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Motto :"Reality or the world we all
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Carlos Castaneda, in Journey to
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1. Introduction.’

Knowledge is widely discussed issue nowadays, mainly by
logicians and computer acientists, in connection with
artificial intelligence (cf. Brachman at al. (1985). Halpern
(1986)). Intuitively, lnowledge can be perceived as & bady
of information about some parts of reality, which constitute
our domain of interest. This definition, however fails to
meet precision standards needed when developing & formal
theory. Moreover, at closer look it has multiple meanings,
and it tends to mean one of several things depending on the
context and the area of interest.

We propose here a formal definition of the term
"L:nowledge" and we show some its basic properties employing
the rough set concept. We realize that the proposed
understanding of knowledge is not sufficiently general, yet
it seems to cover variety of domains, 1in particular in
camputer science, and artificial intelligence.

The concept of knowledge presented here ijs rather closer
to that cansidered in cognitive sciences, than that
discussed in artificial intelligence. We do not, however,
aim to form a new, general theory of knowledae, but we have
in mind practical applications and in fact the perDsed

approach has been successfully applied in many areas
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(cf.Arciszewski (19B4), Krasowski (1988), Mrozelk (1987),
Slowinski (1988), Ziarko (19389), and others).

2. Knowledge as Classification.

Our claim is that knowledge is deep-seated in the
classificatory abilities of human beings and other species.
Far example, knowledge about the enviraonment is primarily
manifested as an ability to classify variety of situations
from the point of view of survival in the real world.
Complex classification patterns of sensors signals probably
form fundamental mechanisms of every living being.
Classification on more abstract levels, seems to be key
issue in reasaning, learning and decision making, not to
mention that in science classification is of primary
importance, too.

We simply assume here, that knowledge is the ability to
classify objects, and by object we mean anything we can
think of, for example, real things, states, abstract con-
cepts, processes etc. In fact knowledge consists of family
of various classification patterns, of a domain of interest.
Thus by knowledge we mean here variety of classification
patterns related to specific parts of real or abstract
world, called here the universe of discourse (in short the
untverse). Nothing particular about the nature of the
universe and knowledge will be assumed in this paper.

In what follows we shall explain this idea in some more

detail.

3. Knowledge Base.

For mathematical reasons we shall often use eguivalence
relations instead of classifications, since these twao
notions are mutually exchangeable and the later is easier to
deal with. Hence knowledge can be also understood as a
family of equivalence relations over a fixed universe. To
define the idea more precisely we need some formal defini-—
tions which are given below.

By knowledge base we mean relational system K = U, R,

where U is a finite set called the universe, and R is a fa-—
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mily of equivalence relations over U. Every F ¢ R is called

knowledge about U.
1f p is an equivalence relation, then by p/U we mean

the family of all equivalence classes of p, referred to as

categories of p (or p/U).

1f p €« R, then p will be called primitive and catego-
ries of p are also said to be primitive.

For example if the elements of the universe are categjo-—-
rized according to color, then the corresponding categories
would be specific colors, for instance green, red etc.
If Ris kno@ledge about U and F ¢ R, then

ECP> = P
o e F

is also an eguivalence relation aver U, and

[x]
EIppy = NI
where [x] denotes category of p containing element x.
)
Categories of E(F) will be also called atoms of F

(F-atoms)>, or elementary categeries af F (F-elementary

categories>.

Thus elementary categories of F consist of those ob-
jects of the universe U which are similar, or indiscernitble
according to knowledge F. In other words elementary cate-

gories of F are those slementary properties of the universe

which can be voiced employing knowledge F.
Knowledge F and Q are equivalent (F =~ Q), if E(P)y= E(D.

Hence P =~ @, if both P and @ have the same set of

elementary categories.
1f E(P) < E(Q) we say that knowledge F is firer than
that

knowledge Q, or Q is coarser than F. We can also say,

if £ is finer than Q, then F is specification af Q, and @ is
generalization of F.

Every union of elementary categories of F will be
called category af F (F-calegoryvl.

Thus FP-calegory is a property which can be expressed in
terms of P-atoms, i.e. elementary properties expressible in

knowledge F.

i1t is easily seen that all categories form & booclean

algebra, i.e. categaries are closed under boaolean
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operations. For example if “old" and "ji11" are categories,

then " old and ill1", " old or i11" and " not ill1" are also

categories in our language.

4. Categories and Concepts.

Suppose we are given a knowledge base K = (U,.RO. Any
subset X < U will be called a concept in K. We will say that
the concept X is definable in knowledge P < K (is
P-definabled, if X is a category of F (i.e. union of
alementary categories of P); otherwise the concept X is
non—-definable in F.

(Another, very elegant, mathematical analysis of con-
cepts was proposed by Wille (1982). See also Iwinski
(1982)) .

The P-definable concepts are those which can be exactly
expressed employing the knowlednpe F, and will be also called
exact in P ( FP-exact). The pP-nandefinable concepts cannot be
expressed using the knowledge P and are said to be tnexact
or rough in F (F-roughl.

