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1. Introduction

In this paper we are going to give some basic ideas underlying the concept of
a rough set, introduced by the author in [13] in order to deal with the vague and
imprecise data. '

The most interesting case is when data is arranged in the form of an information
system (see [12]). The application of rough sets to the analysis of information
systems is shown and discussed here.

The proposed approach has ben applied successfully in many areas (see e.g.
[1, 117 and [!5]).

The rough set concept can be vieved as an alternative to the fuzzy sets (see [18]).
Comparison of these two concepts can be found in [2, 14] and [17].

More properties concerning rough sets and information systems are published in
[2-10] and [16].

2. Rough Sets

In this section we give basic definitions and properties of concepts necessary to
explain the idea of a rough set.

2.1. Approximation space

An approximation space is an ordered pair Apr = (Univ, Ind), where Univ # @
is a finite set called an universe, and Ind = {R,, Ry, ..o, R,}, R; < Univ x Univ is
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a family of primitive indiscernibility relations. We assume throughout this paper that
every primitive indiscernibility relation R; is an equivalence relation. If Ind consist of
one indiscernibility relation, then the approximation space Apr = (Univ, Ind) will be
called simple. Finite intersection of indiscernibility relations in Apr is also an

indiscernibility relation in Apr. If F < Ind, then F = () R. Equivalence classes of an
ReF
indiscernibility relation R in Apr are called R-elementary sets in Apr. The family of

all R-elementary sets in Apr will be denoted R*. If R is an indiscernibility relation in
Apr = (Univ, Ind), x, yeUniv and (x, y)e R, then we say that x and y are
R-indiscernible in Apr (indiscernible with respect to R in Apr).

Every union of R — elementary sets in Apr will be called R — discernible set in
Apr, or discernible set, if R is understood; Otherwise the set is called R — indiscer-
nible in Apr, rough with respect to R in Apr. We assume that the empty set is
R — discernible for every R and Apr. The family of all R — discernible sets in Apr
will be denoted by Ind,(Apr) or short Ind;. Certainly Ind is a boolen algebra, i.e.
the family of all R — discernible sets is closed under intersection, union and
complement of sets.

If Apr = (Univ, Ind) and Apr’ = (Univ/, Ind’) are two approximation spaces and
Univ’ € Untv, Ind’ < Ind we say that Apr is a subapproximation space of Apr. If
Univ' < Univ and each indiscernibility relation in Ind’ is restriction of certain
indiscernibility relation in Ind to Univ’ we say that the approximation space Apr’ is
a subapproximation space of Apr restricted to Univ,, Apr’ = Apr/Univ. If
Univ = Univ’ and Ind’ < Ind we say that Apr’ is subapproximation space of Apr
restricted to Ind’, {Apr’ = Apr/Ind’).

If R and Q are two indiscernibility relations in Apr = (Univ, Ind) and R < Q we
say that R is finer then Q, or Q is coarser then R.

2.2. Approximation of sets

Let Apr = (Univ, Ind) be an approximation space, X < Univ and R an indiscer-
minility relation in Apr. For any X and R we define two sets

RX = {xeUniv: x < X}
RX = {xeUniv: x,nX # 3}

called the R-lower and the R-upper approximation of X in Apr, respectively.
The set Bng(X) = RX —RX will be called a R-boundary of X in Apr.
We shall employ also the following denotations:
" Intg(X) = RX, R — interior of X,
Extg(X) = Univ—RX, R — exterior of X.
The notions introduced above can be depicted as shown in Fig 1.
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x) card RX

o =

R card RX

will be called R-accuracy (or accuracy with respect to R) of X in Apr, and the
number

Qr(X) = 1—ag(X)

is called R-roughness (or roughness with respect to R) of X in Apr.

Of course 0 < agp(X), 0x(X) < 1.

Obviously a set X is R-discernible iff RX = RX; otherwise, i.c. if RX # RX, a set
X is X is R-indiscernible or rough with respect to R.

2.3. Properties of approximations

Each indiscernibility relation R in Apr = (Univ,Ind) defines the topological
space Ty = (Univ, IndR(Apr)), where Indg(Apr) is the topology for Univ and it is the
family of all open and closed lets in Ty. The family of all R-clementary sets in Apr is
a base of T,. The R-lower and R-upper approximation of X in A4 are interior and
closure operations in the topological space T, respectively, and the following
properties are true:




Al) RX < X = RX,
A2) R Univ = RUniv = Uniy,
A3) RO = RO =0,
A4) R(XuY)=RXu
A5) R(XuY)2RXu
A6) R(XnY)s RXn
A7) R(XnX)=RXn
A8) R(—X)= —R(X),
A9) R(—X)= —R(X),
A10) RRX = RRX = RX,
All) RRX = RRX = RX.
Using the notions of R-lower and R-upper approximations we can define two
membership functions € and €; (called a strong and a weak membership,
respectively) as follows

I =i =
il e e

xexg X iff xeRX,
x€x X iff xeRX,

If xeg X we say that “x surely belongs to X with respect to R”, and if xéz X we
say that “x possibly belongs to X with respect to R”.

Let us also note that RX is the maximal R-discernible set contained in X and RX
is the minimal R-discernible set containing X.

