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Decision logic
Z. Pawlak

Institute of Computer Science
Warsaw Technical University
00 665 Warsaw, ul. Nowowiejska 15/19

1. Introduction

The concept of the rough set (cf. Pawlak (1982)) have
inspired a variety of logical research (cf. Jian-Ming et
al.(1990), Konikowska (1987), Nakamura et al.(1988), Or!owska
(1984, 1985a,b, 1989), Pawlak (1987b), Rasiowa et al.(1985,
1986a,b), Rauszer (1985, 1986), Szczerba {1987), Vakarelov
(1981, 1989) Wasilewska (1988, 1989) and others). Most of the
above mentioned logical research has been directed to create
deductive logical tools to deal with approximate (deductive)
reasoning.

In contrast to the above line of research we pPropose in
this chapter logic which is of inductive character (cf.
Ajdukiewicz (1974)) and is intended as a tool for data
analysis, i.e. our main concern is in discovering
dependencies in data and data reduction, which is rather
closer to statistical then deductive methods, however to this
end we shall use deductive tools.

Let us explain these ideas more exactly. Our main goal
is reasoning about knowledge concerning certain reality. We
have assumed that knowledge is represented as a
value-attribute table, called sometimes Information System
(cf. Pawlak (1981)) or Knowledge Representation System (cf.
Pawlak (1984)).

Representation of knowledge in tabular form, has great
advantages in particular for its clarity. It turns out that
the data table may be looked at as a set of pPropositions
about the reality and consequently can be treated by means of
logical toola, which will be developed in this paper. We
offer two possibilities here, one based on normal form
representation of formulas and the second employing
indiscernibility to investigate whether some formulas are
true or not. The latter approach, referring to
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indiscernibility, leads to simple algorithms for data
reduction and analysis, and is fundamental to our philosophy.

In fact the data table can be viewed as a model for
special logic, called here decision logic, which will be used
to derive conclusions from data available in the knowledge
representation system. We will be basically concerned in
discovering dependencies in knowledge and also in knowledge
reduction, and to this end we shall use syntactical tools
available in the proposed logic.

One of the chief inplications of the presented
philosophy is that our main concern is the fundamental notion
of the decision logic, the decision algorithm, which is a set
of decision rules (implications). Because an algorithm is
usually meant as a sequence (not set) of instructions
(decision rules), thus the decision "algorithm"” fails to meat
the usual understanding of the notion of an algorithm,
nevertheless, for the lack of a better term, we will stick to
the proposed terminology.

Still one more important remark concerning the decision
algorithm seems in order. Formulas can be true or false but
the decision algorithm, which is a set of formulas, can not
have attributes of truth or falsity. Instead consistency and
inconsistency will be the basic features of decision
algorithms. In other words our account, in contrast to
philosophy of deduction, stress rather consistency (or
inconsistency) of data then their truth (or falsity), and our
main interest is not in investigation of theorem proving
mechanisms in the introduced logic, but in analysis, in
computational terms (decision algorithms, or condition-action
rules), of how some facts are derived from data.

With the above remarks in mind we start in the next
gection considerations on a formal language for decision
logic.

2. Language of Decision Logic

The language of decision logic (DL-language) we are
going to define and discuss here will consists of atomic
formulas, which are attribute-value pairs, combined by means
of sentential connectives and, or, not etc. in a standard
way, forming compound formulas.

Formally the language is defined inductively as follows.
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First we start with the alphabet of the language which
consists of :

a) 4 - the set of attribute constants
b) Vv =U Va - the set of attribute value constants

a €A

c) Set { ~ , v ;o , -> , =) of propositional
connectives, called respectively negation,
disjunction, conjunction, implication and equivalence
respectively.

The propositional connectives symbols may be considered
as abbreviations of the logical connectives "not", "or"
"and", "if ... then"”, "if and only if".

Let us note that the alphabet of the language contains
no variables and its expressions will be built up only from
the above symbols, i.e. attribute and attribute value
symbols, logical connectives and some auxiliary symbols like
parenthesis - which means that formulas in the DL-language
are in fact sentences.

Moreover, we should pay attention to the fact that sets
A and Va are treated as sets of names of attributes and

attribute values respectively. Hence in order to distinguish
if necessary, attributes and attribute names we will use
bold and italic alphabets respectively. For example color is
the attribute and color is the attribute constant (name).

