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Abstract. In this paper we are going to show how the concept of a rough set can be employed as
a theoretical basis of information systems and decision tables. It turns out that many problems, in
particular in Al like machine learning, expert systems, pattern recognition decision support systems and
others can be reduced to the proposed schemes. In fact the approach has found many real life applications
in medicine [46, 47], cement kiln control algorithms [19], aircraft pilots performance evaluation [10]
— and others.

I. Information systems

In this section we will give basic ideas concerning data tables, which will be called
here information systems. These data tables contain some explicit facts about some
objects, processes, phenomena etc., which represent our knowledge about some part
of real or abstract world we are interested in. Our main task is to derive some implicit
facts from the table. To this end the concept of a rough set will be used.

1. Introduction

Information system in our approach is in fact a data table, columns of which are
labelled by attributes rows are labelled by objects (states, processes etc.) and each
row represents an information about the corresponding object.

The data table can be obtained as a result of measurements, observations or
represent knowledge of an agent or a group of agents. The origin of the data table is
not important from our point of view and we shall be interested only in some the
formal properties of such tables.

Informally speaking by an information system we mean a finite collection of data
about some objects (states, processes etc.). We assume that objects are characterized
by some features expressed as pairs (attribute, value). For example the following
pairs (color, red), (height, tall), (sex, male), (age, young) are possible features of some
objects. o

Main problems we are going to deal with consist in discovering dependencies
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among data, reducing data redundancies in the tables and generation decision rules.
In other words we are interested in detecting attribute dependencies and reducing the
set of attributes.

It turns out that many problems of fundamentally different nature can be reduced
to the above mentioned data table analysis. Machine learning, pattern recognition,
decision table or expert systems are exemplary applications problems where the
proposed approach seems to give novel insight and algorithms.

2. Examples of information systems
In order to have better intuitive background, before we give formal definitions, let
us first give with some examples of information systems.

Example 1. In this information system pathomorfological changes in cells organelles
are listed (cf. [8]).

Table 3

State Volur.ne Numelrical Surface
Density Density Density

Normal Normal Normal Normal
Proliferation Normal Increased Increased

Hypertrophy Increased Normal Normal
Hyperlasia Increased Increased Increased
Hypoplasia Decreased Decreased Decreased
Atrophy Decreased Normal Decreased
Ageneration Normal Decreased Decreased
Dysplasia Increased Decreased Decreased
Dystrophy Decreased Increased Increased

Objects in the system are states of cells of organelle systems. The organelles
systems are characterized by attributes Volume Density, Numerical Density and
Surface Density. m

Example 2. Here an information about patients suffering from heart disease seen in
one of the hospitals in Warsaw is given.

Table 4
Gasom-  Dys- Cya- Pulmo- Heart Hepato- Degree of

etry pnea nosis nary Rate megaly Edema Discase

Stasis Advance
P1 37 1 1 1 62 0 0 1
P2 43 2 3 4 76 8 3 3
P3 42 1 2 1 71 1 0 1
P4 43 0 3 2 80 5 1 1
P5 48 1 3 3 92 6 3 3
P6 38 1 3 2 87 5 1 2
P7 54 0 0 0 95 1 0 2
P8 40 3 0 0 128 1 0 0
P9 40 1 0 0 11 1 0 1
P10 50 0 1 0 68 2 1 1
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Example 3. In this example a characterization of various animals in terms of Size,
Animality and Color is given [5].

Table 5
Size Animdlity  Colour
Al small bear black
A2 medium bear black
A3 large dog brown
A4 small cat black
A5  medium horse black
A6 large horse black
A7  large horse brown

Example 4. The digit displays in calculators are composed out of seven elements as
shown below.

a
f‘ e |b
y .
d

Then structure of each digit is shown in the information system below.

Table 6
Digit a b c d e f g

0 X X X X X X

1 X X

2 X X X X
3 X X X
4 X X X X
5 X X X X
6 X X X X X X
7 X X X

8 X X X X X X X
9 X X X X X X

Objects in the information system are digits 0, ..., 9 and attributes are elements

a,b,c,d,e, f, g of the display. ®

Example 5. As is well known digital circuits can be described in a form of a truth
tables. Each such a table can be considered as an information system. For example
the following information system describes a binary full adder.
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Table 7

a; b, Ci—y S; ¢
0 0 0 0 0 0
1 0 0 1 1 0
2 0 1 0 1 0
3 0 1 1 0 1
4 1 0 0 1 0
5 1 0 1 0 1
6 1 1 0 0 1
7 1 1 1 1 1

Objects in the system are states of the adder denoted 0, 1, 2, 3,4, 5, 6 and 7,
and attributes are the augments a;, b;, sum s, previous and current carry
Ci—1, C;. N

It 1s easily seen from the examples that information system can represent the
results of measurements, observations, or express knowledge of an agent (or group of
agents).

In what follows we will ignore the semantic contents of the table, ie. we will
consider data table regardless what are the objects, attributes or their values, and we

will treat information systems in entirely formal way.

Remark

At the end it is worthwhile to mention that the notion of an information system
apparently looks like a relational table in the relational data base model [3].

There is, however, an essential difference between these two models. Most
importantly, the relational model is not interested in the meaning of the information
stored in the table. The emphasis 1s placed on efficient data structuring and
manipulation. Consequently the objects about which information is contained in the
table are not represented in the table. This is in contrarst with the primary
assumption of the information system model presented here. In the information
system all objects are explicitly represented and the attribute values i.e. the table
entries have associated explicit meaning as features or properties of the objects. In
addition to that the emphasis in the information system model is put mainly not on
data structuring and manipulation but on analysis of actual dependencies existing in
data, and data reduction, which is rather closer to statistical data model.

