulation

1 - fines

2 - fines with small lumps
3 - granulation

4 - lumps

Kiln Inside Color

1 - dark streaks

2 - Indistinct dark streaks
3 - lack of dark streaks

The decision attributes

e - Kiln Revolutions (KR)
f - Coal Worm Revolutions (CWR)

have the following values of attributes:

Kiln Revolutions

l1~-0,9 rpm
2 - 1,22 rpm

Coal Worm Revolutions
- 0 rpm

15 rpm
30 rpm

S Ww N e
i

40 rpm
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Let us note that

,qualitative.-

in fact all attribute values are

lary list of decisions

taken by a

(protocoi)

An exemp
stoker is shown in T

able 1.

\
|

CWR

KIC KR
b c d e f

B2T BiC CG

a

TIME

10
11

12

13

14
" 15

16
17
18

18

19

20
21
22

23

24

25
26
27
28
29
30
31
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32 4 4 3 2 2 2
33 4 3 3 2 2 2
34 4 3 3 2 2 2
35 4 3 3 2 2 2
36 4 2 3 2 2 2
37 4 2 3 2 2 2
38 3 2 2 2 2 4
39 -3 2 2 2 2 4
40 3 2 2 2 2 4
41 3 3 2 2 2 4
42 3 3 2 2 2 4
43 3 3 2 2 2 4
44 3 3 2 3 2 3
45 3 3 2 3 2 3
46 4 3 2 3 2 3
47 4 3 2 3 2 3
48 4 3 3 3 2 2
49 4 3 3 3 2 2
50 4 4 3 3 2 2
51 4 4 3 3 2 2
52 4 4 3 3 2 2

Table 1

As we mentioned already this table (protocol of stoker
behavior) can be treated as a decision table in which a, b, ¢

and d are condition attributes, whereas e and f are decision
attributes. )

The table describes actions undertaken by a s o}xker,
during one shift, when specific conditions observed \b he
stoker have been fulfilled. Numbers given in the column TIME
are in fact ID labels of moments of time, when the decisions
took place, and form the universe of the decision table.

Because many decisions are the same, hence identical
decision rules can be removed from the table and we obtain in
this way Table 2.
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1 3 3 2 2 2 4
2 3 2 2 2 2 4
3.3 __.2 .2 __1.__2__.4
4 2 2 2 1l 1 4
5 2___ 2 __ 2.2 __1 __4
6 3 2 2 3 2 3
7 3 3 2 3 2 3
8 4___3___2.__3.__2._.3
9 4 3 3 3 2 2
10 4 4 3 3 2 2
11 4 4 3 2 2 2
12 4 3 3 2 2 2
13 4 2 3 3 2 2
Table 2

In Table 2 decisions are identified not by moments of
time but by arbitrary intégers (or could be labelled by any
kind of identifiers), which form the new universe of the
decision table.

The table describes knowledge of an experienced human
operator of the kiln, which has been obtained by observation
of stoker actions. Thus the knowledge of the operator has
been obtained not by interviewing him, as it is usually the
case in expert systems philosophy, but by observing his
actions when controlling the kiln.

3. Derivation of Control Algorithms from Observation

We pass next to the analysis of the observed data de-
scribing stoker decisions,in order to obtain control
algorithm of the kiln - based on stoker’s experience and able
to use his knowledge. More precisely the problems we are
going to discuss in this section are consistency of stoker
knowledge, reduction of his knowledge and control algorithm
generation, from the observed stoker’s behavior.




éy consistency of knowledge in this particular case we
mean ~functional dependency between conditions and actions,
i. ether actions are uniquely determined by conditions.
Re tion of knowledge consists in dropping all dispensable
condition attributes and condition attribute values from the
table and thus obtained minimal decision table is in fact the
control (decision) algorithm, which can be simply implemented
in any programming language, or directly in hardware.

Let us first consider the consistency problem. For this
purpose we need to check whether the table is consistent or
not, or in other words - whether C = D. To this end we have
to check whether 7C(D) = 1 or not. Because all conditions
are distinct, then according to Proposition 7.7 the dependen-
cy C » D holds and the table is consistent , i.e.
actions are uniquely determined by conditions in the table.

It is rather straightforward to show that attributes a,
c and d are D-indispensable, whereas the attribute b is
D-dispensable.

Removing attribute a in Table 2 we get the following
table

U b c d e f
1 3 2 2 2 4
2 2 2 2 2 4
N T 2___.2___ 1 __2 __.4
4 2 2 1 1 4
- 2.2 2 __1___.4
6 2 2 3 2 3
7 3 2 3 2 3
8. 3....2.__3._._2._.3
9 3 3 3 2 2
10 4 3 3 2 2
11 4 3 2 2 2
12 3 3 2 2 2
13 2 3 2 2 2
Table 3
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Table 3 is inconsistent g&ﬁcg/tﬁe following pairs of

///h\ le 3
(iy b, ¢, d; — ézi (rule 3)

b2 c, dl (rule 4)
(ii) b2 c, d2 —7‘6' : (rule 2)
b2 c, d2 — e (rule 5)

are inconsistent.
Removing attribute b from Table 2 we get the next table

U a c d e f
1 3 2 2 2 4
2 3 2 2 2 4
\ S S 32 __.2___.4
4 2 2 1 1 4
B = S g___.2.___2___1__ __ 4
6 3 2 3 2 3
7 3 2 3 2 3
o - 4. 2.3 __2 __3
- 9 a4 3 3 2 2
T 10 4 3 3 2 2
11 4 3 2 2 2
12 4 3 2 2 2
13 4 3 2 2 2
Table 4 ‘ /
. cé/f:Aﬁufipféﬁg,/“
It is éasiy seen that all decis\ ru?ﬁgﬁfé'lé/;¥e con-

. Sistent, henté the attribute b is superfluous.

» Without attribute ¢ Table 2 yields Table 5, as shown
below. '
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2 4

1

R SR SIS SR SRS S

3

1 4

2

2

- SR Iy U S, S, |

2 3

3

4

B SR SENPIVRe: JUPP: S -

10
11

12
i3

Table 5

tent

inconsis

in which the following pair of decision rules is

a, b3 d3 — e, f3 (rule 8)

a, b3 d3 — e, f2 (rule 9)

Finally removing attribute d we get Table 6

el 3o2 22 4

3

2 1 4

D22 2 1 __ 4

B 32 2 L3

4

10
11

12

13

Table 6
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h-whiCh the following pairs of decision rules

(i) a3 b3 C2 —> 82 f4 (rUle 1)

a, by c, — e, f3 (rule 7)
(ii) a, b2 c, — e, f4 (rule 3)

a, b, ¢, — €, f3 (rule 6)

__are inconsistent

Thus without the attribute a, ¢ or d Table 2 becomes
inconsistent nd without the attribute b the table remains
consistent. sequently the set {a,b,c} is D-core of C and
at the same time the only D-reduct of C. Hence the set of
condition attributes C is D—dependen; and the attribute b can
be dropped from the table.

Thus after removing superfluous attribute b and duplica-
te decision rules, which occurred after removing the attri-
bute b, and new numeration of decision rules, Table 2 can be
simplified as shown in Table 7 below. We recall that, if
there aré two or more iden%ical decision rules in a table we
should drop all but one, arbitrary representative.

U a c d e f

1 3 2 2 2 4
B SR 321 2 __ 4 _
3 2 2 1 1 4
B S 22 ___2____1____ 4 _
5 3 2 3 2 3
- S 4___2___3___.2 __.3__
7 4 3 3 2 2

8 4 3. 2 2 2

Table 7

Let us note that in this decision table there are four
kinds of possible decisions, which are specified by the

175




following pairs of values of decision attributes e and f :

(ez, f4), (el, f4), (e2, f3) and (ez, f2), denoted in what -
follows by I, II, III and IV, respectively. For easy of nota-

tion we will replace values of decision attributes in the

table by numbers of corresponding decision classes as shown

in Table 8.

U a c d e f
1l 3 2 2 I
S S JUY S S
3 2 2 1 II
B S 2 2 2 .
5 3 2 3 I11
T, 4 2 __ 3 .
7 4 3 3 Iv
8 4 3 2

Table 8

Let us now turn our attention to the problem of removing
superfluous values of condition attributes from the table.

For this purpose we have to compute which attribute
values are dispensable or indispensable with respect to each
decision class and find out core values and reduct values for
each decision rule. That means we are looking only for those

attribute values which are necessary distinguish all deci-

sion classes (see section 7.9), i.¢
of the table.

As an example let us compute core values and and reduct

eserving consistency

values * for the first decision rule a, c2 d2 — e, f4 in
Table 8.

Values a, and d2 are indispensable in the rule, since
the following pairs of rules are inconsistent

(1) c d2 — e

2 f4 (rule 1)

2

c d2 — e

5 f4 (rule 4)

1
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’ 1
a; ¢, = e, f, (rule 1)

a3 c2 —_ e2 f3 (rule 5),

‘whereas the attribute value c, is dispensable, since the de-
;JiSiO“ rule as d2 — e2 f4 is consistent. Thus a3 and d2 are
core values of the decision rule a3 c2 d2 N ez f4 .

For comparison let us also compute the core values of
the decision rule using Proposition 7.1.

To this end we have to check whether the following

inclusions |c2 d2| € |e2 f4|,A]a3 d2| € |e2 f4| and |a3 c2| =

le, £,| are valid or not. Because we have’|c2 d,| = {1, 4},
|a3 d2| = {1}, |a3 c2| = {1, 2, 5} and |e2 f4| = {1, 2} ,
hence only the decision rule a, d2 — e, f4 is true, and con-

sequently the core values of the first decision rule are a,

and d2.
however we leave this to the interested reader.

"It is interesting to compare these both methods,

Computing core values for the remaining decision rules

we get the results as shown in Table 9.

U a c d e f
1 3 - 2 I
S SRR SR ———
3 2 - - II
2T T
5 - - 3 I11
e Y S
7 - 3 - IV

8 - - -

Table 9

It can be easily seen that in the decision classes T and
II sets of core values of each decision rule are also
reducts, because rules

a3 d2 - e2 f4



2 1 "4
are true. For the decision cla I and IV however core
values do not form value reducts. r example decision rules
d3 — e, f3 (rule 5)

d, — e f2 (rule 7)

3 2
%}gﬁziecision rules

c, — €, f3 (rule 6)

are inconsistent and so arg’

c, — €

2 1 f4 (rule 4)

hence, acéording to the definition, they do not form reducts.

All possible value reducts for in Table 8 are listed in

Table 10 below:

U a c d e f
1 3 X 2 I
23 x___ 1. ________
3 2 X X II
A2 X X ___
5 X 2 3 ITI
57 3 X 3

6 4 2 X
8 X 23
7 X 3 X IV

8 4 3 X

8/ X 3 2

g’ 4 X 2

Table 10

In order to find minimal decision algorithm we have to

remove superfluous decision rules from each decision class.
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(see Chapter 7.10). It is easy to see that there are not

superfluous decision rules in classes I and II. For decision

class. III we have two minimal solutions

c2 d

“and

and for class IV we have one minimal solution

€3

hence we
algorithms

N

a, —

and

—

62 f2.

have the following two minimal decision

l

o
L)
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The combined form of these algorithms are

a, d2 v a3(jf£:? e, f4
f4

a, — e
€

and

4. Another Approach

nother

which
but on
the quality of the cement produced, described by the follow-
ing attributes:

It seems to be interesting to discuss briefk
example of cement kiln control (cf. Sandness (198 )Bi
actions of a stoker are based not on the kiln s

a - Granularity
b - Viscosity

¢ - Color

d - pH level

which are assumed to be the condition attributes.