The case of values of attributes is quite similar. For
example, if one of the values of the attribute color were

red, then the corresponding attribute value constant would be
red.

Next we define the set of formulas in our language,
which are defined below.

The set of formulas of DL-language is the least set
satisfying the following conditions:

1) Expressions of the form (@, v), or in short a ,
v

called elementary (atomic) formulas, are formulas of the
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DL-language for any & € A and v € Va'

2) 1t ¢ and ¥ are formulas of the DL-language, then so
are ~&, (2 v ¥), (2 A~ ¥y, (3 -> ¥), and (& = ¥).

3. Semantics of Decision Logic Language

Formulas are meant to be used as descriptions of objects
of the universe. Of course some objects may have the same
description, thus formulas may describe also subsets of
objects obeying properties expressed by these formulas. In
particular atomic formula (a, v) is interpreted as a
description of all objects having value v for attribute a.
Compound formulas are interpreted in the usual way.

In order to express this problem more precisely wve
define Tarski's style semantics of the DL-language employing
the notions of a model and satisfiability.

By the model we will simply mean the knowledge
representation system (KR-system) S =(U, A), where U is a
finite set called the universe, A is the set of attributes
and each attribute a € 4 is a function a:U -> Va ,which to

each object X € U assigns an attribute value v € Va. In other

words a model is an attribute-value table columns of which
are labelled by attributes and rows - by objects; every entry
of the table corresponding to an object x and an attribute a
is attribute value a(x).

Thus the model S describes the meaning of symbols of
predicates (2, v) in U, and if we properly interpret formulas
in the model then each formula becomes a meaningful sentence,
expressing properties of some objects. :

This can be voiced more precisely using the the concept
of satisfiability of a formula by an object, which follows
next.

An object x € U satisfies a formula ¢ in S = (U, A),
denoted X |=S ¢ or in short X |=¢ , if S is understood, if

and only if the following conditions are satisfied:
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(1)
(2)
(3)
(4)

|=(a,v) iff fla,x)=v
|=~¢ iff non x |=¢
|= ¢ vy iff x |= ¢ or x |= N\
|=¢ ~wiff x |=¢ andx |=¥

X X X X

As a corollary from the above conditions we get

(5) x l= ¢ -> yp iff x |= ~p vy
(6) x |=¢ =y iff x |=¢ -> v and x |=v > ¢

1f ¢ is a formula then the set |¢|S defined as follows
|¢|S = {x € U: x |=S ¢}

will be called the meaning of the formula ¢ in S. Thus the
meaning is a function whose arguments are formulas of the
language and whose values are subsets of the set of objects
of the systen.

The following is an important proposition which explains the’
meaning of an arbitrary formula.

Proposition 1

(a) |(a, U)|S = {x € U: a(x) = v}

) 1lg = - 19l

(c) |¢ v Wls = |¢|§ v |W|5

(d) |¢ ~ Wls = |¢|5 n lwls

(e) ¢ > Wls = |¢|5 v lwls

(£) |6 =¥ = [o]gn [¥lg v - Iolg v -l¥s ]

Thus meaning of the formula ¢ is the set of all objects
having the propgrty expressed by the formula ¢, or the
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meaning of the formula ¢ is the description in the
KR-language of the set of objects |¢|S.

We need also in our logic the notion of truth.

A formula ¢ is said to be true in a KR-system S, I=S &,

if and only if ‘¢IS = U, i.e. the formula is satisfied by all

objects of the universe in the system S.

Formulas ¢ and ¥ dre equivalent in S if and only if |¢|

. : S

LIPS
The following proposition gives simple properties of the

introduced notions.

Proposition 2
(a) |=5 ¢ iff |¢|
(b) |=~¢ iff |¢|g
(c) |=¢ ¢ > v iff |#]|c < |¥|g
(d) |=5 ¢ =y iff |¢|. = |¥| ]

u
%)

At the end let us stress once more that the meaning of
the formula depends on the knowledge we have about the
universe, i.e. on the knowledge representation system.
particular a formula may be true in one knowledge
representation system but false in another one. However
there are formulas which are true independent of the ac;ual
values of attributes appearing in them,
their formal structure.
considerations. Note,
such formula,

In

but depend only on
They will play special role in our
that in order to find the meaning of
one need not to be acquainted with the
knowledge contained in any specific knowledge representation

system because their meaning is determined by its formal

atructure only. Hence, if we ask whether a certain fact is

t?ue in the light of our actual knowledge (represented in a
given knowledge representation system), it is sufficient to
use this knowledge in an appropriate way. However, in case of

formulas which are true {or not) in every possible knowledge

representation system, we do not need in fact any particular

knowledge but only suitable logical toola. They will be
considered in the next section.
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4. Deduction in Decision Logic

In this section we are going to study the deductive
structure of the decision logic.To this end we have to
introduce some axioms and inference rules.