In other words RX is the intersection of all sets having the same R-lower
approximation and RX is the union of all sets having the same R-upper -ap-
proximation.

2.4. Classification of rough sets

Let Apr = (Univ, Ind), R be an indiscernibility relation in Apr and X < Univ be
an R-indiscernible (rough set in Apr). We can classify rough sets as follows:

Set X is roughly R-discernible in Apr, if RX # @ and RX # Univ.

Set X is externally R-indiscernible in Apr, if RX # @ and RX = Univ.

Set X is internally R-indiscernible in Apr, if RX =@ and RX % Univ.

Set X is totally R-indiscernible in Apr, if RX =@ and RX = Univ.

Let us notice that if X is R-discernible (roughly R-discernible, totally
R-indiscernible) so is — X. If X is externally (internally) R-indiscernible, then — X is
internally (externally) R-indiscernible.

The above classification says how a set of objects X can be discern by means of
indiscernibility relation R. ‘

Example 2.4.1

nibility relation with the following equivalence classes:




E, ={xo, X1}, E,={x,, x5, xo}, E;= {x3, x5},

E4 = {x4’ xs}a ES = {x7’ xlO}

The sets:
X, = {xg, X1, Xq, Xg},
Y, = {xs, x5, X7, Xg}
Z, = {x;, X3, X5, Xg, Xg}

are examples of R-discernible sets.
The sets

X, = {xo, X3, X4, Xss Xg, X0}
Y, = {x,, x4, xg, X105
Z,= {xz’ X35 X4, xs}

are examples of roughly R-discernible sets. The corresponding approximations
boundaries and accurately:

RX, = E;UE, = {x3, X4, X5, Xg},
RX, = E,UE;UE, = {Xy,X;, X3, X4, X5, X7, Xg, X10},
Bng(X,) = E; = {x,, x,},
ax(X;) = 4/8 = 172,
RY, = Es = {x;, x40},
RY, = E\UE,UE; = {x,, X, X4, X7, Xg, X0},
Bng(Y,) = E;UE, = {x4, X5, Xg, X0}, )
ag(Yy) = 2/6 = 1/3,
RZ, = E, = {x4, X4},
RZ, = R,UE,;UE, = {x,, X3, X,, X5, X, Xg, Xg},
Bng(Z,) = E; VE; = {x,, X3, X5, X, Xo},
ar(Z,) = 2/7.
The sets:
X5 = {xq, X1, X3, X3, X4, X5},
X3 = {x1, X3, X3, Xg, Xg, Xg, X10},

Z5 = {x4, x,, X35 X4, Xg, Xy0}

are examples of externally R-indiscernible sets.
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The corresponding approximations, boundaries and accurately are-as follows:
RX,=E, = {xo’ x1}>
RX,; = Uniyv,
Bng(X;) = E,VE;UE,UES = {x;, X3, X4, X5, Xg, X7, Xg, Xgs X;0}
agr(X3) = 2/10 = 1/5,
RY; = E, = {x,, X, X4}
- RY; = Univ,
Bng(Yy) = Ey WE;UE,UE; = {xg, X;, X3, X4, X5, X7, Xg, X0}

ag(Y;) = 3/10,

RZ, =E, = {x,, xs}’

RZ, = Univ,

Bng(Z,) = E, VE,VEsUEs = {x,, X|, X;, X3, X5, X¢, X7, Xg, Xy0},
ap(Z,) = 2/10 = 1/5.
The sets:
X4 = {x¢, X3, X3},
X,= {xla X25 X4 x7},
Zy={x;, X5, X4} ‘

are examples of internally R-indiscernible sets.
Below are given upper approximation of these sets:

RX,=E ,VE,VE; = {xq, X, X,, X3, X5, X¢, Xg},

. RY — = )
RZ,=E,VE;UE, = {x;, X3, X4, X5, Xg, Xg, Xg}-
Certainly lower approximations of these sets are empty sets, and accuracy is

equal to zero.
Below are given examples of sets which are totally R-indiscernible:

X5 = {an X3, X3, X4, X9},

Xs = {xv X5y, Xg> Xg» xlo}’

Zs = {xq, X5, X5, Xg}.
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2.5. Dependency of indiscernibility relations

Let Apr = (Univ, Ind) be an approximation space and P, Q indiscernibility

relations in Apr.
The number .

card Int,p(Q*)
card Univ

b

Yp(Q*) =

where
Int,(Q%) = ) PX

XeQ*

will be called the accuracy of the classification Q* with respect to P (P-accuracy of
0*).

Obviously 0 < y,(Q* < 1 for any P and Q. We say that Q depends in a degree
k on P (in Apr), P5Q, if k = y,(0%).

If P Q we say that depends totally on P (or in short depends); if 0 < k < 1 and
P%Q we say that Q partially depends on P; if P20 we say that Q i1s totally
independent on P. :

If P1>Q we shall also writte P— Q.

The intuitive meaning of the dependency relation is as follows: if P— Q then
(x, y)e P implies (x,y)e Q for every x, ye Univ; if Q partially depends on P, then
(x, y)e P implies (x, y)e Q for some x, ye Univ; if Q is totally independent on P, then
(x, y)€ P does not imply (x, y)€Q for any x, ye Univ.