3. Formal definition

We begin this section with a formal definition of an information systems.
An information system is a quadruple S = (U, 4, V, f) where

U — 1s a nonempty, finite set called the universe,

A — 1s a finite set of attributes
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V=) V; V, — is called the domain of attribute a.

acA

f: U x A-V — is an information function such that

f(x,a)eV, for every ae A and xeU.

If f is a total function then S will be called complete; if f is a partial function. then
S is referred to as incomplete. We shall be basically concerned with complete
information systems unless stated otherwise.

In what follows we shall need the notion of information about an object — in the
information system — which is defined below:

Let xe U. The function f : A — V_such that f _(a) = f(x. a) for every ae A will be
called information on x in 8§.

Thus information on x is simply the set of values of an attributes assigned to an
object x, or in other words — description of object x in terms of attributes available
in the information system.

The example which follows will illustrate the definition.

Example 6. Let us consider the following information system.

Table 8
U a b c d e
1 1 0 2 2 0
2 0 1 1 1 2
3 2 0 0 1 1
4 1 1 0 2 2
5 1 0 2 0 1
6 2 2 0 1 1
7 2 1 1 1 2
8 0 1 1 0 1

The universe U consist of 8 elements numbered 1, 2, 3, 4, 5, 6, 7 and 8, the set of
attributes is A = {a, b, ¢, d, e}, whereas V=V, =V, =V.=V, =V, ={0.1.2}. m

4. Indiscernibility relation

It should be quite clear that some objects may have identical values of some
attributes, 1.e. they cannot be distinguished by attributes. This observation is
fundamental one in our approach, and it is used to define the indiscernibility
relation, which is the basis of rough set philosophy.

Let us express this more formally.

Let S=(U. A. V,f) be an information system and let P = A. By IND(P) we
shall denote a binary relation over U defined as: (x, y)e IND(P) if and only if
fi(a) = f.(a) for every aeP.

It is easily seen that IND (P) is an equivalence relation for every P. Thus every
subset of attributes generates the indiscernibility relation in the information system.
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ie. elements of U having the same values of attributes of P are indiscernible by the
values of attributes P.

The family of an equivalence classes of the relation IND (P) will be denoted by
P*, and elements of P* are refereed to as blocks or indiscernibility classes of P*. An
equivalence class of the relation IND (P) containing the element x is denoted by [x]p.

An example of such indiscernibility relation, generated by the information system
shown in Table 8 is given next.

Example 7. In the Table § elements 1, 4 and 5 of U are ‘indiscernible by attribute a,
elements 2, 7 and 8 are indiscernible by attributes b and ¢, and elements 2 and 7 are
indiscernible by attributes d and e.

Exemplary partitions generated by attributes in this system are given below.
a* = {{2, 8}, {1,4, 5}, {3,6, 7}}

b* ={1,3,5},{2,4,7, 8}, {6}}

{c, dy* = {{1}, {2}, {3, 6}, {2, 7}, {4}, {5}, {8}} |

{a, b, c}* = {{1, 5}, {2, 8}, {3}, {4}, {6}, {7}} .

The following are easy properties of indiscernibility relations:

Proposition 1.
(a) IND(P) = () IND(a), for every P < A4
(b) IND(PU Q) = IND(P)~ IND(Q)
(©) If P< Q then IND(Q) < IND (P)
(d) IND@)=U x U

e) [x]p = m [x],.

acP

5. Approximations of sets

Having defined the indiscernibility relation, we are able to define now the basic
concepts in our approach — the lower and the upper approximations.

Let us star first with some intuitive motivations. The main problem we are
interested in 1s the description of some subsets of the universe by means of attributes
available in the information system. It is clear that there are sets which can be exactly
characterized by a given set of attributes, some sets however can not be defined in
this way. Therefore we need the concept of approximate characterization of sets, and
to this end we will the following definitions.

Let P< A and X < U. The P-lower approximation of X, denoted PX, and the

P-upper approximation of X, denoted PX are, defined as below
PX = U{YeP* Y X}

PX = U{YeP* Yn X # &}
The boundary of X is defined as BNp(X) = PX—PX.
Set PX 1s the set of all elements of U which can with certainty classified as

elements of X, employing the set of attributes P; PX is the set of elements of U which
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can be possibly classified as elements of X, using the set of attributes P. The set
BN, (X) is the set of elements which cannot be classified either to X or to — X using
the set of attributes P.

If PX = PX, set X will be called exact with respect to P; otherwise the set X is
inexact or rough with respect to P.

Example 8. Consider the data Table 8, the set of attributes C = {a, b, ¢} and the

subset of the universe X ={1,2,3,4,5}. Then CX ={1,2,3,4,5}, CX =
={1,2,3,4,5,8} and BN (X) = {8}.

Thus the set X is rough with respect to the attributes C, which is to say that we
are unable to decide whether elements 2 and 8 are members of the set X or not. For
the rest of the universe classification of elements, using the set C of attributes, is

possible. |

The following proposition exhibits basic properties of approximations:

Proposition 2.
(1) PX = X < PX
) PO=PO=0;PU=PU=U
3) P(XU Y)=PXUPY
4) P(XnY)=PXAPY
(5) X = Y implies PX < PY and PX < PY
(6) P(XUY)2 PXUPY
(7) P(XnY)= PXNPY
(8) P(-X)= —PX
9) P(—X) = —PX
(10) PPX = PPX = PX
(11) PPX = PPX = PX
Proof.
(la) If xe PX, then [x] < X, but xe[x] hence xe X and PX < X.
(1b) If xeX, then [x]n X # O (because xe[x] N X) hence xePX, and
X < PX.

(2a) From (1) PO # O and @ = P (because the empty set is included in every
set) thus PO = @.

(2b) Suppose PO # @. Then there exist x such that x e P@. Hence [(x]ng # O,
but [x]n @ # @, what contradicts the assumption, thus PO =0.