Again there are two decision (actions) attributes

e - Rotation Speed
f - Temperature
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'Below the corresponding decision table is given.

N

1 2 1 1 1l 1 3
2 2 1 1 0 1 3
3 2 | 2 i 1 1 3
4 1 1 1 0 0 3
5 1 1 1 1 0 3
6 2 1 1 2 1 2
7 2 2 1 2 1 2
8 3 2 1 2 1 2
9 3 2 2 2 1l 1
10 3 3 2 2 1 1
11 3 3 2 ¥ 1 1
12 3 2 2 1 1l 1
13 3 0 2 1 1 1
Table 11

We skip the discussion of attribute values meaning, but
one general remark concerning the table seems to be interest-
ing. Note that now the table is not obtained as a result of
the stoker’s actions observation, and do not represent the
stoker knowledge, but it contgai
stoker should follow in o
quality. This example is m ds an illustration that the
meaning of a decision table may be arbitrary, and is not con-
nected with formal properties of the table.

the prescription which the

Proceeding as in the previous example we find out that
the attribute b is again dispensable with respect to the de-
cision attributes, which means that the viscosity is super-
fluous condition, which can be dropped without affecting the
decision procedure. Thus Table 11 after renumeration of deci-
sion rules can be simplified as shown below
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1 2 1 0
2 2 11 I
37TTTITTTTYTTTTo T
4 1 1 1 11
BT TT3TTTTITTTTTTTTTTTT
6 3 1 2 III
3 3 3 3 v
8 3 2 1

Table 12

The core values of attributes are computed next as shown
in Table 13

1 2 -
2 2 - I
37Ty ATttt
4 1 - - II
5T CoTTTTITTTTTTTTT T
6 _ 1 _ I1I
-2 - v
8 - - -

Table 13

Note that in,&ﬁé/row 8 the core value is the empty set.
For class I and II the set of core values are at the same
time the reducts, however this is not the case for classes
III and 1IV.

Computing now reduct values for each decision class we
obtain the following results.
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1 2 X 0
2 2 x 1 I
37T T Tk T T xT T
& 1 x  x I
5T T} TTTTTTTTTTTT
57 X 1 2
6 3 1 x III
6’ X 1 2
T T T T T Ty T TTTTTTTT
g8 3 2 x
8’ 3 x 1 v
8/ x 2 1

Table 14

Removing now redundant decision rules from the table we
obtain the following two minimal decision tables

U a c d e f
1 2 X 0
I
2 2 X 1
371 x x T IT
4 T Tx T T1TTTTTTTTTTIITDT
5 x 2 x v~
Table 15
and
U a c d e f
1 2 X 0
2 2 X 1 I
R R v &
4 2 T TxTTT2TTTTTTTTTT
5 3 1 x III
6 x 2 x - v
Table 16
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From this tables we have the following minimal decision

algorithms in normal forms

and

or in the

and

4,

do — e1 f3

d1 —_ e1 f3

— e, f

more compact form

a,

(d0 v dl) — e,

I3
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sistent, since some observed or measured data ca

“condition attributes. Basically we are interg

s interesting to compare solutions obtained in sections 3
Aithough they‘\are based on completely different

q 4.
'proaches the results are almost the same.

N

The Case of Inconsistent Data

- In generdl, when a decision table istfe 1t of observa-

tions or measu entskit may happen tha e table is incon-

be con-

fiicting. This leads to partial dependency of

sions which can be dérived from nonconflicting—{€onsistent)

data, but sometime e inconsistent part of data could
also be of interest.

To illustrate this idea let us consider an example of
decision table, taken from Grzymala-Busse (1989a). Table 17
contains some observed symptoms of patients, denoted by num-
bers 1,2, ...,9, suffering from certain disease. The question
arises whether the; re some characteristic symptoms for in-
fluenza. In orderﬁto nswer this question we have to compute
whether‘there,gsaé pendency between decision and condition

attributes in the-table.

U a b c d e

1 normal absent absent absent absent

2 normal absent present present absent

3 subfeb. absent present present present
4 subfeb. present absent absent absent

5 subfeb. present  absent absent present
6 high absent absent absent absent

7 high present absent absent absent

8 high present absent absent present
9 high present present present present

Table 17
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where ,

Q 0 b o
1o

- Temperature
Dry-cough
Headache
Muscle pain

are condition attributes, and

e - Influenza

is decision attribute.

It is easily seen that decision rules 4 and 5 are incon-

sistent.

Rule 4:
If

then

Rule 5:

If

then

(Temperature, subfeb.) and
(Dry-cough, absent) and
(Headache, absent) and
(Muscle pain, absent)

(Influenza, present)

(Temperature, subfeb.) and
(Dry-cough, absent) and
(Headache, absent) and
(Muscle pain, absent)

(Influenza, absent)

Similarly decision rules 7 and 8 are inconsistent.
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Sy

. If
(Temperature, high) and
(Dry-cough, present) and
(Headache, absent) and
(Muscle pain, absent)

then
(Influenza, absent)

Rule 8:

If
(Temperature, high) and
(Dry-cough, present) and
(Headache, absent) and
(Muscle pain, absent)
then
(Influenza, present)

The remaining five decision rules are true, so the de-
pendency between decision and condition attribute is 5/9.
This means that the condition attributes are not sufficient
to decide whether a patient has influenza or not. Of course
patients displaying symptoms occurring in the consistent
(true) decision rules can be classified as having influenza.
Thus we can decompose the decision table (algorithm) into two
decision tables (algorithms), consistent and totally
inconsistent. The inconsistent part consists of rules 4, 5, 7
and 8, and the rest of decision rules constitute the
consistent part of the algorithm, as shown below:

Rule 1:
If
(Temperature, normal) and
(Dry-cough, absent) and
(Headache, absent) and
(Muscle pain, absent)
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e

Rule

Rule

Rule

Rule

then

2:

If

then

3:

I1f

then

6:

If

then

9:

If

then

(Influenza, absent)

(Temperature, normal) and
(Dry-cough, absent) and
(Headache, present) and
(Muscle pain, present)

(Influenza, absent)

(Temperature, subfeb.) and
(Dry-cough, absent) and
(Headache, present) and
(Muscle pain, present)

(Influenza, present)

(Temperature, high) and
(Dry-cough, absent) and
(Headache, absent) and
(Muscle pain, absent)

(Influenza, absent)

(Temperature, high) and
(Dry-cough, present) and
(Headache, present) and
(Muscle pain, present)

(Influenza, present)
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Now we can reduce superfluous condition attribqtes. To

this end first we have to compute core of condition attri-

‘butés.
rather obscure when computing core and reducts, for the sake
of simplicity we shall use tabular notation for decision

Because the extended notation for decision rules is

algorithm and values of attributes will be shortened by their
" first letters. Thus we shall present the table in abbreviated

fornm
5 U a b c d e
wamwr 1 n a a a a
= 2 n a P P a
p 3.s a p P P
i" 4_ ___s____p___,a___a _.a
. 5 ___S___P___2a__3a __p
6 h a a ! a a
72___h_ __ p____a __a__.az2
8 __.h___p_ ___a __a __p
9 h P P P p
: Table 18

The inconsistent decision rules are underlined in the
table.

N hat attributes ¢ and d are equivalent, so we can
i drop one” of them, say d, and as a result we get Table 19.

U a b C

0w

BOW N
n n o9 9
o T T N

;g 6 h a a
2 1___h___p____ a____a
o 8__..h___p____ a___.p
o 9 h p P

Table 19
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Now we are about, to compute the core of condition attri-

butes. Removing the attribute a we obtain the table
\

U b c e
1 a a a
2 a o a
3 a p P
4___.bB___.a___2
3__._.bB___.a___.p
6 a a a
I.._b___.a___2
8 __.B_.__a___.rp
9 p P P
Table 20

in which rules 2 and 3 are inconsistent, and the positive
region (the set of consistent decision rules) of the
algorithm will be changed, thus the attribute a is indispen-
sable and belongs to the core.

Removing attribute b we obtain Table 21

U a c e
1 n a a
2 n P a
3 s p p
4___.s__._.a___a
3.___S.___,a___p
6 h a a
I___h __a___.a
8 __b___a___p
9 h p p
Table 21

in which rules 6 and 8 are inconsistent, hence rule 6 is
false and the positive region of the algorithm changes, i.e.
the attribute b is indispensable, and belongs to the core.
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Removing attributes c and we will arrive at the Tablézz

U a b e
1 n a
2 n a
3 s a P
4____S.___P___ 3
5 _..S_.__.B____P
6 h a a
7__..b___.p___.2
8___.h____PB___P

O
=3
o)
e

Table 22
Vi

In this table rules 7 and 9 are inconsistent, so after
removing attribute ¢ rule 9 will be inconsistent (false), and
the positive region of the algorithm changes, hence the
attribute is indispensable and belongs to the core. In other
words the set of condition attributes a, b and ¢ is indepen-
dent and it forms a reduct of condition attributes. In order
to simplify further the decision table and find minimal
solutions we have to eliminate superfluous values of
attributes in all consistent decision rules in the decision
table. First we have to compute core values of condition
attributes 'in all consistent decision rules, and the results
are shown in Table 23.




<
(]
o
0
o

1 A - - a
2 n - - a
3 s - - P
4___.s___PpP___a.__z2
2_...S___.P___.a____p
6 - a - a
7___h___p.___a__.a
8__..b___.pP___.a____P
9 - - p p
Table 23

We recall that core values of condition attributes are
those values of condition attributes, which do not preserve
consistency (truth) of consistent decision rules, when remo-
ved from the rule. Now we are able to compute all reduct of
consistent decision rules, and the result is shown below.