Property 25.1 .
P5Q in Apr iff PLQ in Aprint,(Q*) and PQ in AprBn,(Q*), where

Bny(Q*) = | ) BnyX.
XeQ*

Property 2.5.2

The following conditions are equivalent:
1) P>Q,

2) Pc=Q,

3) PnQ =P,

4) Intp(Q*) = Univ.

2.6. Reduction of indiscernibility relations

Let Apr = (Univ, Ind), F, G and H < Ind.
We say that F is a reduct of G with respect to H (H-reduct) in Apr if F is
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a minimal subset of G such that
' Int.(H*) = Int;(H*).
If H= G, then F will be called a reduct of G.

Property 2.6.1

If Fis a reduct of G, then F = G.
Subset F < Ind of indiscernibility relations is_independent in Apr if the only
reduct of F is F itself, otherwise F is dependent in Apr.

Property 2.6.2

1) F < Ind is independent in Apr iff for every G< F, G # F.

2) F < Ind is dependent in Apr iff there exists G = F such that G = F.

3) G is a reduct of F in Apr iff G is a maximal independent subset of
indiscernibility relations in F.

Let F,G<Ind and R < F. We say that R is superfluous with respect to
G (G-superfluous) in F if

Int (G*) = Inty_x(G¥);

otherwise R is indispensable with respect to G (G-indispensable) in F.
The set of all G-indispensable relations in F will be called the core of F with
respect to G (G-Core).

Property 2.6.3

Let F, denote the G-cors of F and let G(F) be the family of all G-reducts of F.
The following is true:

Fo= () H.

HeG|F

The core is the set of “most” important attributes, in this sense that they can not
be removed without accetting the “descriptive power” of the set attributes.

3. Information Systems

In this section we show the interpretation of previously introduced concepts in
information systems. Intuitively — information system is a collection of data in
which some objects (processes, states, etc) are described in terms of some features.
For example a collection of data concerning patients suffering from a certain disease
— in terms of some symptoms (like temperature, blood presure etc.) is an
information system.
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Information system seems to be a very good tool to discuss some problems
concerning decision tables theory, machine learning, data analysis, pattern recog-

pnition, and others.
We show in this section how the rough set concept can be used to analyse these

kind of data.

3.1. Information system and approximation space

An information system is a 4-tuple

S = (Univ, Att, Val, f),

where
Univ — is a finite set of objects — called the universe,

Att — is a finite set of attributes, Val = { ] Val,, Val, — is a finite set of values of
aeAtt

acAtt,
f: Univx Att—>Val — is a total function, such that

f(x,a)eVal, for every aeAtt and xe Univ.

In other words an information system is a finite table column of which are
labeled by attributes and rows are labeled by objects. Fach entry of column a and
row x is the value f(x, a).

An example of an information system is given in Tab. 1.

Table 1
Univ a b c
Xy 1 0 2
X, 0 1 1
X3 2 0 0
X4 1 0 2
Xs 1 0 0
X 0 1 1
X, 2 0 0 ’
Xg 1 0 0
Xy 1 0 2
Xi0 0 1 1.

_With every subset of attributs A < Att, we associate an indiscernibility relation
A defined thus

A= {G, Y): f(x,a) = f(y,a) for every ae A}.

Of course A4 is an equivalence relation. Hence with every information system S we
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can associate an approximation space Ag = (Univ, Ind), where
Ind = {a: aeAtt}.

Thus every a is a primitive indiscernibility relation in Apr for any a Att. In what
follows we shall write 4 instead A if there will be no confusion of the set attributes’
A and the relation 4.

Conversely, with every approximation space Apr = (Iniv, Ind) we can associate
an information system S,, defined as follows:

with every primitive indiscernibility relation R in Apr we associate
uniquelly a name ap of R and we define the function f in such that
f(x, ag) = f(y, ag) iff x and belong to the same equivalence class of the
relation R.

Thus the concepts of an approximation space and information space are
isomorphic and can be mutually replaced.

3.2. Dependency of attributes in information systems

Let S = (Univ, Att, Val, f) be an information system and A, B < Att subset of
attributes. ’

In order to defihe the dependency of attributes we can employ the definition
given in Section 2.5.

Set of attributes B depends on set of attributes Bin a degree k(0 < k < 1)in S, in

KR i b _ card Int (B¥)

symbols A B, if k=17,(B) = “card Univ " .

‘The intuitive meaning of this definition is following: if 4> B that is to mean that
the values of attributes be B can be determined when values of attributes ae A are
known. If k # 1, that is to mean that the dependency between 4 and B is partial, r.e.
the dependency holds for objects belonging to Int (B*) only (see Property 2.5.1).

For example in the information system shown in Tabl. 1 the following
dependency is valid: B%>>¢, where B = {a, b}, and ¢ is the abbreviation for ¢.