(2¢) From 1) PU < U. In order to show that U = PU let us observe that if
xe U, then [x] € U, hence xe PU, thus PU = U.

(2d) From (1) PU 2 U, and obviously PU < U, thus PU = U.
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(3) xe;(Xu Y) if [x]m(Xu Y)= Olﬂ[x]mXu[x]mY;égiﬁ[x}mX#
%0 Y [x]mY;éQ if xe PX v xe PY iff xe PX U PY. Thus P(XUY)-—

= PX U PY.

@) xePXnY)if [xX]sXnY f [XJ€X A[x]<Y if xePXNPY.

(5) Because X = Y if X n Y= X by virtue of (4) we have P(X N Y) PX if
PX NPY=PX which yields PX < PY. Because X <Y if Xu Y=1Y,
hence P(X v Y)= PY and by virtue of (3) we have PX UPY = PY and
hence PX < PY.

(6) Because X =« XuYand YS XU, we have PX<cP(XuY)and PYCS
< P(X U Y) which yields PXUPYS P(X L Y)

(7) Because XY= X and XnYc Y, we have P(XmY)CPX and
P(Xm Y)c PY hence P(Xr\ Y)c PX c PY.

8) xeP(x) if [xX] € X if [x]n —X = @ if x¢ P(—X) if xe —P(—X), hence
P(X) = —P(—X).

(9) From substitution —X for X in (9) we get F(X) = —-g(;X).

(10a) From (1) PPX < PX, thus we have, to show that PX < PPX. If xe PX
then [x] = X, hence P[x] € PX but P[x] = [x], thus [x] € PX and
x€ PPX, that is PX < PPX.

(10b) From (1) PX < PPX, thus it is enough to show that PXD_I;PX If

xePPX then [x] N PX # @, ie. there exists ye[x] such that yePX,
hence [y] € X but [x] = [y], thus [x] € X and xe PX which is to mean

that PX 2 PEX .

(11a) From (I)FX < P PX. We have to show that PX o P PX.If xe P PX, then
[xX]"PX # @ and for some ye[x] yePX hence [y] NnX #0 but
[x] =[y], thus [x] nX # @, ie. xe PX, which y1elds PX 2 PPX.

(11b) From (1) BPX < PX. We have to show, that BPX o PX. If xe PX then
[x]n X # @. Hence [x] = PX (because if ye[x), then [y]n X = [x]n X #
# 0, ie. ye?X) and erﬁX, which gives EFX o X. u

The properties (6) and (7) show that approximations can not be always computed

step-by-step, which is a serious drawback of the presented approach. Nevertheless
these properties convey important message, that dividing data table into smaller

par

ts leads in general to loss of information.
Also properties (8) and (9) indicate that the complement of approximation is not

a “classical” operation.
II. Dependency of attributes
The dependency of attributes is another fundamental concept in the presented
approach.

Intuitively speaking subset of attributes Q depends on subset of attributes A, if
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values of attributes in A4 are uniquely determined by values of attributes in P, i.e. if
there exists a function which assigns to each set of values of P set values of Q.

The idea of the dependency will be used to derive implicit facts from a data table,
concerning dependencies among data.

1. Formal definition and some properties

Formally the dependency can be defined as shown below:

Let S=(U, 4, V,f) be an information system and let P, Q < A.

(1) The set of attributes Q depends on the set of attributes P in S denoted as
P—Q (or in short P—Q) if IND(P) < IND(Q).

(2) Sets of attributes P, Q < A are equivalent, denoted as P =~ @, if P—Q and
Q-P.

(3) Sets of attributes P, Q < A are independent, denoted as P =~ Q, if neither
P—Q nor Q—P.

If P—Q we will refer to P as condition attributes and to Q as decision (or action)
attributes.

Obviously P~ Q if and only if IND(P) = IND(Q).

The following example will demonstrate the definition of dependency.

Example 9. In the Table 8 we have the following dependency {a, b} — {c}, because
the indiscernibility relation {a, b} has the following blocks {1, 5}, {2, 8}, {3}, {4},
{6}, {7} and the indiscernibility relation {c} has the blocks {1, 5}, {2, 7, 8} and
{3, 4, 6}, hence IND({a, b}) c IND({c}). m

It is easy to show by simple computation the following properties.

Proposition 3. The following conditions are equivalent:
() P-Q
(2) IND(Pu Q)= IND(P)
(3) POS,(Q*) = U, where POS,(Q*) = | ) PX

XeQ*

(4) PX = X for all XeQ*. n

The Proposition 3 demonstrates that if the set Q depends on P, then the set Q is
superfluous in the system in the sense that sets P U Q and P provide the same
characterization of objects. Thus this property can be used to reduce the set of
attributes, which will be discussed in next section.

The properties given below characterize the dependency of attributes in more
detail.

Proposition 4.
(1) If P»Q, and P' > P, then P> Q
2 If P-»Q, and Q' = Q, then P-(Q’
(3) P-»Q and Q —R imply P—>R
(4) P->R and Q—R imply PUQ—R
(5 P>RuQ imply P>R and P-Q
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(6) P»Q and QUR—-T imply PUR-T
(7) PQ and R—T imply PUR-QuUT. [ ]

As we mentioned before the existence of dependency of attributes is based on the
fact that values of the condition attributes determine values of the decision attribute.
This dependency is functional in nature and will be referred to as dependency
function. To further clarify this notion we will take a closer look at some properties
of this function.

Let us first start with the simple case of dependency {p} — {¢}, or in short p—g,

where p, ge A.
If p—q then there exists a unique dependency function
V=Y,
such that

fx, @) =h(f(x, p)).

To establish the relationsh'ip between partitions and dependency function let
X, ={xeU:f(x, p) = v}. Of course X, ,€ P*, i.e. this is an equivalence class of the
relation IND (P). '

Proposition 5. The following conditions are equivalent:
(1) p—g holds
() X0 S X ne) for all veV,. [ |
The above property is illustrated in the next examples.