U a b c d
1 n a X a
1/ n X a a
177 x a a a
2 s X X a - /”"’—"_—“‘\\\\\\
to.s__p__a -3 7323w I I
5. 8._.B.__2a__P | ='sy o4
6 h a X a \\\\\\\\\‘__g—:i///////
6’ X a a a
7 h p' a . a
8 h p a p
9 h X p p
9’ X P p P
Table 24

We see from this table that rule 1 has three reducts,
rule 2 one reduct and remaining inconsistent rules have two
reducts each. It is easily seen all reducts of rule 1 are
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 superfluous rules and consequently we have 2 x 2x2=28
 :minima1 equivalent decision algorithms. One exemplary minimal
" deterministic decision algorithm is shown in what follows:

- or in an extended form

b Rule 2:
If
* (Temperature, normal) and
. then
- ' (Influenza, absent)
ff" Rule 6:

(Temperature, high) and
(Dry-cough, absent) and

(Influenza, absent)

(Temperature, subfeb.) and
(Dry-cough, absent) and

(Influenza, present)
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Ruie 9: : -
If
(Temperature, high) and
(Muscle pain, present)
then
(Influenza, present)

The algorithm can be also presented in the following form

Rule 1:
If
Temperature, normal) or
emperature, high)--and
(Dry-cough, absent.)
then
(Influenza, absent)
Rule 2:
If
(Temperature, subfeb.) and
(Dry-cough, absent))or
(Temperature, high) and
(Muscle pain, presentt)
then
'~ (Influenza, present)

Summary \f Laie . S ) .
The basic idea ofxthi$76§amp1es épnsi%@%i)n Epat we retrieve
M_ .

knowledge of an agent by observé%é&n-fyy ﬁ&s behavior, and

this recorded behavior is used as—a—-stasting—peint to-the-
generatgbn £Y an algorithm,.——which—ic—able to simulate-h%s!¢5
actions, 1w {40 ){‘A(‘W‘e -

' Let us also note that in general, many minimal solutions
are possible, the simplification of decision tables does not

yield unique results, d the decision algorithm can be-pgpti-

mized according to p#éAh umed criteria. For exampl our
case the minimal numb of decision rules can be us as a

criterion for optimization.
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.. Exercise

1. Ccompute all core values.

and value

 decision rules in Table 7 and Table 12.

reducts

for all

2. Check whether attributes e and f are independent or not in

' poth Table 7 and Table 12.

3, Compute minimal decision algorithms (i.e.dependencies, re-

ducts, cores and also value reducts and core reducts) for the

following decision tables:

a) Students admission

U a b c d e

1 3.8-3.99 Average N? Poor Reject
2 4.0 Average Yes Poor Accept
3 3.8-3.99 Good No Extensive Accept
4 Below 3.8 Good No Extensive Reject
5 4.0 Poor Yes Average Accept
6 Below 3.8 Average No Average Reject
7 4.0 Averége Yes Poor Reject
8 4.0 Poor Yes Average Reject

Table 25

The meaning of the attributes is as follows:

-~ High-School GPA

Alumni-relatives

Honor-awards

® Q N oo
1

Decision

Extracurricular-activities

Attributes a, b, c, d and e are condition’attributes,
whereas e is decision attribute. The example is taken from
Grzymala-Busse (1989b) and the reader is advised to read the
cited paper. (Coping of this example is by permission of the
Association of Computing Machinery).
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b) Infants, attitude to toys.

U a b C d e . A\ f

1 Blue Big Hard Indefinite Plastic Negative
2 Red Medium Moderate Smooth Wood Neutral

3 Yellow Small Soft Furry Plush Positive
4 Blue Medium Moderate Fuzzy Plastic Negative
5 Yellow Small Soft Indefinite Plastic Neutral

6 Green Big Hard Smooth Wood Positive
7 Yellow Small Hard Indefinite Metal Positive
8 Yellow Small Soft Indefinite Plastic Positive
9 Green Big Hard Smooth Wood Neutral

10 Green Medium Moderate Smooth Plastic Neutral

Table 26

The table taken from Grzymala-Busse (1989c) describes

observed infant attitude to toys, characterized by the fol-

lowing (condition) attributes:
a - Color
b -~ Size
¢ - Feel
d - Cuddliness
e - Material

and decision attribute

f - Attitude

c) Car performance (Grzymala-Busse (1989c)

U a b c d
1 poor low short < 30
2 poor low short < 30
3 good low medium < 30
4 good medium short 30..50
5 poor low short < 30
6 poor high long > 50
Table 27
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o

here
a - Terrain familiarity
‘b’— Gasoline level

c - Distance

are condition attributes and
e - Speed m.p.h.]

is a decision attribute.

g) Table 28 contains the characterisation of six stores
in terms of six factors E, @, S, R, L and P (cf. Kick et al.).

Store E o) S R L P
1 high good yes yes no 500
2 high good no s Yyes no -100
3 medium good yes yes yes 200
4 low avg vyes yes yes 70
5 low good yes yes yes 100
6 high avg no no yes -20
Table 28

The meaning of the attributes is the following:

- empowerment of sales personel

- perceived quality of merchandise

segmented customer-base (specific market domain)
~ good refund policy

- high trafic location

T WO W
I

- store profit or loss (in Millions of US dollars)

Detremine what makes a given store successful as measu-
red by the net profit generated by the store (attribute P).

4. Compute all minimal decision algorithms for the decision
table considered in section 5 (Table 19).

5. Compute uncertainty factors for all inconsistent decision
rules in Table 19.
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10. DISSIMILARITY ANALYSIS

1. Introduction

In Chapters 8, 9 and 10 we confined our discussion of
examples of Knowledge Representation Systems in which condi-
tion and decision attributes were distinguished, i.e. to de-
cision tables.

In this chapter we are going to discuss Knowledge Repre-
sentation Systems in which neither condition nor decision
attributes are distinguished. Therefore we are basically not
interested in dependencies among attributes, but in descrip-
tion of some objects in terms of available attributes, in
order to find essential differences between objects of inte-
rest. The problem of differentiation of various options is
often of crucial importance in decision making.

The formal tools developed so far in this book can be
also well used to this purpose, and many problems can be re-
duced to this schema. Some of them, given in the next
sections, will be used to depict the idea.

2. The Middel East Situation

In this section we shall investigate a-political situa-
tion in the Middle East. The example is taken from Casti
(1988), but our approach is dlfferent,égvzhat of’ggstl and is
based on the rough set philosophy. It seeﬁ,t at the rough set
approach enables us to investigate greater ve;iz. of problems
and yields more straightforward result in’ comparison to
method used by Casti.

Let us consider six parties

- Israel

- Egypt

- Palestinians
Jordan

- Syria

1
2
5
4 -
5
6

- Saudi Arabia
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The relations between those parties are determined by the

_following issues
_ N

a - autonomous Palestinian state on the West Bank and

Gaza

- return of the West Band and Gaza to Arab rule

- Israeli military outpost along the Jordan River

- Israeli retains East Jerusalem

- free access to all religious centers

return of Sinai to Egypt

- dismantle Israeli Sinai settlements

- return of Golan Height to Syria

- Israeli military outposts on the Golan Heights

W e Qom0 Q0O b
|

- Arab countries grant citizenship to Palestinians who
choose to remain within their borders

- )

The table below represgﬁfsthe way the participants of
the Middle East region interact with the above issues;
0 means, that the participant is against and 1 - neutral or

, favorable toward the issue.

1 0 1 1 1 1 1 0] o 1 1

2 1 1 1 0 1 1 1 1 1 0

3 1 1 0 0 1 i 1 1 1 1

4 1l 1 0 0 1 1 1 1 1 0]

5 1 1 0 0 1 1 1 1 0 0

6 1 1 1 0 1 1 1 1 1 1
Table 1

Participants in the approach can be treated as objects
and issues as attributes, however there are nox condition and
decision attributes distinguished in the table. Formally it
is convenient to consider all the attributes both as condi-
tion and decision attributes (why?), and carry out all compu-
tation under this assumption.
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Our task is to find essential differences between parti-
cipant to the debate, so that we can clearly distinguish
their attitudes to the issues being discussed.

Before entering more specific considerations 1let us
remark that attributes a, g and h are equivalent, hence all
of them are not necessary in the table and we can retain only
one, say a. Attributes b,e and f do not discern participants
to the debate, since they have the same values for all nego-
tiating partners, and therefore they are irrelevant in this
specific situation, so they can be dropped from the table
too. Thus, for the sake of simplicity instead of Table 1 as a
departure point of our analysis we can assume the following
table (of course we could start our considerations assuming
Table 1):

1 0 1 1 1 1

2 1 1 0 1 0

3 1 0 0] 1 1

4 1 0 0 1 0

5 1 0 0 0 0

6 1 1 0 1 1
Table 2

Because all rows in the table are distinct, that means
- “that—the table is consistent, which means that all parties
“~“engaged in the dispute have different views and all partici-
pants can be recognized (discern) by their attitude to the
issues discussed.
Let us now compute core issues (attributes).

As we already mentioned we may assume that all attributes
are at the same time condition and decision attributes, hence
with each row in the table we will associate decision rules
(implications) with the same predecessor and successor. For
examples with row 1 in Table 2 we associate decision rule a,

<, d1 iI j1 -> a; ¢, dl il jl' As we already have mentioned
all decision rules in the table are consistent, i.e. all de-
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sion rules have different predecessors, and consequently

'he decision table is consistent.
It is a simple task to check that a and d are dispen-

.Sabie, pecause dropping attribute a or d we get still con-

sistent tables as shown below.

1 1 1 1 1
2 1 0 1 o
3 o 0 1 1
4 0 0 1 o0
5 0O 0 0 O
6 1 0 1 1
Table 3 s
f; U a c i J
1 0o 1 1 1
- 2 1 1 1 o0
. 3 1 o0 1 1
- 4 1 0 1 o
. 5 1 0 0 0
i 6 1 1 1 1
Table 4

On the contrary attributes ¢, i and j are indispensable,

since without these attributes some decision rules in the
—— - table are inconsistent (false), e.g. rules

- a, dy i, jy — a, ¢, d, i, j, (rule 2)

i, jo— a, ¢, d

o 90 11 Jo (rule 4)

are inconsistent, also rules
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c. d

a d. jo — a1 o 9 il

1 S0 99 jo (rule 4)

a, ¢, do Jo — a; ¢, d0 i,y Jg (rule 5)

are also inconsistent, and so are rules

— a, c, d, i jo (rule 2)

1

cl do i, —a, c, d

1 1 €1 90 1, Jy (rule 6).

In other words if we drop ¢, i or j in Table 2 we obtain
tables with duplicate rows, as shown below.

1 1 1 1l

¢___.1__90 1 _0

3 1 o 1 1

4___1__9 1.0

5 1 0 0 0

e 1 _o0o_ 1 1
Table 5

1 0 1 1 1
2 1 1 0 0
3 1l 0 0] 1
4___1._0_0__0
5 ___1__0._0__0
6 1 1 0 1
Table 6
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1 0 1l 1 1

2___.i__.1 _.0°0_1

3 1 o o_1_

4 1 0 0 1 __

5 1 0 0 0

6___.1__.1__0_1
Table 7

Jdentical rows are underlined in these tables. Thus
‘Tables 5, 6 and 7 are inconsistent and consequently the set
cy i, j} 1is the core and there are two reducts in the table:
Ia,’c, i, j} and {d, ¢, i, j}. Hence either of the reducts
Hcaﬁ be assumed as a basis for negotiations, for._they provide
 two equivalent sets of issues for\dlscu551on. Hence instead
of Table 2 we can consider Table/z/of Table_2’g1VEn below:

' Computing now core values of attrlbutes’?or each table
we obtain the following tables.