Because
c*={X, X,, X5},
where
X, ={xy, x5, Xg},
X, ={x,, X7, X10}»
X3 = {x;, X4, Xg, Xg}
and

B* = {Yl’ Y,, Y3}’




Y, = {x1, X4, X5, Xg, Xo},

Y, = {xz, X7, xw},
Y; = {x3, xﬁ}'

Hence
BX, =9, BX,=Y,, BX;=Y,

and
Inty(c*) = BX, UBX,UBX, = YUY, = {X,, x5, X¢, X7, X1}

Thus k = 5/10 = 0,5. _

This is to mean that the objects {x,, x;, X4, X;, X,,} only can be property
classified, to the classes of c¢*, employing the set of attributes B.

Let us also notice that

BX,=Y,, BX,=Y, BX,=YuUlY,

ie. set X, is internally B-indiscernible, X, is B-discernible and X, is roughly
B-discernible, the corresponding accuracy coefficients are:

ag(X,)=0/5=0,
apg(X,)=3/3=1,
(X 4) = 2/1.

3.3 Reduction of attributes

Let S = (Univ, Att, Val, f) be an information system, A, B, C < Att subsets of
attributes. : '

If A is a reduct of B will respect to C (see definition section 2.6), that is to mean
that set of attributes 4 = B provides the same discernibility of classes of the
classification C* as the set of attributes B.

Hence instead using set of attributes B we can use smaler set of attributes A, to
classify objects to classes of the classification C*.

It is easy to see, for example, that in the information system shown in Tab. 1 set
{a, c} is the only reduct of set of attributes {a, b, c}, for {a, c} = {a, b, c}.

There are two reducts a and c of the set attributes {a, ¢} with respect to b.

Note that the b-core of {a, c} is the empty set. Moreover we have a—a and c — b
in the information system considered.
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4. Information Language

In this chapter we introduce the concept of an information language, which will
be associated with every information system. The information language will be used
to describe decision rules and decision algorithms in a syntactical way, which allows
employing standard logical methods to analyse and investigate these concepts.

4.1. Syntax of the information language

With every information system S = (Univ, Att, Val, f) we associate an infor-
mation language Ly (L — when S is understood), which consists of terms, formulas
and decision algorithms. '

Terms are built up from some constants by means of boolean operations +, -, —;
we assume that 0,1 are constants and Att, Val are finite sets of constants called
attributes and attribute values, respectively.

The set of terms is the least set satisfying the conditions:

1) Constants 0 and 1 are terms in L. :

2) Any expression of the form (a:= v), where ae Att and ve Val, — is a term
in L.

3) If s and t are terms in L, so are — ¢, (t+s) and (t-s) (or simple ts).

In what follows we shall drop unnecessary parenthesis in a usual way in terms.

For example the following

—((@a:=0)+(b:=2)(c:= 1),
(a:=2)(~(b:= 1)

are terms in a certain information language.

The set of formulas in an information language L in the least set satisfying the
conditions:

1) Constants T (for truth) and F (for falsity) are formulas in L.

2) If t and s are terms in L, then t =5 and ¢, s are formulas in L.

3) If ¢ and ¥ are formulas in L, then (¢ v ¥), (¢ A ¥) and (~ ¢) are formulas in L.

For example the following

(a:=0=(b:=2),

(@a:=10)0b:=0)=(c:=2),

(@a:=2)=0b:=0+(c:=1),

((a:=0)=(b:=0)u((a:= 1)=(c:=0))

are formulas in a certain information language.

4.2. The meaning (the semantics) of terms and formulas

In this section we shall define formally the meaning of terms and formulas in an
information system S = (Univ, Att, Val, f). Terms are intended to mean subsets of
the universe and the meaning of formulas is truth of falsity.
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In order to define the meaning of terms and formulas we shall employ the
meaning function g Ter x For » P(Univ)u {T, F}, where Ter and For denote the set

of all terms and formulas, respectively.
The meaning function for terms is defined as follows (we omit the subscript S if

S is understood):

1) g(0) = 9, g(1) = Univ.
2) g(a:=v) = {xeUniv: f(x, a) = v}.
3) g(—1t) = Univ—g(1),
g(t+s) =g(®)ug(s),
g(ts) = g() N g1s).

For example the ’mveaning of certain terms in the information system shown in
Tab. 1 is shown below:

glla:=1)(b:=0) = {x,, x,, Xs, Xg},
. g((a:= 0)+(c:= 2)) = {X{, X2, X5, X7, Xg, Xy},

g(—a:=2)) = {x,, X, X4 X5, X3, Xg, Xo, Xy0}-

The meaning of formulas is defined in the following way:

1) ¢(T) = T; g(F) = F.

(T i g(r) = g(9),
2) glt=s)= {F, if g(t) # g(s).

T, if g(t) < g(s),
3) g(t=s) ={ F, otherwise.

T, 1if g(o)=F,
4) g(~¢) = {F’ if g(@) = T
5) g(o v ) = g(o) v g¥).
6) glo A Y) = g(o) A g().

If g4(¢) = T we say that ¢ is true in S; if g5(@) = F then ¢ is said to be false in S.
If ¢ is true in S we shall write =g or simple = ¢ when S is known.

If |=5(t = s) we say that ¢t and s are equivalent in S; if = ¢(t=>5) we say that the
term ¢ implies the term s in S.