Before we start a detailed discussion of this problemn,
let us first give some jntuitive background for the proposed
solution.

The language introduced in the previous section was
intended to express knowledge contained in a gpecific
knowledge representation system. However, the same language
can be treated as a common language for many knowledge
representation systems with different sets of objects but
with identical sets of attributes and identical attribute
values sets. From syntactical aspects, all the languages of
such systems are identical. However, their semantics differ
due to the different sets of objects and their properties are
represented in specific knowledge representation systems, in
which the meaning of formulas is to be defined.

In order to define our logic, we need to verify the
semantic equivalence of formulas. To do this we need to end
up with suitable rules for transforming formulas without
changing their meanings are necessary. Of course, in theory
we could also verify the aemantic equivalence of formulas by
computing their meaning accordingly to the definition, and
comparing them in order to check whether they are identical
or not. Unfortunately, such a procedure would be highly
unpractical, though - due to the finiteness of the considered
knowledge (tables) - it is always possible. However, this
method cannot be used for verifying the equivalence of
formulas in every knowledge representation system because of
the necessity of computing the meanings of these formulas in
an infinite number of systems. Hence suitable axioms and
inference rules are needed to prove equivalence of formulas
in a formal way.

Basically axioms will correspond closely to axioms of
classical propositional calculus, however some specific
axioms connected with the specific properties of knowledge
representation systems are also needed - and the only
inference rule will be modus ponens.

Thus the set of all axioms of DL-logic consists of all




-208-

propositional tautologies and some specific axioms.
Before we list specific axioms which hold in each
concrete knowledge representation system we need some

auxiliary notions and denotations.

We will use the following abbreviations:

2 AP =af 0 and & v ¢ =ar 1
Obvioualy'|= 1 ana |=.~0. Thus 0 and 1 can be assumed to
denote falsity and truth respectively.
Formula of the form
(al, vl) A (az, vz) A eee A (an. vn),

where vi € Vai, P = (al, az. vee an), and P ¢ 4, will be
called a P-basic formula or in short P-formula. A-basic
formulas will be called basic formulas.

Let P g A, ¢ be a P-formula and x € U, If x |= ¢, then ¢
will be called the P-description of x in S. The set of all
A-basic formulas satisfiable in the KR-system S5 = (U, 4) will
be called the basic knowledge in S.

We will need also a formula ZS(P), or in short I(P),

which is disjunction of all P-formulas satisfied in Sy if P =
A then Z(A) will be called the characteristic formula of the
KR-system S = (U, 4).

Thus the characteristic formula of the system represents
gomehow the whole knowledge contained in the KR-system S.

In other words each row in the table, is in our language
represented by a certain A-basic formula, and the whole table
is now represented by the set of all such formulas so that
instead tables we can now use sentences to represent
knowledge.

Now Zlet us give specific axiom of DL-logic.

(1) (a, v) A~ {a, u) = 0, for any ¢ € 4, v,u € Va and
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(2) V (a, v) = 1, for every a € A

v eV
a
(3) ~(a, v) = V {(a, u), for every a € A
u eV
a
u & v

We will also need the following proposition.

Proposition 3
|=S ZS(P) =1, for any P ¢ 4.

The axioms of the first group are counterparts of
propositional calculus axioms. The axioms of the second group
require a short comment, for they are characteristic to our
notion of the knowledge representation system.

The axiom (1) follows from the assumption that each
object can have exactly one value of each attribute. For

example, if something is red, it cannot be either blue or
green.

The second axiom (2) follows from the assumption that
each attribute must take one of the values of its domain for
every object in the system. For example, if the attribute in
question is color, then each object must be of some color
which is the value of this attribute.

The axiom (3) allows us the get rid of negation in such
a way that instead of saying that an object does not posses a
given property we can say that it has one of the remaining
properties. For example instead of saying that something is
not red we can say that it is either green, or blue or violet
etc. Of course, this rule is admissible due to the finiteness
assumption about the set of values of each set of attributes.