. U a c 1 j

1 o] - - -

2 - 1 - 0

3 - o - 1

4 - 0 1 0

~~~~ 5 - - 0 -
6 1 1 - 1

1 - 1 - -
2 1 - - 0
3 0 - - 1
4 o - 1 o0
5 - - 0 -
6 1 0 - 1
Table 9
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.What we have achieved so far is the following. Not all
issues are of eq alizﬁportance in the debate. Some issues can
be eliminated . @gﬁm ‘the negotiations without affecting the
position of theupartles involved in the negotiation process,
some can not be eliminated without changing balance of
opinion, (core issues ¢, i and j) and some issues can be
mutually replaced, without changing essentially views of the
negotiating parties (issues a and d).

It is also easy to see that the core values given in
Table 8 and Table 9 are also the reduct values. Examining the
tables we get minimal characteristic of each participant of
the discussion with respect to the discussed issues.

For example for Table 8 the minimal characteristics of

each participants are:

Israel
Against:
~Autonomous Palestinian state

-Israeli military outposts along the Jordan River
Against:
-Arab countries grant citizenship to Palestinian

Palestinians
Against:
-Israeli military outposts along the Jordan
River
Favorable:
-Toward Arab countries grant citizenship
to Palestinians

Jordan

Against:

-Israeli military outposts along the Jordan

River

-Arab countries grant citizenship to Palestinians
Favorable:

-Israeli military outposts on the Golan Highs

206



Syria
Adainst:

Highs

Saudi Arabia

Favorable:

The above conditions

Israel -
-
;;I;stinians -
" Jordan -
Syria -

Saudi Arabia

or in the form

-Israeli military outposts on the Golan

-Autonomous Palestinians state
-Israeli military outposts along the Jordan River
-Arab countries grant citizenship to Palestinians

can be presented in symbolic form

a, — Israel

i -— Syria

€y J1 ™ Palestinians

jo — Jordan

a, ¢ jl —> Saudi Arabia
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1

Remark -

Nfgéth t the above description, formally is not-a deci-
ithm, since the expressions like Israel, Eé%bt/gtc.

do not belong to our formal language. Neverthe;gssf/ for

simplicity we will treat this as a decision algorithm. [

sion a

Similar characteristic can be obtained for Table 9.

The essence of the example illustrates several vital
points about the rough set analysis of this kind of situa-
tions. What we have done consists‘%g, as we already mentio-
ned, first of elimination of superfluous issues, which can be
skip/% from the negotiations, without disturbing partici-
paqﬁs' bsitions (elimination of dispensable attributes), and
second, elimination of unessential opinions within the remai-
ning issues (elimination of superfluous values of
attributes).

Using the proposed approach we can ap$§wer many more
questions. For example we might be interqé%d' knowing how
far apart are the views of participants. To this end we can
define a distance graph as follows: with each object in the
table we associate a node labelled by this object and two
nodes x and y are connected by a vertex 1labelled a if,
removing the attribute a places objects x and y in the same
equivalence class (i.e. they have the same description in
terms of remaining attributes values).

The distance graph for Table 8 has the form

Fig.1

and for Table 9 we have the following graph
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_‘:.Distance between two objects x and y is the length of
thé shortest path between x and y in the distance graph, i.e.
'zﬁ:thmallést number of vertices which connect them. For
?eiamplé distance between Israel (1) and Syria (5) is 3, be-

tween Israel (1) and Saudi Arabia (6)- is 1, between Saudi
| A;ébia (6) and Jordan (4) is 2 etc. Thus distance between
;  participants in this example has quite clear intuitive expla-

nation: it is the number of issues “that separates them in
their views. Removing of specific issue would égg££;§/the
" distance between some participants by 1 bringiné‘théif views
i:éiéser. Thus the distance graph gives interesting insight in

té‘the structure of the analyzed situation and enable us to

‘better understand the nature of the conflict analyzed.

3. Beauty Contest

In this section we shall analyze again Table 2 with the
~difference that no will address rather different problems

Suppose obje Table 2 are girls Jane, Marry, Ann,
Barbara, Jackie an orothy taking part in a beauty contest,
and there are five referees a, ¢, d, i and j. The table
~ entries are judgment of referees, meaning 1 for beautiful and
0 for average. (Of course arbitrary number of grades could be
~assumed by referees, but for simplicity we will stick to two
values as in the table already analyzed). We assume now that
the values of attributes are now ordered by the strict order-
ing relation, (0 < 1) what in the previous example was not
_ hecessary, and any two not ordered values of attributes could
be assumed. Thus if two girls x and y scored 1 and 0 res-
- pectively by the referee a, that means that according to the
" -referee a the girl x is more beautiﬁy&x,than the girl y.

N
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Theré are many theoretical approaches to analyze this
kind of voting schemes, (cf.Nurmi 1987,r however we will not

i t

. o .
discuss them here, but we would like to xrise only one point,

which seems to be of basic importance when speaking about
voting - namely the independence of judgments. We claim that
the independence of judgments is the basic assumption which
should be fulfilled before applying any specific voting
scheme.

In our setting the problem of independence of Jjudgments
reduces t6 the investigation of independence of attributes.

To check whether the judgment in the beauty contest are
independent or not we have to investigate whether the set of
attributes {a, ¢, d, i, j} is independent or not. As we
showed in the previous section this set is\\/ta/ependent and
there are two reducts in this set

{al CI 'i’ j} and {CI dl J.‘l j}

i.e. two subsets of independent referees and consequently,
according to the property that if B € A is a reduct of a4,
then B » 4 - B, (cf. Proposition 4.2) - we have exactly two
dependencies

{a, ¢, i, j} s dand {d, ¢, i, j} =» a.

Employing now the concept of the disﬁance graph we can
see differences between various judgments, however we are
unable to say which girl is the most beautiful one. So far we
can say only by inspecting the distance graph (Fig. 1,
Fig. 2) that, according to referees opinions, Marry and Ann
are equally beautiful. What more the distance graph yields -~
information on how the differences are related to refereé;;

///~§§Eigfgfi~anr example the difference between Jackie and//
Perethy is due to the judgment of referee i. Without his
‘opinion they would be indistinguishable.

Vi
e

In this way we include some kind of semantic information
about the differences between girls, which can give deeper
insight in the mechanisms of judgments. ’
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Let us also mention that the essence of opinions deli-

vered by the group of referees {a, C, i, j} can be expressed

Ygthe formulas given below

Jane - a,

Mary - ¢, Jo
Ann = S J1
Barbara - < il j0
Jackie - io
Dorothy -a, ¢ j1

which can be also presented as decision algorithm
a, — Jane

c j0 — Mary

c j1 — Ann

1, Jg Barbara

i -—— Jackie

a, c — Dorothy

1 jl

Of course similar set of decision rules can be given
also for the set {c, d, i, j}.

Observe that these formulas (or decisjon rules) uniquely
characterize each girl in terms of referges)j%dgments and can
be used to analyze differences between fﬁé’éﬁlls and applied
in final evaluation. Note also that this kind of characteris-
tic can be given only for independent set of referees.

The presented method is obviously of a general nature

and can be applied to various problems, like for example
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y marketing analysis, performance evaluation, etc., and lies in

fact in the scope of group decision making area.

4. Pattern Recognition

Consider example 5.4 of digits display unit in a calcu-
lator, but now the table will be assumed to represent a cha-
racterization of "hand written " digits, consisting of hori-
zontal and vertical strokes. Certainly real life character
recognition algorithm  must admit arbitrary written
characters, not only combinations of horizontal and verticals
strokes, as we propose here, however for the sake of
illustration the assumed representation seems to be suffi-
cient and simplifies the discussion. Table 10 describes each
digit in terms of elements a, b, ¢, d, e, f and g as shown‘in

Example 5.4.

U a b c d e f g
0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 0
2 1 1 0 1 1 0 1
3 1 1 1 1 0 0 1
4 0 1 1 0 0 1 1
5 1 0 1 1 0 1 1
6 1 0 1 1 1 1 1
7 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
Table 10

Or task is to find minimal description of each digit and
the corresponding decision algorithm.

As.in the previous examples first we have to compute the
co;§2£ﬁﬁ/next find all reducts of attributes. Note first that
the table is consistent, i.e. each digit is uniquely charac-
terized in terms of the attributes. It is easy to check that
the core is the set {a, b, e, f, g }, which is also the only

<eme reduct. Hence instead of the whole set of attributes
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{é,'b; c, d, e, £, g} it is sufficient to consider only the
attributes {a, b, e, f, g } as a basis for the decision algo-
rithm, which means that there is the ‘following dependency
petween the attributes

{a, br €, fl g} 2 {C' d}
j.e. attributes c and d are dependent upon the reduct and

they are not necessary to digits recognition. As a result
'.Ta.ble 10 can be replaced by Table 11.

U a b e f g
0 1 1 1 1 0
1 0 1 0 0 0
2 1 1 1 0 17
3 1 1 0 0 1
4 0 1 ] 1 1
5 1 0 0 1 1
6 1 0 1 1 1
7 1 1 0' 0 0
8 1 1 1 1 1
9 1 1 0 1 1

Table 11

Now we have to reduce each decision rule in the table
separately, by computing first the core of each rule. Let us
once more compute, for the sake of illustration, all core
i values for each decision rule. We remind the reader that
: dropping the core value makes the consistent rule incon-
sistent. Thus removing the attribute a makes rules 1, 7 and

4, 9 inconsistent, i.e. we unable to discern digits 1 and 7,
and 4 and 9 without the attribute a, as shown below (incon-
sistent rules are underlined). Hence a, is the core value in

rules 1 and 4, whereas a, is the core value in rules 7 and 9.

1
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a
o
’ o
-
Q

0 1 1 1 0
EOUU U DU DU
é....i....i....o ;
3 1 0 0 1
4___.1___o __1 __1
5 0 0 1 1
6 0 1 1 1
7000
é....i....i....i. :
o___-.__.o°o __.__1
Table 12

Removing attribute b we get Table 13

(w]
]
o
~
Q

0 1 1 1 0
1 0 0 0 0
2 1 1 0 1
3 1 0 0 1
4 0 0 1 1
2. ___.°o __.1.__.1
6 1 1 1 1
'}""i'”.é"“f)'” :
8 1 1 1 1
o lalllolllhallh
Table 13

in which rules (6, 8) and Y (5, 9) are indiscernible, thus
values b0 and bl are core values in these rules respectively.
Similarly removing the attribute e we get the table
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c
»
o
[
Q

0 1 1 1 0
1 0 1 0 0
2 1 1 0 1
5....i....i:..:6.:::i
;....6....i .. i. :
51,0 __1___.1
6___1___ 0 __1___1
7 1 1 0 0
g _a__r_ 1 _1
ERNE N S S
Table 14

we get three pairs of indiscernible/rule, (2, 3), (5, 6) and