Examples of false and true formulas in the information system given in Tab. 1 are
shown below:

(@:=0)=(b:=1) — true,

(a:=2)=(c:=0) — false,

(c:=0)=(b:=0) — true,

(c:=1)=(b:=0) — false.

For the transformation of terms we shall use the axioms of boolean algebra and




C o |

188

the following specific axiom

(a:=v)=— % (a:=u).

u#v
ueValg,

For the transformation of formulas we shall employ the axioms of propositional
calculus.

4.3. Normal form of terms

A term t in L is A-elementary (4 < Att) if t = H (a:=v,).
acA : .
A term ¢ in L is in A-normal from if t = ) s, where all s are A-elementary.

For example the terms
(a:=1)(b:=0), (a:=2)(b:=1), (a:=0)b:=1)
are {a, b}-elementary and the terms
(a:=2)(b:= 1)(c:=2),
(@a:=0)b:=0)(c:=1)

are {a, b, c}-elementary.
The term

(a:=1)b:=0)+(a:=2)(b:=1)
is in {a, b}-normal form and the term
(a:=2)(b:=1)(c:=2)+(a:=0)(b:=0)(c = 1)

is in {a, b, c}-normal form.
Let § = (Univ, Att, Val, f) be an information system Ac Att subset of at-
tributes, and L, — an information language with the set of attributes A.

Property 4.3.1

For every term ¢ in L there exists the terms s in L, in 4-normal form such that
|=st =s; s is referred to as the A-normal form of ¢ in L,.

For example the {a, b}-normal form of the term (a:=1) is the term
(a:=1)(b:=0)+(a:=1)(b:= 1) (in the information system shown in Tab. 1).

Subset X < Univ is said to be A-describable in L(A4 < Att) if there exists a term
t in L such that gg¢(t) = X; the term ¢ is called the A-description of X in L.

If set X < Univ is non A-describable in L, then there exist terms ¢t and s such that
gs(t) = AX and gx(s) = AX, called the A — lower and A — upper description of
X in L, respectively. This is to mean that some subset of objects be described by
a given subset of attributes not exactly but with some approximation only.

For example the subset X = {x,, x,, x,} of objects in the information system
shown in Tab. 1 has the following A-lower and A4-upper description (4 = {a, b, c}).




A-lower description of X is
(a:=2)(b:= 0)(c:=0);

A-upper description of X is
(@a:=2)(b:=0)(c:=0)+(a:=1)(b:=0)(c:= 2).

4.4 Decision rules

Any formula of the form t=s will be called a decision rule in L; ¢ is referred to as
a condition and s — as a decision of the decision rule, respectively. If the decision
rule t=>s in true we shall also say that it is consistent; otherwise the decision rule is

inconsistent.
Let t=s be a decision rule in L and let 4, B < Att be sets of all attributes which

occur in t and s, respectively. We shall call t=s (4, B) — decision rule. If A and
B are one element sets, for the sake of simplicity, we shall use the expression

(a, b)-decision rule.
Let S = (Univ, Att, Val, f) be an information system and ¢ =s (4, B)-decision

rule in L.
We say that the (4, B)-decision rule is deterministic in S, if g4(s) € B*, i.e. g5(s) in
a description of a certain equivalence class of the equivalence relation B; otherwise

the decision rule is nondeterministic.
We say that a(A4, B)-decision rule t=>s is in (A, B)-normal form if ¢t and s are in

(A4, B)-normal form.

Property 4.4.1

A (A, B)-decision rule t=>s is consistent in S iff all non-empty elementary terms
occurring in (A4, B)-normal form of ¢t occur also in the (4, B)-normal form of s.

This property unable us to prove the validity of any decision rule in a simple
syntactical way.

Example 4.4.1

Consider the information system shown in Tab. 2.

" Table 2

Univ a b

X, 1 0
x5 1 1
X, 0o 2

Let us check whether the decision rule (a:= 1)=>(b:=0) is consistent or not.
The (a, b)-normal form of the rule is

(@a:=Db:=0+(a:=1)b:= )=>(a:= 1)(b:= 0).
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Because the elementary term (@a:=1)(b:= 1) occurs only in the condition of th
(a, b)-normal form of the rule, for the rule (a:=1)=@b:= 0) is inconsistent.

gs(a:= )= {xb xz}
and

gs(b:=0) = {xl}’

hence gg(a:= 1) € gs(b:=0) and the decision rule is inconsistent. .
On the other hand the decision rule (b:= 0)=>(a:= 1) is consistent because the
(a, b)-normal form of the rule is of the form:

(a:=1)b:= O)=(a:= 1)(b:= O)+(a:= 1)(b:= 1)

and the only (a, b)-elementary term (a:=1)(b:= 0) in the condition of the decision
rule occurs also in the decision of the rule.
Employing the definition of semantics we have

gs(a: 1) = {xy, X, and gs(b5= 0) = '{xl}’

hence gg(b:=0) gs(@a:=1) and the decision rule is consistent.
Let us also notice that both decision rules are deterministic in the information
system.

4.5. Decision algorithms

Any finite set of decision rules in L is called a dedision algorithm in L.
An example of a decision algorithm'is shown below:

(@a:=1)=(b:= 2)(c:=1),

(b:=2)+(a:=1)=(c:= 2),

(@:=0)+(b:= )=(c:=1).