The Proposition 3 means that the knowledge contained in
the knowledge representation system is the whole knowledge



=210~

available at the present stage, and corresponds to so called
closed word assumption (CWA4).

Now we are ready to define basic concepts of this
section.

We say that a formula ¢ is derivable from a set of
formulas Q, (i.e.from ZS) denoted l— ¢ , if and only if it

is derivable from axioms and formulas of 2, by finite
application of the inference rule (modus ponenes).

A formula ¢ is a theorem of DL-logic, symbolically |-,
if it is derivable from the axioms only.

A set of formulas Q is consistent if and only if the
formula ¢ A~ —¢ is not derivable from Q.

The set of theorems of DL-logic is identical with the
set of theorems of classical propositional calculus with
specific axioms {1-3), in which negation can be eliminated.

5. Normal Forms

Formulas in the DL-language can be presented in a
special form called normal form, which is similar to that in
classical propositional calculus.

Let P € A be subset of attributes and let ¢ be a formula
in DL-language.

We say that ¢ is in a P-normal form in S, (in short in
P-normal form) if and only if either ¢ is 0 or ¢ is 1, or ¢
is a disjunction of non empty P-basic formulas in S. (The
formula ¢ is non-empty if ‘¢|S ® 0).

A-normal form will be referred to as normal form.

The following is an important property of formulas in
the DL-language.

Proposition 4

Let ¢ be a formula in DL-language and let P contain all
attributes occurring in ¢. Moreover assume axioms (1) -(3)
and the formula ZS(A). Then, there is a formula y in the

P-normal form such that |—¢ = y.8
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6. Decision Rules and Decision Algorithms

In this section we are going to define two basic concept
in the DL-language, namely that of a decision rule and a
decision algorithm.

Any implication ¢ -> ¥ will be called a decision rule in
the KR-language; ¢ and y are referred to as the predecessor
and the successor of ¢ -> y respectively.

If a decision rule ¢ -> ¥ is true in S we will say that
the decision rule is consistent in $, otherwise the decision
rule is inconsistent in S.

If ¢ -> y is a decision rule and ¢ and ¥y are P-basic and
Q-basic formulas respectively, then the decision rule ¢ -> ¥
will be called a PQ-basic decision rule, (in short PQ-rule),
or basic rule when PQ is known. The sets of attributes P and
Q will be refered to as condition and decison (action)
attributes respectivelly.

If ¢1 -> Y, ¢2 > Y, ... ¢n -> y are basic decision

rules then the decision rule ¢1 v ¢2 V ...V ¢n -> ¥ will be
called combination of basic decision rules ¢1 -> y, ¢2 -> y,

. ¢n -> ¥, or in short combined decision rule.

A PQ-rule ¢ -> y is admissible in S if ¢ A y is
satisfiable in S.

Throughout the remainder of this paper we will consider
admissible rules only, except when the contrary is explicitly
stated.

The following simple property can be employ to check
whether a PQ-rule is true or false (consistent or
inconsistent)

Proposition 8§

A PQ-rule is true (consistent) in S, if and only if all
(P U Q)~basic formulas which occur in the {P U Q}-normal form
of the predecessor of the rule, and occur also in the {P U
Q}-normal form of the successor of the rule; otherwise the
rule is false (inconsistent) in S.m
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Any finite set of decision rules in a DL-1anguage, is
referred to as a deciston algorithm in the D! -language.

We recall, as already mentioned in the Introduction,
that by an algorithm we mean a set of instructions (decision
rules), and not as usually - a sequence of instructions. Thus
our conception of algorithm differs from the existing one,
and can be understood as generalization of the latter.

Now we are éoing to.define the the basic concept of this
section.

Any finite set of basic decision rules will be called a
basic deciston algorithm.

If all decision rules in a basic decision algorithm are
PQ-decision rules, then the algorithm is said to be
PQ-deciston algorithm, or in short PQ-algorithm, and will be
denoted by (P,Q).

A PQ-algorithm is admisstible in S, if the algorithm is
the set of all PQ-rules admissible in 5.

A PQ-algorithm is complete in S, if for every X € U
there exists a PQ-decision rule ¢ -> y in the algorithm such

that x|= ¢ ~ ¥ in S; otherwise the algorithm is incomplete in
S.

In what follows we shall consider admissible and
complete PQ-algorithms only, if not stated otherwise.