(8,9), which yields core values for corresponding rules
(ell eo)! (eol el) and (ell eo)'

Without the attribute f we get the table

U a b e g
) 1 1 1 0
1 0 1 0 0
2 1 1 1 1
3. alllalllelll
4 0 1 ) 1
5 1 0 0 1
i 6 1 0 1 1
;f 7 1° 1 0 0
G 8 1 1 1 1
: I S S M
- Table 15

Yields indiscernible pairs (2, 8) and (3, 9) and core values
for each pair are (fo, fl)‘
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Finaliy the Yteast attribute g removed gives indiscernis
bility shown in Table 16.

U a b e f

0 1 1 1 l
i....b....i....é... .
2 1 1 1 0
3. .o .0
4 0 1 0 1
5 1l 0 0 1
6 1 0 1 1
... _ . __9.__0
8 1 1 1 1l
é....i....i....é....i
Table 16

where pairs of rules (0, 8) and (3, 7) are indiscernible, and
the values (go,gl) and (gl, go) are cores of corresponding
decision rules.

Core values for all decision rules are listed in Table 17.

U a b e £ g
0 - - - - 0 .
1 0 - - - -
2 - - 1 0 -
3 - - 0 0 1
4 0 - - - -
5 - 0 0 - -
6 = N0 1 - -
7/// A )_ - - 0
8\\/—/1 1 1 1
9 1 1 o -1 -

Table 17

Huie

Rules 2, 3, 5, 6, 8 and 9 are already reduced, since this
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- bwrned /
e values discern these rules from the remaining ence, i.e.

_¢or
iie rules with the core values only are consistepgfit%ue).
‘For the remaining rules core values make them inconsistent
(false), so they do not form reducts and reducts must be
computed by adding proper additional attributes to make the

rules consistent. The results are shown in Table 18.

U a b e f g

0 X X 1 X 0
o’ X X X 1 ...?
i....é....;....§....6. :
R S JUNNE SRS SR
é....;.'..;‘.‘.i... . :
3 X b4 0 0 .. }
;'...6....;....§‘...i. .x
4L A
é'.'.é...'b'..'b‘ .;. :
S S S SURL S
;...'i....;....b. ..x . .
7 1 X X ¢] 0
é....;....i,...i....i....i
9 1 1 0 1 X
" Table 18

+i
Becaus;\ézz; decision rules 0, 1, 4 and 7 have two re-
duced forms hence we have all together 16 minimal decision
algorithmsf’6ﬁe of possible reduced algorithm is shown below.

€, gy (£, g5) — 0
a, fo (a0 go) — 1
€, fo — 2

€y fo g, — 3

a, f1 (ao gl) — 4
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a1 eo go (a1 fo go) - 7
blelflg1—>8

a1 b1 eO f1 — 9

In parenthesis alternative reducts are given.

This algorithm can be also presented in usual boolean
notation as

e g’ (f' g) — 0

a'’ f' (a’ g')y — 1

e f! — 2

e/ f' g — 3

a’ f (a’ gy — 4

b’ e! —5 5

b’ e — 6

ae’' g (af’"g’'y —»7

befg-—28

abe f—9
where x and x’ denotes variable and its negation.

The algorithm can be implemented in software or in hard-
ware. The latter case will be discussed in more detail in the

next chapter.
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. 7o make the example more realistic assume thatAinstéad
"fv;even elements we are given a qrid of sensitive pixels,
y 9 x 12, in which seven areas marked a, b, ¢, d, e, f and
as shown in Fig.l are distinguished.

a
ooo o0 000
sae 228 22
f 0og oag b
D00 DoO RO
0og DGs 00
00D om0 000D
gomo
ooo” R00 0OD
ooo moo oo
Oom D00 00D
e [e]s] ] [aale] C
om0 0DO0 000
osD 000 DO0
mD0 000 DOao
d
Fig. 1

After slight modification the algorithm will recognize
now much more realistic handwrittem digits. Alternatively we
can also play with the shape of the grid to get more adequate
algorithms for character recognition.

The algorithm for digits recognition can be also obtain-
ed as a result of learning from examples. This approach will
be considered in Chapter 12.

5. Buying a Car

Suppose we are going to buy a car (house, TV set etc.)
and several cars are available, having parameters as shown in
Table 19.

Car Price Mileage Size Max-Speed  Acceleration
1 low medium full low good
2 medium medium compact high poor
3 high medium full low good
4 medium medium full high excellent
5 low high full low good
Table 19
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1 [

In order to make the proper choice first investigation

of essential differences between the cars seems reasonable.

\
N

To this end we need the minimal description of each car

in terms of available features, i.e. we have to find minimal

decision algorithm as discussed previously.
For simplification of notation we replace Table 19
Table 20

N o W NV =
o 4+ O
+ o 0o oo
+ + +
+
o + o

Table 20

where

- Price

- Mileage
Size

- Max-Speed

® Q0 o o
i

- Acceleration
and values of attributes are coded as follows:

VPrice = {low (-), medium (0), high (+)}

Vnileage = {low (-), medium (0), high (+)}

14 = {compact (-), medium (0), full(+)}

Size

vnax_speed = {low (=), medium (0), high (+)}

Vaicceleration = 1Poor (=), good (0), excellent (+)}

The attribute values are coded by symbols in parenthesis.
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Now we are reédy to proceed tovour analysis. A

First note that all rows in the table are different.
That means that each car has unique characterization in terms
of the given features, and the attributes give consistent (in

this case we could also say - deterministic) description of

each car, or that the corresponding decision rules are true.
We would like to know whether features of these cars are in-
dependent or not, in order to eliminate from our considera-
tions features which are not necessary. To this end we have
to compute first the core and reducts. Compute first the core
of attribute. Removing the attribute a we get Table 21

5 U b c d e

1 0 + - 0

é....é....L....;....;

3 0 + - 0 y:

;'..'6‘...;'...;....;

5 + + - 0
Table 21

which is inconsistent, because of two identical rows 1 and 3

'(underlined). Similarly dropping the attribute b we get in-
consistent Table 22

U a c d e

1 - + - 0

L L B K 2 I I I R Y I N Y . LY

2 0 - + -

3 + + - 0

4 0 + + o+

5 - + - 0
Table 22

in which rows 1 and 5 are identical. Removing attributes ¢, d
Oor e we get Tables 23, 24 and 25
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1 - 0 - 0

2 0 0 + -

3 + 0 - ¢]

4 0 0 + +

5 - + - 0
Table 23

1 - 0 + 0

2 0 0 - -

3 + 0 + 0

4 0 0 + +

5 - + + 0
Table 24

M bW N
©o + o
4+ O O O O
+ + +
+

Table 25

which are consistent.

Thus the core of attributes is the set {a, b}.

There are two reducts {a, b, ¢} and {a, b, e} of the set
of attributes, i.e. there are exactly two consistent and in-
dependent tables
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1 - 0 +
2 0 0 -
3 + 0 +
4 0 0 +
5 - + +
Table 26

U a b e

1 - 0 0

2 0 0 -

3 + 0 0

4 0 0 +

5 - + o !
Table 27

Thus we have the following dependencies

{a, b, c} s {d, e} and {a, b, e} » {d, c}
+h's

Intuitively that means that the attributes a (Price) and
b (Mileage) must be taken into the account when discussing
fhe differences between the cars, and attributes ¢ (Size) and
e (Max-Speed) can be mutuallym repiaced. The attribute d
(Acceleration) depends on the remaining set of attributes and
is not a essential issue in this consideration.

Now we are ready to compute minimal decision algorithms
which will give description of essential differences between
thg,ca‘ . To this. end we have to reduce each decision rule,
i<“éZ%?minate unnecessary attribute values from the reduced
C . Because there are two reducts we have to repeat the
reduction for Tables 26 and 27.

Let us first analyze Table 26.

Removing the attribute a from Table 26 we get Table 28
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1 0 +
é....é....;
3 0 +
,A'...é'...;
é.. .;....;
Table 28

in which the underlined rules are inconsistent (false), i.e.

a_, a,, a,are core values for rules 1, 4 and 3 respectively.

+
Removing attribute b we obtain Table 29

U a c
1 - +
2 0 -
3 + +
4 0 +
5 - +
Table 29

in which rule 1 and 5 are inconsistent, so the attribute

values bo, b+ are core values for rules 1 and 5. Similarly

dropping the attribute c we have Table 30

Table 30
in which rules 2 and 5 are inconsistent, and consequently c_,
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values for Table 26 are listed.

A

U a b c

1 - 0
2 -
'3
4 0 +
5 +
Table 31

It turns out the the core values are reduts of the deci-
fules, so we have the following decision algorithm

(Prlze, low) A (Mileage, medlum) — 1
(Size, compact) — 2

KPrlze, high) — 3

(Prize, medium) A (Size, full) — 4

- (Mileage, high) — 5 !

3 Thus each car is uniquely characterized by a proper de-
cision rule and this characterization can serve as a basis
for car evaluation. Detailed discussion of the result is left

Because there are two reducts we have also another
o) portunlty, using instead of attribute ¢ - attribute e. In
this case we get the following reducts
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(6 I - S VS B S I
+

Table 32
and the decision algorithm is

(Prize, low) A (Mileage, medium) — 1
(Acceleration, poor) — 2

(Prize, high) -— 3

(Acceleration, excellent) — 4
(Mileage, high) — 5

Because we have two reducts, so if we prefer the attri-
hbute Acceleration to attribute Size , we should use the
second algorithm, otherwise the first attribute should be
employed. Detail discussion of the obtained results are left
to the interested reader.

Summary .
Knowing differences between various options is often the

departure point in decision making. The rough set approach

seems to be useful tool to trace the dissimilarities between

objects, states, opinions, processes etc.
Excercises

1. Assume in sections 2 and 3 that the attributes have three
(or more) values (for example, favorable, neufral and
against) and carry out the same analysis, as for the two
valued attributes case. What are the consequences of introdu-
cing multivalued attributes?
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- pssume tha£ values of attributes in the Exercise 1 are
rictly ordered, 1i.e. that they form a linear scale. For
xample in the beauty contest the girls may be rated by each
1, 2, 3, 4 and 5, meaning that the girl receiving
1gher score is more beautiful. Strict ordering of values of
ttributes induces partial order on the set of objects. (In
ytial ordering some objects can be not comparable, e.g.
4¥1s having the same rating can not be ordered according to
ﬁeir beauty). Compare judgments of referees a, ¢, d, i and

j, as shown in Table 2. Can referees opinion be aggregated so

that the group opinion as a whole will not violate individual

.opinions? (Hint: ReadChapter 8, Group Decision and Social
choice, in French 1986]).

3. Compute core, reducts, all dependencies and minimal deci-

sion rules for Table 27.
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SWITCHING CIRCUITS

1. Introduction

Logical design of switching circuits has a long and rich
history, and there is a variety of methods for digital cir-
cuits analysis and simplification (see the enclosed referen-
ces, and for overview see for example Muroga (1979)). Our
claim is that the methods we have just reported in the pre-
ceding several chapters can be successfully employed in this
area. The best way to begin the discussion is to note that
switching circuits performance can be presented as truth
tables, which are in fact decision tables with two valued
attributes, where <condition attributes represent input
variables, and decision attributes are to represent output
variables of the circuit. Hence truth tables can be simpli-
fied in terms of our approach, exactly in the same way as any
kind of decision tables, and consequently our method can be
viewed as a generalization of switching algebra.

The proposed method seems to be best suited for synthe-