With every decision algorithm a = {ti=s},, 1<i<m, in L we associate the
formula

Ya = /\ (t;i=s))
i=1

called the decision formula of ain L.

A decision algorithm is said to be consistent if all its decision rules are consistent;
otherwise the decision algorithm is inconsistent.

Property 45.1

A decision algorithm q in L s consistent (in S) iff = Pa.
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Example 4.5.1

It is easy to see that the decision algorithm
(a:=1Db:=0)=(c:=2)+(c:=0), '
(a:=0)=>(c:=1),
(a:=2)+(b:=1)=(c:=0)+(c:=1).
is consistent in the information system shown in Tab. 1, and the decision algorithm
(a:=1)=>(c:=2)
(a:=0)=(c:=0)
is incosistent in the system.
A decision algorithms is deterministic in S if all its decision rules are deterministic
in S; otherwise the algorithm is nondeterministic.
For example the two above decision algorithms are nondeterministic.
If A and B are the sets of all attributes occurring in the conditions and decisions
of the decision rules of the algorithm a, then a will be called the (A4, B)-decision
algorithm and denoted a(A4, B). ¢

Property 4.5.2
(A, B)-decision algorithm is deterministic in S iff A > B in S.

A (A, B)-decision algorithm is total in S if for every equivalence class X of the
equivalence relation B there exists a decision rule t=s m a such that gs(s)
otherwise the decision algorlthm is partial in S.

Example 4.5.2.

- The algorithm
(@:=D0b:=0=(c:=2),
(a:= 0)=(c:= 1),
(@a:=2)=({b:=1)=>(c:=0)
is total in thé information system shown in Tab. 1, whereas the decision algorithm
(a:=0)(b:=0)=>(c:=2),
(a:=0)b:=1)=>(c:=1)
is partial in the information system.
In what follows we shall consider total algorithms only (if not otherwise stated).
The following property can be used as transformation rule for decision
algorithms:

Property 4.5.2
I=S/\(t=>s) (Z t;=>s),

where = is defined in usual way.

The meaning of this property is obvious.
The following property establishes the relationship between the consistency and
determinism of a dec151on algorithm.
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Property 4.5.3
It A->B in §, then =;¥a(A, B).

5. Examples

In this section ‘we will depict previously introduced notions by means of three
examples: discrimination analysis, learning from examples and decision tables.

We will show that all these cases can be reduced to the schemes discussed in the
previous sections of the paper.

5.1. Discrimination analysis

Suppose we are given a data fle, for example concerning patients suffering from
a certain disease. With every patient several items of information (symptoms) are
associated. Beside this patients are classifical according to a certain preassumed
rules, for example, age, disease advance, etc. The classification can be based on
existing symptoms or it can be given be an expert. The main problem of
discrimination analysis consists in describing each class of the classification in terms
of available symptoms.-

Thus the problem can be reduced to that discussed in previous sections, namely
we can treat the data file as an information system and ask whether A — ¢, or not,
where ¢ is an attribute representing the classification and A is the set of atrributes
representing symptoms. The second problem is to find reducts of A in order to find
the minimal number of symptoms necessary to classify objects property.

An example given below will explains the idea of discrimination more exactly.

Example 5.1.1

Let us consider an information system shown in Tab. 3.

Table 3

Univ

b

5}
o
o

O O N = NO
—— OO = O = O
—_—O N OO =N
BN W N = W
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Let attributes a, b, c represent some “symptoms” and the attribute d classification
of objects.

Thus our first problem consist in checking wheather {a, b, ¢} - d, and the second
one is the reduction of “symptoms” {a, b, c}.

Let us denote {a, b, c} = A4, and let us compute A* and d*. The A-elementary
sets are classes of the classification A* and are as follows: :

X1=={x1,x5}, Xzz{xz,x7,x8},
X3={x3,x6}, X, = {x4}.

Classes of the classification d* are:

Y, = {xl’ x4},
Y, = {xz, X5y X7, xs}’
Y, = {x3, x6}'

The corresponding approximations are as follows:
AY, =X, ={x,}, AY,=X,0X,={x,, x,, x5},
Bn (Y¥) =X, = {x,, x5}, 7,6¥%)=1/3,
AY, = X, = {x;, x5, Xg}, AV, =X,0X, = {x,, x,, X, X5, X7, Xg},
Bn (V) = X, ={x;, x5}, y.(Y;)=1/2,
AYs = Xy = {x3, X6}, AYy=X;={x,, x4},

Bn,(Ys) =4, Y4(Y3%) =1,
Int,(d*) = AY,UAY,UAY, = X,uX30X, = {x,, x5, X4s Xg» X7, Xg},
_card Int ,(d*) 6

= = 3/4.

*®
74(@%) card Univ 8

That is to mean that 42154,

Thus we are unable to classify objects according to the classification d* using set
of attributes 4. Only 6 out at 8 objects can be classify correctly using the set
attributes A (namely objects {x,, x3, X, X, X7, Xg}).