The PQ-algorithm is consistent in $, if and only if all
its decision rules are consistent (true) in $; otherwise the
algorithm is inconsistent in S.

Sometimes consistency (inconsistency) may be interpreted
as determinism (indeterminism), however we shall stick to the
concept of consistency (inconsistency) instead of determinism
(nondeterminism), if not stated otherwise.

Thus when we are given a KR-system, then any two
arbitrary, nonempty subsets of attributes P, Q@ in the systen,
determine uniquely a PQ-decision algorithm. Note that the
KR-system with distinguished condition and decision
attributes may be regarded as a decision table. (cf. Pawlak
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(1985, 1986, 1987a)).

7. Truth and Indiscernibility

In order to check whether a decision algorithm is consistent
or not we have to check whether all its decision rules are
true or not. To this end we could employ Proposition 5,
however the following propositions gives a much simpler
method to solve this problem which will be used in what
follows.

Proposition 6

A PQ-decision rule ¢ -> y in a PQ-decision algorithm is
consistent (true) in $, if and only if for any PQ-decision
rule ¢’ -> y' in (P,Q), ¢ = ¢* implies y = y’ ..

Note that in this proposition order of terms is
important, since we require equality of expresions.

Let us also remark tha in order to check whether a
decision rule ¢ -> y is true or not we have to show that the
predecessor of the rule (the formula ¢) discerns the decision
class ¥y from the remaining decision classes of the decision
algorithm in question. Thus the concept of truth is somehow
replaced by the concept of indiscernibility.

We will often treat decision tables as a convenient way
of representation of decision algorithms, for this form is
more compact and easy to follow, then the DL-language. Note
however that formally decision algorithms and decision tables
are different concepts.

8. Depenedency of Attributes
Now we are ready to define the most essential concept of

our approach - the dependency of attributes.

We will say that the set of attributes Q depends
totatly, (or in short depends) on the set of attributes P in
S, if there exists a consistent PQ-algorithm in S. If Q
depends on P in $ we will write P »s Q or in short P 3 Q.

We can also define partial dependency of attributes.

We say that the set of attributes Q depends partially on
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the set of attributes P in S if there exists only an
inconsistent PQ-algorithm in S.

Similarly as before we are able to define the degree of
dependency between attributes.

Let (P,Q) be a PQ-algorithm in $. By a positive region
of the algorithm (P,Q), denoted POS(P,Q) we mean the set of
all consistent (true) PQ-rules in the algorithm.

In other words the positive region of the decision
algorithm (P,Q) is the consistent part (possibly empty) of
the inconsistent algorithm.

Obviously a PQ-algorithm is inconsistent if and only if
POS (P,Q) # (P,Q) or what is the same card (POS (P,Q)) #
card (P,Q).

With every PQ-decision algorithm we can associate a
number k = card (POS (P,Q)) / card (P,Q), called the degree
of consistency of the algorithm, or in short the degree of
the algorithm, and we will say that the PQ-algorithm has the
degree {of consistency) k.

Obviously 0 £ k £ 1. If a PQ-algorithm has degree k we
can say that the set of attributes Q depends in degree k on

the set of attributes P, and we will write P %k Q.

Naturally the algorithm is consistent if and only if kR =
1, otherwise, i.e. it k # 1, the algorithm is inconsistent.

Let us note that in the consistent algorithm all
decisions are uniquely determined by conditions in the
decision algorithm, which is not the case in inconsistent
algorithm. In other words all decisions in a consistent
algorithm are discernible by means of conditions available in
the decision algorithm.

0. Reduction of Consistent Algorithms

The problem we are going to consider in this section,
concerns simplification of decision algorithms, more exactly
we will investigate whether all condition attributes are
necessary to make decisions. In this section we will discuss
the case of a consistent algorithm.

Let (P,Q) be a consistent algorithm, and ¢ € P.
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We will say that the attribute a is dispensable in the
(P,Q)-algorithm if and only if the algorithm ((P-{a}),Q) is
consistent; otherwise the attribute a is indispensable in the
algorithm (P,Q).

If all attributes @ € P are indispensable in the
algorithm (P,Q), then the algorithm (P,Q) will be called
independent .

The subset of attributes R ¢ P will be called a reduct
of P in the algorithm (P,Q)) if the algorithm (R,Q) is
independent and consistent.

If R is a reduct of P in the algorithm (P,Q), then the
algorithm (R,Q) is said to be a reduct of the algorithm
(P,Q).