Example 10. In the information system. below

Table 9
b

<
Q
o

[ S S
O -0 O
— e s O
«. -0 000
N == N O [~

there are following partitions:
a* ={{1, 2, 5}, {3, 4}}
b = ({1}, (2, 3,4, 5}
c* = {{1, 2,3, 4}, {5}}
d* = {1}, {2, 5}, {3, 4}}
and hence the following dependencies are valid:

d—a
d—b.
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fThe corresponding dependency functions are:

h, h,
d—a d-b
0 O 0 0
2 0 2 1
1 1 1 1
2 0
]
Example 11. In the example | we have may notice dependencies:
{Volume Density, Numerical Density} — Surface Density
{Volume Density, Surface Density} — Numerical Density.
u

In general case if the dependency P— Q holds then there exist functions h, for
qgeQ, such that

fx, @) =hy(f(x, p1)s -5 f(x, D)
for each geQ where P = {p,, ..., p,}.

Proposition 6. The following conditions are equivalent:

(1) P—Q

2) () Xp,0S Xy for all veV, and geQ. |
peP

Let us also note that the dependency of attributes can be associated another very

important interpretation. Under this interpretation whenever P — Q holds we can

i immediately conclude that any object can be correctly classified into a unique class

of the partition Q* based solely on the information expressed through values of

i attributes belonging to P. In other words values of attributes from P uniquely
¢ characterize classes of the partition Q*. In fact this is the consequence of functional
! dependencies between Q and P.

‘2. Partial dependency of attributes

The above introduced notion of dependency of attributes is to strong for some
real life applications and therefore in what follows we will define somewhat weaker
notion of dependency of attributes.

Let S= (U, A4, V, f) be an information system and P, 0 < A.

We say that the set of attributes Q depends in a degree k (0 < k < 1) on the set of
attributes P (in S), symbolically P—-*Q, if

card POS,(Q*)
card (U)

k=7vp(0%) =

where card denotes cardinality of the set.

PO A 35587, g S Tl
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If k = 1 we will say that Q depends totally on P (or in short depends); if 0 < k < 1,
we say that Q depends roughly (partially) on P, and if k = O we say that Q is totally
independent of P. If P—'(Q we shall also write P—Q.

Let us notice that the dependency P —*Q, for k = 1 coincides with the notion of
attribute dependency introduced at the beginning of the section. That is, if k = 1 then
we have total functional dependency among corresponding attributes. If 0 < k < 1
then the functional dependency is confined to some, but not all objects in the table.
That kind of dependency can be also referred to as partial functional dependency.
Finally, if k = O none of the values of the attributes in P are sufficient to determine
corresponding values of attributes in Q. In this case there is entirely no functional
dependency between P and Q. The idea of partial functional dependency can be also
interpreted in terms of our ability to classify objects. More precisely, from the
definition of dependency follows that if P—*Q then the positive region of the
partition Q* induced by Q covers k*100 percent of all objects represented in the
table. On the other hand only those objects belonging to positive region of the
partition can be uniquely classified. This means that k*100 percent of objects can be
classified into blocks of partition Q* based on values of attributes belonging to P.

Thus the coefficient y,(Q*) can be understood as a degree of dependency
between Q and P. In other words if we restrict the set of objects in the informa-
tion system S = (U, 4, V,f) to the set POSp,Q* we would obtain the system
S = (POSpQ*, A, V, f) in which P—Q is a total functional dependency.

Of course one could use another measure of rough dependency but the one
assumed here seems to be very well suited to various applications and it is also easy
to compute and interpret.

The measure k of dependency P —*Q does not capture how actually this partial
dependency is distributed among decision classes. For example some decision classes
can be fully characterized by attributes in P whereas others may be characterized
only partially. To this end we will need also a coefficient y,(X) = card PX/card X,
where X € Q*, which says how elements of each class of Q* can be classified by
employing only the set of attributes P.

Thus the two numbers yp(Q*) and yp(X), XeQ* give us full information
about the “classification power” of the set at attributes P with respect to the
classification Q*.

Example 12. Let us compute the degree of dependency of attributes D = {d, e} from
the attributes C = {a, b, c} in the Table 8. The partition D* consists of the following
blocks, X, = {1}, X, ={2,7}, X;={3, 6}, X, = {4}, X, = {5, 8} and the par-
tition C* consists of blocks Y, = {1, 5}, Y, = {2, 8}, Y, = {3}, Y, = {4}, Y, = {6}
and Y, = {7}.

Because CX, =0, CX, =Y, CX;=Y,uUY,, CX, =Y, and CX; = 0, thus
POS.(D*)=Y,uY,uY,uY,={3,4,6, 7} That is to say that only these elements
can be classified into blocks of the partition D* employing the set C = {a. b, ¢}
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§ attributes. Hence the degree of dependency between Q and P is
| yC(D*)=4/8=0-5- |

The following properties are counterparts of Proposition 4.

1 Proposition 7.

(1) If R—*P and Q—'P, then RuUQ-"P, for some m > max(k, 1).

(2) If RuUP—*Q, then R—»'Q and P—™Q, for some 1, m < k.

(3) If R—»*Q and R—'P, then R—™Q U P, for some m < min (k, 1).

4) If R>*Q U P, then R—'Q and R—"P, for some 1, m > k.

(5) If R—»*P and P—!Q, then R—-"Q, for some m> 1+k—1. |

III. Reduction of attributes

Our next most important notion is that of reduction of attributes.

As we have seen in the previous section some attributes can be abandoned in the
information system without loose of information about objects. In this section we
shall discuss this problem in some detail.

1. Formal definition and some properties

Let S= (U, A4, V,f) be an information system and let P < A.