The accuraces of particular classes are shown below

Class o
1 0,5
2 0,5
3 1,0

That means that classes 1 and 2 are roughly discernible by the set of attributes
A and class 3 is discernible be the set of attributes.
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It is easy to compute that the core of 4 with respect to d is the empty set and the
set A has tree reducts {a, b}, {b, c} and {a, c} with respect to d. Thus any pair of |
attributes from A will suffice to classify objects with the same accuracy as that I
provided by the whole set of attributes A.

We can also give a decision algorithm, which enable us to classify objects to
proper classes using properties expresses by attributes from A.

An example of a decision algorithms is shown below:

(a:=1D)b:=1)=>d:=1), :

(a=1)b:=0=d:=1)+d:=2),

(a:=0)=d:=2),

(a:=2)=(d:=3).

Let us notice that the algorithm is nondeterministic, total and consistent.

This scheme of data analysis can be employed in psychology, sociology,
agriculture, engineering and other areas.

5.2. Learning from examples

Suppose we are given a finite set of Univ of objects. Elements of Univ are called
training examples and Univ is called a training set. Assume further that Univ is
classified into disjoint classes X, X,, ..., X, (n > 2) by a teacher (expert, environ-
ment) etc. The classification represents the teacher’s knowledge of objects from Univ.
Furthermore assume that a “student” is able to characterize each objects from Univ
in terms of attributes from preassumed set 4. Descriptions of objects in terms of
attributes from A represents the student’s knowledge of objects from Univ.

We can say that the student has a syntactical knowledge and the teacher — the
semantical knowledge — about objects from Univ.

The problem of learning from examples is, wheather the student’s knowledge can
be mached with the teacher’s knowledge, or more precisely, whether the teacher’s
classification can be described in terms of attributes available to the student.

Thus learning from examples consists in describing classes X,, X,, ..., X, in

~ terms of attributes from A4, or more exactly, in finding a decision algorithm which
provides the teacher’s classification on the basis of properties of objects expressed in
terms of attributes from A.

It is easily seen that the problem of learning from examples can be easily
formulated in terms of notations introduced before. Training examples from the
universe Univ, “students” attributes 4 and teacher attribute e — is the set of
attributes Att.

Thus the problem of learning from examples reduces to the question whether
A — e (or wherther e* — is A-discernible), i.e. — whether there exists an algorithm to
“learn” classification e* by attributes of training examples.

This can be easily done by using methods discussed in the previous sections.

For example let us consider the following information system:
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Example 5.2.1

where Univ is the training set, A = {a, b} are students attributes and ¢ = is teacher

attribute.

In order to check wheter the concepts represented by examples x,, ..., x,, can
be learned using attributes from A-according to the teacher knowledge expressed by
the classification c*, we have to compute degree k of dependency A%»c.

" In order to do so let us compute cla

follows:

Table 4
Univ a b c
X, 1 0 2
X, 0 1 1
X, 2 .0 0
X, 1 0 2
X 1 0 0
X 0 1 1
X, 2 0 0
Xg 1 0 0
Xq 0 1 1
X10 2 0 0
Xy 1 0 0
Xy, 1 0 2

Y, = {x, x4, xlz}’
Y,= {xz’ X6> x9};'

Y, = {x3, X5, X7, X9y X105 X141}

and classes of the classification A*, which are given below:

X, = {x, X4, Xss Xgy X1, xlz}’
X, = {x3, X, Xo},

X3 = {x3, X7, xlo}-

The corresponding approximation are:

AY, =0, AY,=X,,
Bn, (Y1) =X, 9,07 =0,
AY2=X2, ZYz=X2,
Bn, (Y} =0, 1,Y)=1,
AY3=X3, /IY;;=X1UX3,
Br (Y5 =X,, y,(Y) =05,

sses of the classification c*, which are as




Int, (c*) = AY,UAY,UAY, = X, UX; = {x,, X3, Xg, X7, Xg, X;0}»
y,(c*) =6/12 =0,5.

Thus the class Y, — is internally A-indiscernible, Y, — is A-discernible and Y, is
roughly A-discernible.

Thus it 1s impossible to learn positive instances of Y,, but it is possible to learn
negative instances of Y; (if x U X, U Xy we known that x is not in Y;). In other words
it is impossible to classify correctly {x,, x,, x,,} by checking their features expressed
by attributes a and b.

Set Y, can be learn, ie. all elements of Y, can be classifical property examining
their features a and b.

Set Y; can be learned roughly, i.e. only examples {x,, x5, x,,} can be recognized
on the basis of a and b as elements of Y;; objects {x,, X, X4} can be excluded being
members of Y, and X, = {x,, x4, X5, Xg, X;;, X;,} is the boundary of Y;, i.e. if can
not decided whether elements of X, belong to Y; or not — employing the attributes
a and b.

The corresponding decision algorithm is shown below:

(@a:=1)(b:=0)(c:=2)+(c:=0),

(@a:=0)(c:=1),

(@a:=2)(c:=0).

The algorithm is nondeterministic, total and consistent.

5.3. Decision Tables

Decision tables are important tools in computer applications. We are going to
show in this section, the application of rough sets to decision table analysis. The
proposed approach seems to be very suitable to formulate and slove many basic
problems concerning decision table analysis and implementation.