sis of Programmable Logic Array (PLA) (cf. Muroga (1979) pp.
549-559)).

It is interesting to compare the proposed method with
alternative approaches, 1like prime-implicants method (cf.
Quine (1955)) or Karnaugh maps (cf. Karnaugh (1953)), but we
leave this comparison to the interested reader.

2. Minimization of Partially Defined Switching Functions

We are going to show in this section an example illus-
trating the basic ideas underlying the application of rough
sets philosophy to switching function minimization (cf.
Rybnik (1990)){ ¢

Consider /partially defined switching function as shown
in Table 1,
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1 0 0 0 1 1 1
2 0 1 0 0 0 1
3 0 1 1 0 0 1
4 1 1 0 0 0 1
5 1 1 0 1 0 1
6 1 1 1 1 0 1
7 1 1 1 0 0 1
8 1 0 0 1 1 1
9 1 0 0 1 0 1
10 0 0 0 0 0 0
11 0 0 0 1 0 0
12 0 1 1 1 0 0
13 0 1 1 0 1 0
14 1 1 1 1 1Y o
15 1 0 0 0 1 0
Table 1

where a, b, ¢, d and e are input variables, whereas f is
output variable, as shown in Fig. 1.

a _—

b -

c —_ _— f
d —_

e _—

Fig. 1
We assume that combinations of input variable values not

: in designing a "minimal" digital circuit functioning of which -
. _is described by the table.
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S “ M"‘Cl &A/j
To this end we have to simplified the truth table

following the pattern we have described in the earlier
chapters, i.e. in the present case we have to reduce the
input variables and afterwards drop all unnecessary values of
variables.

Observe first that Table 1 is consistent (all combina-
tions of input variable values are different), hence the cor-
responding switching function is well defined.

. Let us start with reduction of input variables.

The variable a is f-indispensable, because removing

variable a gives Table 2

1 0 0 1 1 1
2 1 0 0 0 1
3 1 1 0 0 1
4 1 0 0 0 1
5 1 0 1 0 1
6 1 1 1 0 1
;. ..i. ..i....é.. .6....i
8 0 0 1 1 1
9 0 0 1 0 1
16 . .0. . 6 . .o. . 6 . .o
11 o 0 1 0 0
IR O SN W
1 ; ..i.:..a.,..i....b
14 1 1 1 1 0
15 0 0 0 1 0
Table 2

which is inconsistent, because in the table pairs of decision
rules 6, 12 and 9, 11 are inconsistent, thus input variable a
is f-indispensable.

Removing variable b we get Table 3
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f-indispensable.

which is consistent because all decision rules in the table
are consistent, Thus the input variable ¢ is f-dispensable.
Dropping variable d we obtain Table 5

U a b c e f
1 0 0 0 1l 1
2 0 1 0 0 1
3 0 1 1 0 1
;....i....i.. .6. ..6....i
5 1 1 0 0 1
6 1l 1 1 0 1
7 1 1 1 0 1
8 1 0 0 ) § 1
é . .1. . 6 . .o. . 6 . .1
10 0 0 0 0 0
11 0 0 0 0 0
12 0 1 1 0 0
15....6....i....i....i....6
14 1 1 1 0
B3, .0, 0 1 0
Table 5,

which is inconsistent because rules 3 and 12 as well rules 8
and 15 are inconsistent, thus the variable d is

1

Finally removing input variable e we have inconsistent
Table 6
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o
[y

4 2 e 00 0 08 e e % o 0

O U1 el N
H M O 0+O
B P el O

[
(6]
fn
o
o
(o]
o

Table 6

D

~~ because pairs of decision rules 1 and 11, 3 and 13 as weli\é//
and 14 are inconsistent, thus the input variable e is
f-indispensable.
From this analysis follows that the only f-dispensable
“input variable is ¢, which means that this variable is super-
fluous in the definition of the switching function described
by Table 1. Hence Table 1 can be replaced by Table 4, which
is presented in compact form in Table 7.
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1 0 0 1 1 1
2,3 O© 1 0 ¢ 1
4,7 1 1 0 0 1
5,6 1 1 1 0 1
8 1 0 1 1 1
... __.° 1 __.°o.__12
10 0 0 0 0 0
11 0 0 1 0 0
12 0 1 1 0 0
13 0 1 0 1 0
14 1 1 1 1 0
15 1 0 0 1 0
Table 7

in which identical rules are combined together.

Now we have to eliminate unnecessary values of input
variables, i.e. compute reducts of each decision rule in
Table 7, which requires first computation of core values of

each decision rule. The result is shown in Table 8.

v a b d e f

1 - - - 1 1
2,3 - 1 0 1
4,7 - - - - 1 i
5,6 1 - - 0 1
8 - 0 1 - 1
R S S b S |

10 - 0 - - 0

11 0 - - 0 0

12 0 - 1 - 0

13 - - - 1 0

14 - 1 - 1 0

15 - - 0 - 0

Table 8
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recall that removing core values from the table makes the
able inconsistent. For example without core values e, in ru-
J¢ 1 and e, in rule 11 Table 7 becomes inconsistent because

e have then in the table the following incecnsistent decision
rules

aO bo d1 — fl and aO bo dl -—> fo.

One can check that core values of rules 2 and 3, 5 and 6

“as well as rule 14 are also reduced values, -i.e. the decision

‘rules

ére reduced, whereas the remaining core values do not form
* reducts. According to ideas given in chapter 3.4 we have to
add to the above decision rules ninimal set of such reducsd
decision rules that union of its all condition for each deci-
="sion class covers the whole decision class. Because

1By dy el

"wWwe need for decision class "1" rules covering set {1, 8}.

From Table 7 we find the the missing rules are

a0 dl el — fl
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for which we have .

la, d; el| = {1} v
|b, d, e,| = {1, 8}

|a0 b0 el| = {1}

la; by d;] = {8, 9}

That means that we have the following three minimal solution

to our problen

(1) b, d,e, —>f

a4
"'6 d) e — £
\\¥/

(11) bl dO e, — f1~

=
o
[

5 F
Q,
[
o
[
l
'-”
[

2]
o
i R
!
)

(iii) b, d.e. —f

or
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b. d.e.va, e.va,d, e. v a bo d1 — fl

1 0 0 1 70 0 "1 1 1
bl dO €y ¥ @, €3 ™ a, b0.81V a, bo dl — Il
- proceeding in the same way for decision class "0o" we

b, e. va. b.e.va b1 d} \% dO el — fo

As a conseqguence we have 12 ninimal solution to the problen.

One of them reguiring minimal number of gates 1is given below

bl d0 eo v~al eo v bo d; e, — fl

1
b, e. v bo dO v aO dl eO — fo
which can written in more convenient form

bd' e’ vae'"vb de—IfF

b e v b’ d’" v a’ d e! — 7

where x and x’ denote variables without and with negation
respectively.
. The corresponding switching circuit is shown in Fig. 2.
&;» ‘ ;e f%g ?_ / }
3. Multiple=-Output Switching Functions . ////
L

In the previous section we have discussed partially
defined switching function with a single output. The samne
method can be enployed for synthesis of mnultiple output

'switching functions, by treating this kind of functions as a
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set of single output switchiné functions, and applying to
these functions exactly the same procedures as before. Howe-
ver 1in maﬁy cases we can get better results, if we treat the
set of all binary output variables as a single multivalued
variable, as it will be shown in the next example.

Consider switching circuit with four input variables
a, b, ¢, d, and two output variables e, f, as shown 1in

Fig. 3.

—_— e

[ T o I o S

F‘ig./:z/f——g
Corresponding truth table is given in Table 9.

U a b c d e f

W ® N 0 U & W N
H O O © O B B B B O
O B K H O O O B K O
©O B M O O M O K H O
O O H H O H K O P B
H - O O O O H O O H
O O O O O B B B | M

[
o

Table 9
Replace variables e and f by a single four valued
variable y, with values (0, 0), (0, 1) (1, 0) and (1, 1).

Table 1 can be presented now as
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1 0 0 0 1 (1 1)
2 1 1 1 1 (0 1)
3 1 1 1 0 (0 1)
4 1 0 0 1 (1 1)
5 1 0 1 1 (0 1)
6 0 0 0 0 (0 0)
7 0 1 0 1 (0 0)
8 0 1 1 1 (0 0)
9 0 1 1 0 (1 0)
10 1 0 0 0 (1 0)
Table 10

‘ For the sake of simplicity let us denote the four values
of output variable y by i, 1ii, iii and iv respectively and
let us also group and renumerate rows of the table with
' respect to values of the output variable, as shown below.

U a b c d Y

1 0 0 0 0 i

2 0 1 0 1 1
TN S S S S S
4 1 1 1 1 ii
5 1 1 1 0 11
6 ___1____ 0 __ 1 ___1____ii_ *
7 0 1 1 0 iii
8___1___ 0 __ 0 __0 __iii
9 0 0 0 1 iv
10 1l 0 0 1 iv

Table 11

: \\‘S/,v
It'

iw, easy to see that the table is consistent, thus the
switching function is well defined. Now let ‘us compute
Y-reducts of input variables. To this end we have to compute
" the y-dispensable input variables.
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Removing input variable a we get Table 12

U b c d Y

1 0 0 0 i
2 1 0 1 1
3ol 1 i
4 1 1 1 ii
5 1 1 0 11
6____ 0 ___1____1___ii_
7 1 1 0 iii
8____0____0____0___iii
9 0 0 1 iv
10 0 0 1l iv

Table 12

which is inconsistent,because the following pairs of rules

(1, 8), (3, 4) and (5, 7) are inconsistent. Thus the input

variable a is y-indispensable. 24
Removing input variable b w;ikggze 13

U a c d Y

1 0 0 0 1

2 0 0 1 1
T TR SR S
4 1 1 1 ii ~
5 1 1 0 ii
6. 1 __1___ 1 __ii_
7 0 1 0 iii
8___ .1 __.0 ___0o __iii
9 0 0 1 iv
10 1 0 1 iv

Table 13

we get again inconsistent table because the rules 2 and 9 are
inconsistent.

Next we drop the input variable ¢ and we obtain Table 14
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<
3
o
Q,
~

1 0 0 0 i .
2 0 1 1 i

3___ 0 __ 1 ___1_ __i_

4 1 1 1 ii

5 1 1 0 11
6____1____0____1___ii_

7 0 1 0 iii
8____1___0____0_ __iii

9 0 0 1 iv

10 1 0 1 iv

Table 14

"which is also inconsistent, because rules 6 and 10 are incon-
‘sistent.

) ) ) \ #
Finally removing input variable d we have Table 15

U a b c y

1 0 0 0 i

2 0 1 o, i
3___0 1 ___1____i_
4 1 1 1 ii
5 1 1 1 11
6____1____0____1____ii_
7 0 1 1 iii
8____1___-0___:0____iii
9 0 0 0] iv
10 1 0 0 iv

Table 15

o U .

we get aléévdg:;nsistent table, since the pairs of rules (1,
9), (3, 7) and (8, 10) are inconsistent.

Hence all input variables are independent and noone of
them can be eliminated.

Now we are to eliminate unnecessary values of variables
from the truth table, which requires first computation of co-
re values of input variables and they are listed in Table 16.
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|

1 0 - - 0 1
2 - 1 - - 1
S SRR S UG- N SN S
4 1 - - - ii
5 1 - - - 11
e SN S + S
7 0 - - 0 iii
8 -l TooTo...0____ 111
9 - 0 - 1 iv
10 - - 0 1 iv
Table 16
(Jen

and list of all reduced rules are-gibe in the table below

U a b c d y

1 - 0 i
1’ 0 0 - i

2 - 1 0] - i
2/ 0o 1 - 1 i

3 o0 - 1 1 i
SR S S-SR S S
& 1 1 - - i
&’ 1 - 1 - i
5 1 1 - - i
57 1 -

S S SR £ 5
7 0 1 - ) iii
77 0 - 1 0 iii
8 1 0 - 0 iii
8 i - _..0___.0____iii_
9 0 0 - 1 iv
9/ - 0 o] 1 iv
10 1 - 0 1 iv
10/ - 0 0 1 iv

Table 17
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4

0 0 - 0 i
SR S S P S S
P S SR * S
0 1 - 0 iii
Sl 0 - 0 ___iii_
- 0 0 1 iv
Table 18

which is equivalent to the following decision algorithm

b0 do — 1

b1 d1 — 1

b do — iiil

b. d. — iii
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The aléorithm can also be presented using  boolean

algebra notation

a’ b’ d' — i

a'"'bd-—o i

ac — ii

a’ bd' -— iii

a b’ d' — iii

b’ ¢/ d — iv

or
a' b’ d’va bd — i

ac — ii

a’ bd’ vab’ d — iii

b’ ¢’ d — 1iv

1

The corresponding switching circuit is shown in Fig. 4.
We have to bear in mind however that our aim is to design
switching circuit with two binary output variables e and f.
To this end it is enough to add simple circuit, which will®
translate four valued output to the required binary outputs,
but we left this task to the interested reader.

~ Summary

We hope we have shown that the rough set approach can be
used to switching circuits synthesis. The method seem to be
best suited to two-level single as well multiple-output
circuits and Programmable bgic Array synthesis, however
further research in this ayesit necessary.