We say that subset of attributes P is independent (in S), if for every Q = P
IND(P) # IND(Q), otherwise subset P is dependent (in S).

Before we prove some properties of independence let us first observe that from
Proposition 1 immediately follows the following fact:

LEMMA 1. Let P, Q, R be sets of attributes such that P = Q = R.If IND(P) = IND(R),
then IND(P)=IND(Q) = IND(R). u

Pfoposition 8 If P is independent and Q = P. then Q is also independent.

Proof. The proof i1s by contradiction. Suppose Q < P and Q is dependent. Then
there exists R = Q such that IND(R) = IND(Q), which implies IND(R U (P—Q)) =
= IND(P)and R (P—Q) < P. Hence P is dependent which is a contradiction. =

Proposition 9. The following conditions are equivalent:
(1) P is independent
(2) IND (P) # IND(P— {a}), for every aeP.

Proof. Obviously, (1) implies (2). The converse implication we shall prove by
contradiction. Suppose P is dependent. Then there exists Q = P such that
IND(P)=IND(Q). Then by Lemma 1 for any peP—Q, Q< P—{p} <P,
IND(P) = IND(P— {p!). which is contradiction. m

Based on the simple fact expressed in the Proposition 9 we can easily verify
weather a subset of attributes is dependent or independent. This property is
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important from computational point of view as it permits to replace the operation of
of checking all subsets of P by simple removal of single attributes.

In many practical applications we are interested in reducing those attributes
which are redundant with respect to a classification generated by the whole set of
decision attributes. The classification of objects obtaining in the absence of such
attributes is a good, in the sense of preserving the original classification, as the
classification based on all attributes. To this end we introduce the concept of a reduct,
that is, of a subset of attributes which is characterized by the following conditions:

1. It preservers the original classification,

2. None of the attributes can be removed from the reduct without destroying the
property 1. '

More precise definition of reduct is given below:

A subset P < Q < A is a reduct of Q (in S), if P is independent subset of Q, and
IND(P) = IND (Q).

Example 13. The set C of attributes in the Table 8 has only one reduct {a, b}.

A subset of attributes may have more then one reduct. The set of attributes {a, b, c}
in the Table 10.

Table 10
U a b ¢ d
1 1 0 2 2
2 0 1 1 0
3 2 0 0 0
4 1 1 0 1
5 1 0 2 2
6 2 0 0 1
7 0 1 1 2
8 1 1 1 0
9 1 0 2 2
10 0 1 1 0

has three reducts {a, b}, {b, ¢} and {a, ¢} and consequently
{a, b} —>{c, d}, {b, ¢} - {a, d} and {a, ¢} - {b, d}. ]
Example 14. In the information system given in Example 1 we have two reducts

{Volume Density, Numerical Density}

{Volume Density, Surface Density}.
That means that in order to characterize pathological states of a cell it is
not necessary to use all of the three attributes, but it suffices to use only the
attributes Volume Density and Numerical Density or Volume Density and Surface
Density. ®

There are several interesting and important from practical perspective properties
of the reduct. We summarize them in the following two propositions:
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i proposition 10. If P is a reduct of Q, then P—»Q—P and IND(P) = IND(Q). m

| Proposition 11.

(a) If P 1s dependent, then there exists a subset Q < P(Q # &) such that Q is
a reduct of P.
(b) If P < A is an independent subset of attributes, then all attributes in P are
pair wise independent. .
(c) If P < A is an independent subset of attributes then every subset Q of P is
independent.
(d) If P>*Q and R is a reduct of P, then R—*Q. |

2. Relative reduct of attributes

The definition of the reduct introduced in this section is based on the idea of
preservation of classification. Briefly, we can say that the approximation space
induced by the reduced set of attributes is the same as the space generated by the
attributes before reduction. As we see from Proposition 11 d) the reduced set of
attributes also preserves the dependency. That is, if a subset of decision attributes
was determined in a degree k by a certain subset of condition attributes then the
reduct of condition attributes also determines decision attributes with the same
degree. It does not mean however that every subset of condition attributes which
preserves the original dependency is a reduct. The question, often imposed in
practical data reduction is how far we can reduce the original set of condition
attributes without affecting dependency with decision attributes. Our investigation
into that problem has led us to the generalized definition of the reduct, so-called
relative reduct, which is based on the idea of dependency preserving between two
groups of attributes, rather that of classification. Loosely speaking, assuming that we
defined two groups of condition and decision attributes, the relative reduct is
a subset of condition attributes such that:

1. It preserves the dependency with decision attributes.

2. None of the attributes can be removed from the reduct without affecting the

dependency.

In what follows we introduce the definitions in more systematic and precise

§ terms.

Let S=(U, A, V,f) be an information system and let P, Q < A. We say

{ that P is independent with respect to Q (or in short Q-independent), if for every

R < PPOSp(Q*) # POSL(Q*); otherwise P is dependent with respect to Q (or in

i short Q-dependent).

1 Proposition 12. The following conditions are equivalent:

(1) P is independent with respect to Q,
(2) POSp(Q*) # POSp_ ;,,(Q*) for every aeP. |

Let us notice that in particular if P = Q, we obtain the previously introduced
concept of dependency of a set of attributes.



154

Set R = P will be called a relative reduct of P with respect to Q, or in short
Q-reduct of P, if R is independent subset of P with respect to @, and
POSR(Q*) = POS,(Q%).

Again, if P = Q the relative reduct of P with respect to Q, coincides with the
reduct of P.

Directly from the definition we get the following properties:

Proposition 13.
(1) If P—*Q and R is a relative reduct of P with respect to Q, then .R—*Q.
(2) If P and Q are a reduct and a reduct with respect to R respectively, then
P20. |

In the next example we provide simple illustration of the notion of the relative
reduct.