Rough concepts can be however defined approximately and
to this end we assign two categaries which will approxzimate
the concept from below and from above. These two categories
of knowledge P are of course definable in F and will be
referred to as a lower and upper approximation of X in F.
Formal definition of approximations is given next.

Let P o £ and X <« U. The I~ lower approxtination of e
denated FX. and the P-upper agproxtmation of X, dencted Fx

are, defined as below.

FX

it

Uy € EXPY /U Y < X3
FX = UYY ¢ E(PY/Us ¥ 0 X = O3
The set BNFCX) = PX - FX. will be called a boundary of
X in F
Set PX is the set of all elements of U which can be with

certainty classified as slements of X, employing knowledge

F; Set PX is the set of elements of U which can be possibly

classified as elements of X, wusing the knowledge F. Set

BNP(X) is the set of elements which cannot be classified
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either to X or to —X by using knowledge F.

1t is easy to see that the concept X is exact in F, if
and only if EX = FX; otherwise, i.e. if FX & ?X, X is rough

in P.{cf. Pawlak (1982)).
One can easily prove the fellowing properties of

approximations.

Proposition 1.
1 PX g X g FX
=y PO = Fo = ©; FU = FU = U
%) X < Y implies EX ¢ £ and Fx « FY

4y P (XU = FX UFY
g
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EX 1 EY
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ES
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~
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= FX U FY

7y Ftx m ¥ < EX 1 EY

g) E(-X) = —FX
9) F(=3) = -FX
10) FEX = FEX = EX
11) FFx = FFx = FX

5. Reduction of Knowledge.

Fundamental problem we are going to address in this
section is whether the whale knowledge is always necessary
to define some categories available in the krnowl edge
considered. This problem arises in many practical applica-
tions and will be referred to as knowledge reduction.

To discuss the problem precisely we define first some
notions.

Let K = (U,R) be a knowledge base and lat FP.Q < K.

By P-postitive regton of O, denoted POSFCO) we under-
stand the set

FOS (@) = Uex
X < E(@ /Y
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We say that p € P is Q-indispensable in P, if

- < .
PO:P(O) = PO&F_ }(O),

o
otherwise p is o-dispensable in F.

1f every p in P is Q-indispensable we will say that F
is Q-independent.

The set of all Q-indispensable primitive relations in F
will be called the Q-core rnowledge of F, and will be deno-
ted as COREQCF).

Set S ¢ P will be called a O-reduct of P, if 35 is
Q-independent subset of F and-FOSS(O) = FOSF(O).
The following property explains the relationship between

the core and reducts.

Proposition 2.

COREO(P) = N K
R e REDO(F)
where REDG(P) is the family of all Q-reducts of F. ]

Let us briefly comment the above defined notions.

Set POSP(O) is the set of all objects which can be
classified to elementary categories of knowledge @, emplo-—
ying Lnowledge F.

Knowledge P is a-independent if the whole knowledge F
is necessary to classify objects to zlementary categories of
knowledge P.

The @-core knowledge of P is the maost essential part of
knowledge P, which cannot be eliminated without disturbing
the ability to classify objects to elementary categories of
Q.

The Q-reduct of knowledge P is minimal subset of know—
‘ledge P, which provides the same classification of objects
+o elementary categories of knowledge & as the whole
nowledge FP. Let us observe that knowledge F can have more
than one reduct.

Knowledge F with only one o-reduct is in & sense deter—
ministic, i.e. there is only ong@ WAy of using elementary

categories of knowledge F when classifying objects to

elementary categories of knowledge Q. In the case of
nondeterministic knowledge i.e. if knowledge P has many
o-reducts, there are, in general. many ways of using elemen—
tary categories of P when classifying objects to elementary
categories of Q. This nondeterminism is particularly strong
if the core knowledge is void. Hence nondeterminism intro-
duces synonymy to the knowledge, which in some cases may be

a drawback.

6. Reasoning about Knowledge.

Theorizing, besides rlassification, is the second most
important aspect when drawing inferences about the world.
Essentially, developing theories is based on discovering
inference rules of the form “if ... then ". (Sometimes the
rules can describe causal relationships). In our philosophy
this can be formulated as how from a given knowledge another
knowledge can be induced.

Mare precisely, Lnowledge @Q is derivable from knowledgé
F, if all elementary categories of Q can be defined in terms
of some elementary categories of knowledge F. The derivation
can be also partial, which means that only part of knowl edge
Q is derivable from F. The partial derivability can be
defined using the notion of positive region of knowledge.

We define now the partial derivability formally.

Let K = (U,R) be knowledge base and F.Q € R. We say
that knowledge Q is derivable in a degree Kk (0<k<1)  from

knowledge F, symbalically F —~>ka, if

card POSF(Q)

R = rFCO) = ——————
card (U

where card denoctes cardinality of the set.
If k= 1 we will say that @ is totally derivable from
P: if O<KRkL1, we say that Q (s roughly Cpartially? dertivable
from F, and if kR = 0 we say that Q is totally nondertvable

from P. 1f P ——>1 Q we shall also write P -—> Q.