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Excercises

1. Find all minimal solutions of Table 9.

2. Find minimal truth tables of Table 9 assuming single out-
put switching circuits with output variables e and f, and
compare the obtained results with the multiple-output
solution presented in section 3.

3. Find all minimal solution of truth table given below.

U a b c d e f

1 1 0 1 0 0

2 1 1 0 0 1 1

3 -0 0 1 1 1

4 0 1 0 0 0~ 0

5 1 1 1 0 1
Table 19

a) Assume that a, b, ¢, d and e are input variable and f

is output variable.

b) Assume a, b, ¢ and d as input variables and e, f as
output variables.

4. Find all minimal solution for Table 20 (cf. Crama et al.
(1988). i '

v a b ¢ d e f g h i

N OO s Wy
O B O K O K+ O
O B O O K B
H O O Kk W c>.o
O H K O O B K
P O K K K B O
©O H B O O O
H O O M O O K
O B O O K B O
o ¢> © O KB KB B

Table 20
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Compare the number of solutions for Table 19 and Table 20.
Explain the difference. :

Hint: Compute the core of input variables in both cases. Can
the number of solutions be attributed the the "size" of the

core?
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12. MACHINE LEARNING

\

1. Introduction e

Machine learning is one of the most important fields of
artificial intelligence, andO\rowihg number of researchers is
involved in this area. rThe;//;é a variety of approaches to
machine learning, however by now no commonly accepted theore-
tical foundations has been developed. It seems that the rough
set approachy can be used as a theoretical basis for some
problems in machine learning. In this section we are going to
outline briefly some ideas showing how the concepts introdu-
ced so far can be used in this area. We do not pretend howe-
ver to give full account for machine learning in the rough
set perspective.

We will not go into details about machine learning, and
in order to avoid unnecessary technicalities we will skip
considerations on the present state and current research in
this area, and the reader unfamiliar with the subject is ad-
vised to consult, for example, the book of Forsyth and Rada
(1986), where fundamentals about machine 1learning and the
relevant literature can be found.

More about rough set view on various aspects of machine

learning can be found in the enclosed literature.

2, Learning from Examples

In our setting the process of learning from examples can
be formulated as follows.

Assume that there are two agents: a "knower" (a teacher,
an expert, an environment, etc) and a "learner" (a student, a
' robot, etc).

We assume that the knower has knowledge about certain
universe of discourse U, that is, according to the ideas
given in the previous chapters, he 1is able to classify
elements of the universe U, and classes of the knower’s clas-
sification form concepts to be learned by the learner. More-
oyiiiif assume in this section that the knower has complete
kn @édge about the universe U, that means he is able to

classify every object of the universe U. Furthermore we
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assume that the universe U is closed that is nothing else be-
sides U exists, i.e. U is the whole world of the knower. This
will be called the Closed World Assumption (CWA).

The task of a learner is to learn kn?ﬁiiﬁs knowledge.
For the sake of illustration we might assume the the learning
process runs as follows. Assume that the learner is able to
distinguish some features (attributes) of objects of the
universe U, for example shape, color etc. The knower exhibits
step by step each object to the learner together with the
1nformat10n‘wh&eh~concept it represents. The learner is sup-
pose to find characteristic features of each concept on the
basis of features of all instances of the concept, or in
other words the learning con51sts in flndlng description of
the Xknower’s concepts in termé\///pflbutes of objects
available to the learner. More precisely the learner has to
derive decision rules from examples delivered by the knower -
which enable proper classification of’ objects on the basis of
theirs features. For example the knower can demonstrate to
the learner various kind of hand written characters and the
task of the learner is to find characteristic features of
each character. Thus learning from examples in the case of
CWA can be reduced to the derivation of decision algorithms
from decision tables, considered in the previous chapters, in
which condition attributes are identical with learner’s
attributes and the knower’s knowledge is represented by deci-
sion attribute in the decision table.

The question arises whether always the learner’s know-
ledge can match the knower’s knowledge or whether the "learner
is always able to learn concepts demonstrated by the knower.
In our terminology it can be expressed as, whether the
knower’s knowledge can be expressed (exactly or approximate-
ly) in terms of learner’s Kknowledge, or in other words
whether the knower’s knowledge (attribute) depends on
learner’s knowledge (attributes).

From our considerations follows that this may be not al-
ways the case, which means that some concepts caﬁﬁnot be
learned, since the set of learner’s attributes cah not permit
to express some concepts. This follows directly from the

- topological classification of rough sets given in Chapter 2
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Section 6. " ;

Remark
It seems that in the present 1literature on machine
learning the impossibility of learning of some concepts has

been missed. =

As a consequence the degree of dependency between the
set of Kknower’s and learner’s attributes (see Chapter 4,
Section 3), can be used as a numerical measure of how exactly
the knower’s knowledge can be learned. More exactly, if B and
C are learner’s and knower'’s attributes respectively, and
B 2y C, where

card POSB(C)

card U

then k will be called the quality of learning. This number
expresses what percentage of knower’s knowledge can be
learned by the learner.

We will illustrate this idea by the following example.

Example 1.
Consider the following KR-System

U a b c d e

W 0 N 60 & W N
VNV O N O N ON MR
O K KPP OO K O ONN
O O N O KM O KM O O O
H NN R NN H e e
O N H O N I B O B P

[
(o]

Table 1
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Suppose that B = {a, b, c, d} is the set of learner’s
attributes and assume that e is a knower’s attribute. | |

Thus the knower knowledge consists of three concepts
legl = {3, 7, 10}, le;| = {1, 2, 4, 5, 8} and le,| = {6, 9},
which for simplicity will be denoted as Xy Xy and X,
respectively.

The learner’s knowledge consists of the following basic

concepts
Yo = |a1 b2 = d1| = {1, 2}
Y, = |a2 b0 o d1| = {3, 7, 10}
Y, = |lag by ¢y d,| = {4, 6}
Y3 = ]azvb1 €y d2| = {5, 9}
Y
Y, = lao b1 c, d2| = {8}

which are equivalence classes of the relation IND (B).

To learn knower’s knowledge means to express each
knower’s basic concept by means of learnegg basic concepts,
i.e. we have to check whether or not each equivalence class
of the relation IND {e} is union of some equivalence classes
of the relation IND (B), or in other words whether B s {e} or
not. To this end we have to compute approximations of
knower’s basic concepts, in terms of 1learner’s Dbasic
concepts, which are listed below.

BX, = BX, = X, = Y, = {3, 7, 10}

BX, =Y ,vuY, = {1, 2, 8}

BX, =Y ,uY,uY,uY, ={1, 2, 4,5, 6,8, 9}
BX, = o

§x2 =Y,uY,={4, 5 6, 9}
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Hence concept X, is exact and can be learned fully.

0

Concept X. 1is roughly B-definable, which means that the

1
concept can be learned only with some approximation, i.e. the

learner can learn that instances 1,2 and 8 belong to the

concept X, (are positive instances of X

1 £Xy)

do not belong to the concept (are ﬁigi;iVe instances of the

- instances 3, 7, 10
concept), instances 4, 5, 6 and 9 éannot be decided by the
learner whether they belong to X1 or not (are border-line
examples). /gopcept X, is internally B-undefinable, since
there are nog positive instances of the concept. The follow-
ing 1, 2, 3, 7, 8 and 10, are negative instances of the
concept, and the remaining examples 4, 5, 6 and 9 are border-
line cases. Let us also note that according to Theorem 5 in
Chapter 2 each knower’s concepts in this case must have
negative examples, which are

{1, 2, 4, 5, 6, 8, 9}
{314;’0.:‘)

for XO’ Xl’ X, respect.vely.

Because POSB{e} ={1, 2, 3, 7, 8, 10} only those
instances can be properly classified by the learner thus the
quality of learning in this case will be

card {1, 2, 3, 7, 8, 10} -
7 {e} = T
card {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

-5

10
In other words)instances 4, 5, 6 and 9 can not be clas-
sified by the learner and concepts containing these instances
can”not be learned exactly. That means that only instances
belonging to the positive region can be classified properly
and consequently nqx(empty lower approximation of concepts

can be learned.

In order to find the minimal description of each

knower’s concept (i.e. minimal decision algorithms) we have
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fo proceed as shown in the previous chapters but we will omit
the detailed discussion of this task and leave it to the
interested reader. Exemplary decision algorithm for Table 1

is shown below:

a, b0 — €,
a, — e,
a, b1 — e,
Another exemplary decision algorithm is given next.
bo €y — &
bz — €,
b1 c, — e, .
(¢ o
Because the concept X, has vdk:pﬁsitive examples there
are not decision rules correspondihg/%o this concept. ]

R The question arises whether all instances are necessary

to learn the

knower’s knowledge or rot. The following example

will illustrate the idea more closely.

Example 2,

Consider Table 1 given in Example 1.

i U a b c d e
1 1 2 0 1 1
2 1 2 ) 1 1
3 2 0 0 1 )
4 0 0 1 2 1
5 2 1 0 2 1
6 0 0 1 2 2
7 2 0 0 1 0
8 0 1 2 2 1
9 2 1 0 2 2

10 2 0 0 1 0
Table 2 .
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It is easily seen that instances given in Table 3 will

provide the same decision rules as Table 2. v

1 1 2 0 1 1
3 2 0 0 1 o
4 0 0 1 2 1
5 2 1 0 2 1
6 0 0 1 2 2
8 0 1 2 2 1
9 2 1 0 2 2
Table 3

Similarly Table 4 will give the same decision rules as
Table 2

2 1l 2 0 1l 1l
4 0 0 1 2 1
5 2 1 0 2 1l
6 0 0 1 2 2
8 0 1 2 2 1l
S 2 1l 0 2 2
10 2 0 0 1 0
Table 4

However if we drop instances 4 and 8 from Table 2 we
obtain Table 5 which yields different decision rules to that
obtained from Table 2, as shown below.
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o
a
a,
®

1 1 2 0 1 1 N
2 1 2 0 1 1
3 2 0 0 1 0
5 2 1 0 2 1
6 0 0 1 2 2
7 2 0 0 1 0
9 2 1 o) 2 2
10 2 0 0 1 0
Table 5

We miss of course decision rule generated from instance 8,
but moreover because of removing instance 4 we obtain a new
decision rule corresponding to instance 6

— e
bO

a0 2 ¥

and the whole new decision algorithm will now have the form

a b0 -— e

2 0

a ——

1%

a, bo ez////~x

Ay

which means thatf%hat concept X, is now internally definable.

2
Similarly if we & nstance 9 from Table 2 we get Table 6
‘U a b c d e
1 1 2 0 1 1
2 1 2 0 1 1 P
3 2 0 0 1 0
4 0 0 1 2 1
5 2 1 0 2 1
6 0 0 1 2 2
7 2 0 0 1 0
8 0 1 2 2 1
10 2 0 0 1 0
Table 6
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and the new decision rule will result

a, bl - e,