Example 15. Let us consider the Table 11, shown below where B = {a, b, c, d} and
C=le.f}

Table 11
U a b ¢c d e f
1 1 0 011 2
2 100 01 2
3 11 011 2
4 000 0 0 2
5 0 0 01 0 2
6 1 0 0 2 1 1
7 i1 02 1 1
8 210211
9 211 2 10
10 221 2 10
11 221 110
12 211110
13 201 110

It is easy to verify that the set B of attributes is independent. This set of attributes
is also dependent with respect to the set C of attributes. The only C-reduct of
attributes B is the set {a, c, d}. |

We end this section with the following important remark.
The idea of the relative reduct can be modified to provide for further reduction of
attributes. Let

o* ={X,...., X,}

be the partition (classification) generated by the set of attributes Q. We can apply the
concept of a relative reduct of attributes to distinguish the class X; from the
remaining classes X, ..., X;-1, Xi+1, ..., X,, thus obtaining the set of attributes
characteristic to each class X,. This procedure leads to n reducts (possibly different)
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R, each of which is associated with the class X;. Of course in general case each class
can have more then one reduct. This kind of reduct will be called a binary reduct.
Binary reduct are particularly useful in decision rules generation and deep
simplification of decision tables [52].

A detail discussion of this problem is left to the reader.

3. Core of attributes

In this section we are going to define a very useful concept in our approach, the
notion of a core of attributes.

Intuitively speaking the core is the subset of the most important or significant
attributes in the information system from the classification point of view.

The formal definition of the core is given below:

Let S=(U.A.V.f) be a decision table. P< 4 and aecP.

We say that an attribute ae P is superfluous in P if IND(P— {a}) = IND (P);
otherwise the attribute a is indispensible in P.

Obviously an attribute ae P is superfluous in P if and only if

P—{a}—a.

The set of all indispensable attributes of P will be called the core of P, i.e. the core
of P is the set

CORE(P) = {ac P: IND(P— {a}) # IND (P)}.

Example 16. The set of attributes B = {a, b, c} in the Table 10 has the empty core. In
the Table 12

Table 12

a

-
o
(59
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the core of the set of attributes {a. b, ¢} is the attribute a. |

The following property explains the relationship between the core and reducts of
attributes.

Proposition 14.
CORE(P)= [} 0@

QeRED(P)

where RED(P) is the family of all reducts of P.
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Proof If Q is a reduct of P and pe P—Q, then IND(P) = IND(Q), Q < P— {a} = P.
Hence by Lemma ! we get IND(P) = IND(P— {p}). Thus p is superfluous, i..
p¢ CORE(P), and CORE(P) = (){Q: Qe RED(P)}.

Suppose p¢ CORE(P), ie. p is superfluous in P. That means IND(P) =
= IND (P — {p}), which implies that there exists independent subset R = P— {p},
such that IND(R) = IND(P). Obviously R is a reduct of P and p¢ R. This shows
CORE(P) =2 (}{Q: Qe RED(P)}. ]

Example 17. The set B = {a, b, ¢} of attributes in the decision Table 8 has two
reducts {a, b} and {a, c} and consequently the core {a, b} n{a, ¢} = {a}. ®m

The use of the concept of core is twofold. First, it can be used as a basis for
computation of all reducts, for the core is included in every reduct, and its
computation is straightforward. Secondly, the core can be interpreted as the set of
most important attributes in the case when there are many reducts.

4. Relative core of attributes

The concept of core can be generalized in a way similar as that of a reduct.

The generalized core, called relative core, as the relative reduct, is based on the
concept of partial dependency between two groups of condition and decision
attributes. In this case the core of attributes consists of most important or significant
attributes with respect to determining values of decision attributes by values of
condition ones. In what follows we present more systematic and precise definition to
the relative case.

Let S= (U, A, V, f) be an information system and P, Q = A.

The attribute ae P is superfluous in P with respect to Q (Q-superfluous), if

POS,(Q*) = POSp_ 5y (Q%);

otherwise a is indispensable in P with respect to Q (Q-indispensable).

The relative core of P with respect to Q (Q-core of P), denoted CORE,(P), is the
set of all indispensable attributes of P with respect to Q, i.e.

CORE,(P) = {ae P: POS,(Q*) # POSp_ ,,(Q%)}.

For relative core we have the following property.

Proposition 15. |
CORE,(P)= () R. =

ReREDg (P)

The proof of this theorem is similar to the previous one.
It is easy to see that if P = Q, then the relative core coincide with the core, which
is defined in the previous section.
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IV. Decision tables

In this section we will consider special, important class of information systems,
called decision tables. Basics of the decision tables can be found in Hurley 1983 [6].

Decision table i1s a finite set of decision rules, which specify what decisions
(actions) should be undertaken when some conditions are satisfied.

It turns out that the information system provides a very good framework as
a basis of decision tables theory.

1. Formal definition and some properties

Decision tables can be defined in terms of information system as follows.

Let S=(U, A, V,f) be an information system and C,D < A two subsets
of attributes such that CnD =@ and CuD = A, called condition and de-
cision attributes respectively. Information system S with distinguished condition
and decision attributes will be called a decision table, and will be denoted
S ==(Lfa(:’Lh Lﬁf)'

Equivalence classes of the relations IND (C) and IND (D) will be called condition
and decision classes, respectively.

The function f_: A—V, such that f (a) = f(x, a), for every ae A, xe U will be

{ called a decision rule (in S).

If g is a decision rule, then the restriction of g to C, denoted ¢g|C, and the

i restriction of g to D, denoted g|D will be .called conditions and decisions (actions) of
§ g respectively.

The decision rule is deterministic (in S) if for every y # x, f,|C = f,|C implies

f.|D = f,|D; otherwise f, is nondeterministic.