The above described ideas can be alsa interpreted as a
ability to classify abjects. More precisely, if k= 1, then

all elements of the universe can be classified to elementary
categories of @ by using Enowledge F. 1If » = 1 only those




—
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element of the universe which belong to the positive region
can be classified to categories of lnowledge @, employing
knowledge P. In particular, if k = 0 none of the elements of
the universe can be classified . using knowledge F - to

elementary categories of knowledge Q.

7. Knowledge Representation.

The notion of knowledge we have been considering so far
has semantic character. For computational reasans we need
however syntactic representation of knowledge. To this end
we shall employ tabular representation of ‘knowledge, which
can be viewed as a special kind of "formal language™ used to
represent equivalence relations (or partitions) in symbolic
form suitable for computer processing. Such a data table
will be called knowledge represantation systems. (Sametimes
called also information systems or attribute-value system).

Knowledge representation system can be perceived as &
data table, columns of which are labelled by attributes,
rows are labelled by objects (states, processes etc.) and
each raow represents & piece of information about the
corresponding object. The data table can be obtained as &
result of measurements, aobservations or represents knowledge
of an agent or a group of agents. The origin of the data
table is not important from our point of view and we shall
be interested only in some formal properties of such tables.

It is easily seen that with each attribute we <can
associate an equivalence relation. For erxample the attribute
weplor" classifies all objects of the universe into
cateqgories of ob jects having the same color, like red, qreen
. blqe etc. Hence with the whole table we can associate the
set of equivalence relations, i.e. knowledge base. All  the
praoblems mentioned in the previous paragraphs can be now
formulated in terms of classifications jnduced by attributes
and their values.

For example knowledge reduction and reasoning about
knowledge can be formulated as reduction of attributes and
detecting attribute ( partial) dependencies.

Formally knowledge representation system can be

formulated as follows.

——
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Knowledge representation svstem is a pair S = (U A,
where
U - is a nonempty, finite set called the universe.
A - is a nonempty, finite set of primitive
attridbutes.

Every primitive attribute a < «4 is a total function

arly —> Va, where Va— is the set of values af a,
called the domain of «.

With every subset of attributes B ¢ 4, we associate a
binary relation ECB2 defined thus:

ECB) = {ix,y2 € Uaa g B alx> = alwri.

Obviously ECBO is an equivalence relation and

ECE> = y ECad
a e B

Every subset B < A will be called an attribute. 1¥ B is
a single element set then g is a primitive attribute,
otherwise the attribute is said to be compound. Attribute B
may be considered as a name of the relation £ECBD. For
simplicity. if it does not cause canfusion, we shall
identify attributes and the corresponding relations.

The value alx) assigned by the primitive attribute a to
the object x can be viewed as a name (or a description) of
the primitive category aof a ta which x belongs (i.e.
equivalence class of ECa> containing x, that is to say alx0
is the name of [x]ECa))' The name (description) of an
elementary category of attribute 8 ¢ A containing object
x is a set {a(x)}aés.

The example below will illustrate the notions defined

sa far.

8. Example.
Let us consider the following knowledge represen—

tation system.
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Table 1

The universe U consists of 8 elements 1,2.3.4,5.6,7,8.

the set of attributes is A = ta,b,c,d,el, whereas

Vv = Va = Vb = Vc = Vd = Ve = {0,1,23.

1t should be guite clear that some objects may have
identical values of some attributes, i.e. they cannot be
distinguished by these attributes, what means that they must
belong to the same elementary category of the set of
attributes. Exemplary partitions generated by attributes in

this system are given below.

« - £12.83,01,4,53,83,6,733
b — €01,3,53,02,4,7,83, 633
e, - {-(1}_.{2},{3,6},{’2,7},{4),(5},{81)

-~
4
s

{a.b,¢cr — £01,53,{2,83 .1 LA (631755

Reduction of knowledge can be now expressed as elimina—
tion of superfluous attributes, and rules of inference can
be interpreted as partiatl dependencies of attributes in the
Lnaowledge representation system.

Suppose that the subsets of attributes <{(c,d.,e? and
{g,b}, in Table 1. represent Lhnowledge P and Q respectively.
Then FOSP(Q) = {1,4,5,87%, what means that only those objects
can be classified to elementary catepgories of @, employing
knowledge P, or in other words there is & partial dependency
between Q and P, or more exactly F ~}O'5 Q, i.e s0% object
only can be classified. Moreover knowledge P is Q-dependent;
the Q-core of F is the attribute ¢ and there are two

Q-reducts of F, namely {c.d} and re,e). Because rnowledge F
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is nondeterministic, we can use either reduct {c,d?> or
(c,e) to classify ab jects to categories of Q-

Tabular "language" of knowledge representation leads to
simple algorithms for knowledge reduction and inference
rules ( dependencies )y generation. More about this topics

can be found in Grzymala (1988) and Ziarko (1987) .

9. Conclusion.

The presented approach to reasoning about Lnowl edge,
based on the raough set philasophy, allows of simple and
precise formulation of problems jnvolving imprecision. It
seems to be of particular interest for artificial intelli-
gence, in particular, machine learning., pattern recogni-—
tion, decison support systems, decision tables simplifica—
tion and others, since they can be reduced to the above
scheme of knowledge processing. More details can be found in

specialistc literature.
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