Decision table can be considered as an information system in which attributes are
divided intwo two classes called condition and decision attributes, denoted Con and
Dec respectively.

Each row to the decision table is called a decision rule. In other word the decision
rule in a function f_: Att— Val such that f (a) = f(x, a) for every xe Univ and
aeAtt. The restriction of f, to condition attributes, denoted f,/Con, will be called
condition and the restriction of f, to Dec, denoted fx/Dec — decision of the rule f,.
Decision rules will be written in the form p=>g, where p in the condition and g the
decision of the rule (see section 4.4).

An example of decision table is shown below:

Example 5.3.1

Let us notice that the decision rule (a:=0)(b:= 1)(c:= 1)=>(d:= 1)(c:=2) is
non-deterministic whereas the rule (a:= 2)(b:= 0)(c:= 0)=(d:= 1)(e:= 1) in deter-
ministic in Tab. 5.
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Table 5
Univ a b ¢ d e
1 1 0 2 2 0
2 0 1 1 1 2
3 2 0 0 1 1
4 1 1 0 2 2
5 1 0 2 0 1
6 2 2 0 1 1
7 2 1 1 1 2
8 0 1 1 0 1

A decision table in deterministic if all its decision rules are deterministic,
otherwise the decision table in non-deterministic.

For example the decision table shown in example 5.3.1 (Tab. 1) is non-
-deterministic.

Property 5.3.1

A decision table S is deterministic iff Con— Dec in S.

A decision table S in said to be roughly deterministic if Con®>Decand 0 < k < 1;
a decision table is totally non-deterministic if Con-%>Dec in S.

The property 2.5.1 can be also presented in the following form:

Property 5.3.2

Con - Dec in § iff Con->Dec in S (Intc,,(Dec*)) and Con2Dec in Bng,,(Dec*).
This property can be used to decompose the decision table in two parts (possibly
empty) such that first one is deterministic and the second totally non-deterministic.

Ve

Example 5.3.2

The decision table shown in Tab. 5 is non-deterministic and we have
Con-2 Dec, and the table can be decomposed into two decision tables as shown
below:

Table 6 Table 7
Univ a b ¢ d e Univ a b c d e
3 2 0 0 1 1 1 1 0 2 1 0
* 4 1 1 0 2 2 2 0 1 1 1 2
6 2 2 0 1 1 5 1 0 2 0 1
7 2 1 1 1 2 8 0 1 1 0 1

The decision table shown in Tab. 6 is deterministic and the table shown in Tab.
7 is totally non-deterministic.

Let us also notice that yc,,(Dec*) = 1/2 in the table.

If can be easily shown that the set of condition attributes in decision table shown
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in Tab. 5 has only one reduct {a, b} and that the set of decision attributes is

independent.

Thus the decision table can be presented as shown in Tab. 8.

The next example shows more complicated simplification of a decision table..

Example 5.3.3.

The decision table shown in Tab. 8 below is deterministic

Attributes a, b, c, d are conditions attributes and e, f are decision attributes in the

table.

The set {a, b, c, d} of conditions attributes is independent. v
Now we can compute reducts of Con with respect to. the classification {e, f}*,
and we get, the following reducts:

{a, b} for
{a} for e:

{e, a} for e:=2 and f:=3;
{e} for e:=2 and f:=2.

e

Table 8
Univ a b d e
1 1 0 2 0
2 0 1 1 2
3 2 0 1 1
4 1 1 2 2
5 1 0 0 1
6 2 2 1 0
7 2 1 1 2
8 0 1 0 1

Table 9

Univ

IS
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o
a
()

00~ N N B W N

\O

10
11
12
13
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W W BB W W N RN
t\)wwwwwNNNNMNN.
1O 1Ot M W W W L W R N
S I S S I I A I SRR TR

LB NN W W WA B SA DS~

;=2 and f:=4,
1 and f:=4,




Hence we can simplify the table as shown below:

Table 10
Univ a b c d e f
¥ 3 — — 1 2 3
2 3 — — 2 2 4
Ky 2 — - — 1 4
4 - — 2 3 2 3
5 — - 3 - 2 2

Consequently .we get the following decision algorithm:
17 (@a:=3)(d:=1)+(d:=2))=(e:=2)(f:=4),

2% (a:=2)=(e:=1)(f:=4),
3:(c:=2)d:=3)=(e:=2)(f:= 3),

4 (c:=3)=(e:=2)(f:=2).

6. Conclusion

When data are gathered about objects, states, processes etc., in terms of attributes
(features), it may happend that some objects have the some data, and consequently
they are indiscernible by the available features. _

In order to deal with this kind of situations the concept of the rough set has been
introduced, which turned out to be very suitable mathematical tool in many ares of
artificial intelligence, where vague or imprecise data are to be analyzed.
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Zbiory przyblizone i systemy informacyjne

W pracy przedstawiono podstawowe idee dotyczace pojecia zbiorow przyblizonych i ich wykorzys-
tania do analizy danych. :

Szczegdtowo przedstawiono wykorzystanie zbiorow przyblizonych do analizy danych reprezen-
towanych w postaci systemu informacyjnego. .

'Zamieszczono przykiady ilustrujace wprowadzane pojecia i metody analizy danych.