A decision table is deterministic (consistent) if all its decision rules are determinis-

¥ tic; otherwise a decision table is nondeterministic (inconsistent).

The following is the important property that establishes relationship between

determinism (consistency) and dependency of attributes in a decision table.

; Proposition 16. A decision table S = (U, C, D, V, f) is deterministic (consistent) if
and only if C—D. v =

From the Proposition 16 it follows practical method of checking consistency of
decision table by simply computing the degree of dependency between condition and
decision attributes. If the degree of dependency equals to 1 then we conclude that the

¢ table is consistent; otherwise it is inconsistent.

The next property is also important form practical perspective.

i Proposition 17. Each decision table S = (U, C, D, V, f) can be uniquely decomposed
{into two decision tables S, = (U,, C, D, V,,f;) and S, =(U,, C, D, V,, f,) such
ithat C»D in S, and C®D in S,, where U, = POS.(D*)

f1 is the restriction of f to U,
U,= [ BN.(X)

X e D*
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f, 1s the restriction of f to U,
and V,, V, are ranges of functions f; and f,, respectively. n

Similarly to Proposition 16, the Proposition 17 also leads to an interesting
practical method of processing decision tables. Suppose that we used computation of
dependency between condition and decision attributes according to Proposition 16
to verify the consistency of a decision table. If the table turned out to be inconsistent
1.e. the dependency degree was less than 1, then based on Proposition 17, we could
decompose the table into two sub tables: one totally inconsistent with dependency
coefficient equal to zero and the second entirely consistent with the dependency
equal to one. This decomposition however is possible only 1f the degree of
dependency is greater than zero and different form 1.

Example 18. Let us consider the decision table given in Table 8. We will assume that
a, b and c are condition attributes, and d and f are decision attributes. In this table
for instance the decision rule 1 is nondeterministic, whereas the decision rule 3 is
deterministic. By employing the Proposition 16 we can decompose the decision table

8 into the following two decision tables:

Table 13
U, a b ¢ d

3y

3 20011
4 110 22
6 2201 1
7 21112
Table 14

00 L N M=
O = O =
-0 = O
e N )
OO =N
—_— 0 O

The decision Table 12 is deterministic whereas the decision Table 13 is totally
nondeterministic, which means that all decision rules in Table 12 are deterministic,
and in the decision Table 13 — all decision rules are nondeterministic. |

2. Simplification of decision tables

Simplification of decision tables is of primary importance in many applications.
Example of simplification is the reduction of condition attributes in a decision table.
In the reduced decision table the same decisions can be based on smaller number of
conditions. This kind of simplification eliminates the need for checking unnecessary
conditions or, in some applications, performing expensive test to arrive at a con-
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clusion which eventually could be achieved by simpler means. Simplification of
decision tables has been investigated by many authors [6], and there is a variety of
informal approaches, to this problem.

Let us also mention that the simplification of boolean functions in the context of
digital circuits design (cf. Muroga 1973) may be also viewed as a simplification of
decision tables. :

The approach to table simplification presented here consists of three steps:

(1) Computation of reducts 'of condition attributes, which is equivalent to
elimination of some column from the decision table.

(2) Elimination of duplicate rows.

(3) Elimination of superfluous values of attributes.

§ Remark
We should note that in contrast to the general notion of an information system

L rows do not represent here any real objects. Consequently duplicate rows can be
L climinated as they correspond to the same decision. :

Thus the proposed method consists in removing superfluous condition attributes
§ (columns), duplicate rows and in addition to that irrelevant values of condition
attributes. '

, In this way we obtain “incomplete” decision table, containing only those values
B of condition attributes which are necessary to make decisions.

B  From mathematical point of view, removing attributes and removing values of
§ attributes are alike and will be explained in what follows.

For the sake of simplicity we assume that the set of condition attributes is already
§ reduced, ie. there are not superfluous condition attributes in the decision table.
I As we have already mentioned with every subset of attributes P we can associate
§ the partition P*, and consequently set of condition and decision attributes define
§ partitions of objects into condition and decision classes.

Because we want to discern every decision class using minimal number of
conditions — our problem can be reduce now to searching for relative reducts of
condition classes with respect to decision classes. To this end we can use similar
methods to that of finding reducts of attributes.

Now we define all necessary notions needed in this section.

Let F = {X,, ..., X,} be a family of sets and let (\F = (1) X,. We say that X, is
; i=1

superfluous in F, if (\F = ((F— {X,}), otherwise set X, is indispensable in F.
The family of all indispensable sets in F will be called a core of F.

i A family of G = F is independent if all of its components are indispensable.
A subset H < F will be called a reduct of F if (\H = ()F and H is independent.
As we see the introduced notions are counterparts to that introduced to that
iintroduced in Section 2.6 with the only difference, that instead of relations we deal

now with sets.
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By analogy to the previous section we can also introduce the notions of relative
reduct and relative core.

Suppose we are given a family F = {X,,..., X,}, X; = U and a subset Y= U,
such that (JF = Y.

We say that X, is Y-superfluous in F, if (\(F— {X,}) < Y, otherwise the set X is
Y-indispensable in F.

A family H < F is a Y-relative reduct of F, if H is Y-indispensable and (|H < Y.

As we can see the introduced definitions again differ from the one discussed
previously only in this regard that instead of relations we deal now with sets.

Let us also notice that the counterparts of Propositions 2.13 and 2.14 is also valid
in the present framework as shown below.

Proposition 18.

@ () H=COREF)

HeRED(F)
®) () =COREy(F)
HeREDy (F)
where RED (F) (REDy (F)) is the family of all reducts (relative Y-reducts) of F. |

Again the proof is a modification of that given previously.

Now we are in a position to explain how to reduce superfluous values of
condition attributes form a decision table.