which yields new decision algorithm

X

a bo - eo

P \
a, — € \
1 F1

a0 bl

—
¥ 1

/

a b,q74/e

2 71 2

Again concept X., is now internally definable. ]

2

One can see from the above examples that some instances
are crucial for concept learning

oggﬁare not. The general
formulation of this problem is rather easy and is left to the
interested reader.

3. The Case of an Imperfect Teacher

In this section we are going to discuss briefly how lack
of knowledge by the knower (i.e. his impossibility to classi-
fy some objects) would affect learner’s ability to learn and
in particular whether the learner is able to discover the
knower’s deficiency.

Let us first give some illustrative examples.

Example 3,
Suppose we are given the following KR-system

U a b c

W 0N e W
H O N M P O KB O O
O H H B O F O KB N

Table 7
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where B = {a, b} is the set of fearner’s attributes and ¢ is
knower’s attribute. There are two concepts in the table, X,
and X_, denoted by + and - values of Kknower’s attribute c

respectively. Value 0 of attribute ¢ denotes that the knower

is unable to classify corresponding objects, and the set XO
of all objects which cannot be classified by the knower will
be called the knower’s ignorance region (in short ignorance
region). We will also need the set x* = X, v X_ which will be
refereed to as the knower’s competence region (in short com-
petence region). Thus we have in the universe U three sets:

X+ {1, 2, 3}

X_ {6, 7, 8, 9}

X, = {4, 5}

Let us compute whgther sets X+, X_ and XO are definable
in terms of attributes a and b, i.e. whether they can be
learned employing these attributes. To this end we have to
compute the lower and the upper approximations of the above
.sets which are given below:

B (X,) = {1}

B (x,) = {1, 2, 3, 4, 5, 8, 9}

B (X_) = {6, 7}

B (Xx_) =42, 3, 4,5,6,7,8, 9}
B(X,) = o

B(X,) = {2, 3, 4, 5, 8, 9}

Because §(XO) = @ hence the ignorance region XO is

internally B-undefinable, which means that the learner is

(unab%?HE \characterize the set X, in terms of his attributes,
(o4}
ei?§[§§§§%5er the knower’s ignorance.

As to the second question, whether knower’s deficiency
‘is important and influences the learner’s ability to learn,
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let us compute the boundary region of the competence region
*
X =X _ and X_.
* < _
BN (X )= BNB(X+)~>,'/_\§BNB(X,_) {2, 3, 4, 5, 8, 9}

It is easy to check that by every substitution for value
0 in attribute ¢, values + or - the approximations, and con-
sequently, the boundary region of the competence region x*
remain unchanged. That means that the knower’s lack of know-
ledge is unessential and the fact that he failed in classi-
fying examples 4 and 5 does not disturb the learning process.
This is due to the fact that both instances 4 and 5 are in
the boundary region of both concepts (i.e. of the competence
region) and as such cannot be learned. Thus it does not
matter whether the knower knows how to classify them or not.

Example 4,
Consider now another decision table given below

U a b c

W © N 0 O bW e
H O N B B O KB O O
O B K KB O K O - N

Table 8

In this table we have

X = {1, 2, 3, 4}
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The abproximations of these sets are given next.

| B(X,) {1}
B(x,) = {1, 2, 3, 4, 5, 8, 9}
B(X_) = {7} ;
B(x_) = {2, 3, 4, 5,1/8, 9}
B(X,) = {é}
E(xo) = {3, 5, 6, 9}
Because §(X0) = {6} the learner can discover that the

knower is unable to classify object 6.

Again, if we replace value 0 im the attribute ¢ by value
+ or - instance 5 would still remain in the boundary region,
whereas instance 6 would belong to positive region of the
competence region X*. That means that the knower’s disability
to classify instance 6 is important and lack of its classi-

fication affects essentially the learning process.

The general formulation of problems pointed out in these
examples 1is rather straightforward and is 1left for the

interested reader.

4. Inductive Learning

In learning considered in the previous sections we have
assumed that the set of instances U is constant and unchanged
during the learning process. In many real life situations
however this is not the case and new instances can be added
to the set U. The problem arises how these new instances can
change the already acquired learner’s knowledge.

We assume that every new instance is classified by the
knower and the learner is suppose to classify it too on the
basis of his actual knowledge.
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The initial set U will be called the training set, and
the problem arises whether knowledge acquired on the basis of

the training set suffices to classify by the learner every

new instance. _

The training set may be consideéﬁg; a sample of a unknown
universe and the problem arises whether the sample suffices
to learn the whole knowledge, 1i.e. to learn the ability to
classify every new instancel/fThis 1is usually called the
generalization of knowledge{_jymf is a basis of inductive
learning. Many questions arise in connection with this kind
of learning and a variety of research has been done in this
area (cf. Forsyth et al. 1986) but we are not going to
discuss the problem in details and only point out some ideas
which may be of interest in connection with the rough set
view of this area.

Generalization can be called the Open World Assumption
(Owa) that is we assume in this case that the whole concept
is unknown to the knower and only certain instances of the
concept are known and the question arises whether it is pos-
sible to generalize the sample in such a way that every new
instance which satisfies the conditions induced from the
sample belongs to the concept in question. An example of
white and black swans is the commonly given illustration in
this context. loe

Let us consider now the case of OWA. Suppose we are
given a KR-system S = (U, S) and a new instance x is added to
U (i.e. x ¢ U). The set U will be called the training set.

We will say that the training set is consistent if the
KR-system is consistent and the training set is inconsistent
otherwise.

The problem we are going to discuss now is what happens
when a new instance is added to the training set U, or to be
more specific how concepts learned so far are influenced by
new instances. Let us first consider some examples which will

give some intuitive background to the problem.
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Example 3 °

Let us consider again KR-system given in Example 1.
. \'\

c
]
o
0
o,
o

W 0 J 0 0 s W e
NN O N O N O N
O H KM O O H O O N N
O ON O O H O O O
NN R NN P P
O N KON O B

[
o

Table 7 4

and suppose we add a new instance as shown in Table 8.

U a b c d e
1 1 2 0 1 1
- 2 1 2 0 1 1
3 2 0 0 1 0
4 0 0 1 2 1
- 5 2 1 0 2 1
6 0 0 1 2 2
7 2 0 0 1 0
8 0 1 2 2 1
9 2 1 0 2 2
10 2 0 0 1 0 ‘
117 0o 1 2 2 1
Table 8

It is obvious that the new instance does not change the
decision algorithm, that means that the learned éoncepts will
remain the same. However if we add instance as shown in
Table 9
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S NI S I I S TR NI N R POy Wy
O O N KM O N H H O B

[ e
fon

Table 9
the decision algorithm would have the form

a bo - e

2 0

a b1 — e

0 1

In this case the new instance changes the decision algorithm.
Finally let us add instance as shown in Table 10

U a b c d e
1 1 2 0 1 1
2 1 2 0 1 1
3 2 0 0 1 0
4 0 0 1 2 1
5 2 1 0 2 1
6 0 0 1 2 2
7 2 0 0 1 0
8 0 1 2 2 1
9 2 1 0 2 2
10 2 0 0 1 0
11 1 0 0 1 3
Table 10
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Again we obtain new decision algorithm, as shown below:

a bo — e

2 0
al —_ e1
a0 b1 —_ e1

As we have seen from the above examples adding a new
instance to the universe we face three possibilities:

1) The new instance confirms actual knowledge

2
2) The new instance contradicts actual knowledge

3) The new instance is completely new case

In order to show how :a new instance affects the actual
knowledge gained by the learner from examples considered so
far we hagg_&y compute how the quality of learning would
changevin'éach‘Ff the above situations.

fvéye new instance match one of the existing classes,

or form\completely new class,‘then the quality of learning
would\bg,///. "

card POSB(C) + 1

15(C) =
card U + 1

If the new instance contradicts the knowledge already
acquired we get

card POSB(C) - card x]IND (B)

75(C) =
card U + 1

263




where denotes the equivalence class containing the

X} IND(B)
new instance x.

Let us briefly comment the above formulas.

If the new instance confirms the acquired knowledge and
U= POSB( ), i.e there are ndz border-line instances thﬂh the
new example does not extend‘ié;rner ’s knowledge in thgf sense
that the quality of learning is equal to 1 and does not
changg# with ne%fconflrmlng examples. In other words if the
training set have 'all possible kinds of objects, adding new
object does nofi increasg}( our knowledge, and every new
example can be properly classified.

If however U 2 POSB(C), i.e. there are border-line
examples then the quality of learning increases "slightly"
with every new confirmation. If however the new instance will
belong to the boundary region then the quality of learning

will be

card POSB(C)

1g(C) =
card U + 1

which means that quality of learning will decrease.

The most interesting case is when the new instance will
contradict knowledge acquired so far. That means that the new
instance x has the same description as some other object y
however x and y belong to different classes according to the
knower'’s opinion. In other words these objects are different
according to knower’s opinion, while the learner is unable to
distinguish them employing his attributes. This leads to
contradiction and improper classification of the new instance
by the learner. This cause that all instances with the same
description as x in terms of learner’s attributes must be now
reclassified, which cauééi}h&t the quality of 1learning may
decrease drastically, as shown by the corresponding formula.

To sum up, if the training set is in a certain sense
complete, i.e. the corresponding decision table is consistent
it provides the highest quality of learning and the learners’
knowledge caQ/pot be improved by means of new instances. If
however the training set is inconsistent every new confirming
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instance increases learnerkgﬁowledge and any new border-line
instance decreases his Kﬁbwledge. That means that bif the
training set is inconsistent the learner’s knowledge ‘can be
increased by properly chosen new instances. However new
instances which contradict actual learner’s Xknowledge de-
creases gquality of learning and the larger is the "loss" of
learner’s knowledge, the larger is the amount of improperly

classified examples before.

Summary
Rough set philosophy seems to be useful as a theoretical
basis for some problems in machine learning. Exemplary ideas

has been briefly outlined in this chapter.

Excercises
1. Explain examples considered in the previous chapters in
terms of machine learning. Assume the Closed and Open Word

Assumption.

2. Give general formulation of problems discussed in the

previous sections of this Chapter.
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