From Proposition 3 it follows that with every subset of attributes P < A and
object x we may associate set [x],. Thus with each row labelled by object x in the
decision table, and set of condition attributes C, we may associate set

[x]c = () [x].. But each set [x], is uniquely determined by attribute value f (x, a),
aeC

hence in order to remove superfluous values of condition attributes we have to
eliminate all superfluous equivalence classes from the equivalence class [x].. Thus
problems of elimination of superfluous values of attributes and elimination of
corresponding equivalence classes are equivalent and consequently we may use the
Proposition 18 to eliminate superfluous values of attributes in the same manner as
Propositions 14 and 15 was used to eliminate superfluous attributes.

3. Example of application

We shall illustrate the above defined concepts by means of an example of
a decision table simplification describing the control of a cement kiln.

The decision table, taken from Mroézek [19], is shown in Table 15, where a, b, ¢
and d are condition attributes, whereas e and f are decision attributes. We shall not
discuss the meaning of the table, which can be found in the paper of Mrozek.

It is easy to check that the set of condition attributes is independent in absolute
sense, but it i1s dependent with respect to the set of decision attributes. The only
D — reduct of condition attributes is the set {a, c, d}.
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f Table 15
U a b cde f
5 1 100112
‘ 2 100012
| 3 110112
1 4 00000 2
i 5 00010 2
6 100 21 1
7 110211
8 210211
9 211210
0 221210
1 221110
2 211110
3201110

Thus after removing duplicate decision rules the decision Table 15 can be
simplified as shown below.

Table 16
U a ¢c d e f
1 1011 2
2 1 00 1 2
4 0 00 0 2
5 0 01 0 2
7 10 2 11
8 2 0211
9 21210
11 21110

Let us also remark that both decision Tables 15 and 16 are deterministic.

Let us note that in the decision table there are four kinds of possible decisions.
The possible decision are specified by the following pairs of values-of decision
attributes e and f: (1, 2), (0, 2), (1, 1) and (1, 0), denoted in what follows by I, II, III
and 1V, respectively.

Thus we can represent decision Table 16 as shown in the Table 17.

Table 17
U a c de f

N
N
;1w
T
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It is easy to check that in the first row we have two indispensable attribute-values
a, and d, (a; denotes value i of attribute (a) and {a,, d,} is the core and also the
reduct of the set corresponding to this row.

Proceeding in the same way we obtain the following table of value cores:

Table 18
U a ¢c d e f

L
‘; g 1
; 0 2 I
9 1 Iv

11 1

Removing again duplicate rows from Table 18 we obtain Table 19.

Table 19

U a c d e f

1 1 1

2 1 !

4 0 I
2

g 0 111

9 1 v

It can be easily seen that in the decision classes I, IT and IV core values in each
row are also reducts of values. For the decision class III however values a,, ¢, do not
form value reducts of corresponding rows. All possible value reducts for this rows are
listed in tables below:

Table 20 Table 21

U a c d e f U a c d e f
1 1 1 1 1 1

2 1 0 I 2 1 I
4 0o II 4 0 II
7 1 2 7 1 2

g 20 M g 0o 2 M
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Table 22 Table 23

U a ¢ d e f U a c d e f
1 1 1 | 1 1 1 I
2 1 0 2 1 0

4 0 II 4 0 IT
7 0 2 7 0 2

8 2 0 1 8 0 2 1
9 1 v 9 1 v

The above results means that in order to distinguish decision classes III from the
emaining decision classes I, II and IV we can use four alternative sets of values of
ondition attributes as shown in Tables 20-23, and consequently we can represent
ur original decision table as shown for example in Table 24.

Table 24
U a ¢c d e f

1 1 x 1

i I
4 0 x x 1II
8 x 0 2 1I
9 x 1 x 1V

The Table 24 is obtained from Table 23 by removing duplicate row 7 and crosses
‘in the table denote “don’t care” values of attributes.

In summary, to simplify a decision table we should first find reducts of conditions
attrlbutes remove duplicate rows and then find value-reducts of condition attributes
:gnd again, if necessary, remove duplicate rows. This method leads to a simple
ialgorithm for decision table simplification or generation of decision rules (al-
gorithms) from examples, which, according to our experiments, out performs other
methods in terms of achievable degree in the number of conditions and what more,
glves all possible solutions to the problem. Compare for example Quinlan [40].
. We conclude this section with the following remark.

: Because, in general, a subset of attributes may have more that one reduct (relative
reduct) the simplification of decision tables does not yield unique results. The table
p0351b1y can be also optimized according to pre assumed criteria.

R R A S R R

L

e T

Bibliographical remarks

. The idea of an information system considered in this book was introduced first in
Pawlak [32], and extended in Marek and Pawlak [15]. Informahon systems in the
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context of rough sets were considered in Novotny and Pawlak [21-24], Marel
Pawlak [16], Orlowska and Pawlak [29], and Pagliani [31].

A more general concept of information system, so called nondetermi
information systems was introduced by Jaegerman [7, 8] and investigate
Lipski Jr. [11, 12], Ortowska and Pawlak [30], Stowinski and Stefanowski [47]
others.

Investigation.of independence of attributes in information systems was prog
in Pawlak [34]. Some mathematical consideration concerning this problem one
find in Los [13]. It is also worthwhile to mention that the notion of independen
attributes in the information system is a special case of a general notio
independence in mathematics introduced by Marczewski [14] and investigate:
many authors (cf. Glazek [4]).

Dependency of attributes in information system was introduced in Pawlak
and rough dependency — in Pawlak [37] and Novotny and Pawlak [26].
relationship between the notion of dependency in information systems and in
relational data bases was compared and investigated by many authors (cf. Buszk
ski and Orlowska [2], Rauszer [42-44].

The applications of information systems to decision tables in the framew

of rough sets was proposed in Pawlak [36, 39], and investigated by Wong
Ziarko [51], Boryczka and Stowinski [1].
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