The set of all indispensable attributes in an algorithm
(P,Q) will be called the core of the algorithm (P,Q), and
will be denoted by CORE (P,Q).

One can prove the following imporatnt theorem.

Proposition 7
CORE (P,Q) = n RED (P,Q)
where RED (P,Q) is the set of all reducts of (P,Q). n

If all rules in a basic decision algorithm are reduced,
then the algorithm is said to be reduced.

The following example will illustrate the above ideas.

10. Reduction of Inconsistent Algorithms
In the case of inconsistent PQ-algorithm in S the
reduction and normalization goes in a similar way.
Let (P,Q) be a inconsistent algorithm, and a € P.

An attribute a is dispensable in P,(Q-algorithm, if POS
(P,Q) = POS ((P - (a’),Q); otherwise the attribute a is
indispensable in (P,Q).
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The algorithm (P,Q) is independent if all a € P are
jndispensable in (P,Q).

The set of attributes R ¢ P will be called a reduct of
p,Q), if (R,Q) is independent and POS (P,Q) = POS (R,Q).

As before the set of all indispensable attributes in (P,
Q) will be called the core of (P,Q), and will be denoted by
CORE (P,Q). In this case the Proposition 7 is also valid.

Thus the case of the consistent algorithm is a special
case of the inconsistent one.

11. Reduction of Decision Rules

The purpose of this section is to show how the decision
logic can be used to further gimplification of decision
algorithms by elimination of unnecessary conditions in each
decision rule of a decision algorithm separately, in contrast
to reduction performed on all decision rules simultaneously,
as defined in the previous gsections. Before we give the
necessary definitions, let us first jntroduce auxiliary
denotation. If ¢ is P-basic formula and Q < P, then by ¢/Q we
mean the Q-basic formula obtained from the formula ¢ by
removing from ¢ all elementary formulas (a, Ua) such that a €

P - Q.
Let ¢ -> ¥ be a PQ-rule, and let a € P. We will say that

the attribute a is dispensable in the rule ¢ -> y if and only
if

=g ¢ >V implies |= @/(P-1a)) —> ¥

otherwise the attribute a is indispensable in ¢ -> ¥.

If all attributes a € P are indispensable in ¢ -> ¥ then
¢ -> y will be called independent.

The subset of attributes R ¢ P will be called a reduct
of PQ-rule ¢ -> y, if ¢ > ¥ is independent and |=S ¢ >y
implies |=, ¢/R -> ¥.

If R is a reduct of the PQ-rule ¢ -> ¥, then ¢/R —> y is
said to be reduced.

"-----lIlllllIIlIlIIIllllllll.l...l.l..l.l...llll.l.IIlIIIlIlIIlIlIIIIIII
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The set of all jindispensable attributes in¢ >y wiil
be called the core of ¢ -> vy, and will be denoted by CORE (¢
-> y).

One can easily verify that the following theorem is
true.

Proposition 8

CORE CP -> Q> = | RED (P -> Q),

where RED (P -> Q) is the aet of all reducts of (P - Q). =

12. Minimization of Decision Algorithms

In this section we will consider whether all decision
rules are necessary in a decision algorithm, or more exactly
we aim at elimination of superfluous decision rules
associated with the same decision class. It is obvious that
some decision rules can be dropped without disturbing the
decision making process, since some other rules can overtake
the job of the eliminated rules. This is equivalent to the
problem of elimination of superfluous sets in union of
certain sets, discussed in Chapter 3.4., which become more
evident as the study progress. Before we state the problem
more precisely some auxiliary notions are needed.

Let & be a basic algorithm, and let S = (U,A) be a
KR-system. The set of all basic rules in & having the same
successor Yy will be denoted ﬁw, and ?w is the set of all

predecessors of decision rules belonging to A

A basic decision rule ¢ -> ¥ in & is dispensable in #,
if |=S \' ?w =V [?w - {¢}}, where V?w denotes disjunction of

all formulas in ?w; otherwise the rule is indispensable in A,
1f all decision rules in ﬂw are indispensable then the set of

rules ﬂw is called independent.

A subsetﬂ¢ of decision rules of # is a reduct of ﬂw if

all decision rules in ﬂ& are independent and |=S VP =V ?&.
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A set of decision rules ﬂw is reduced, if reduct of dw
is ﬂw it shelf.

Now we are ready to give the basic definition of this
section.
A basic algorithm & is minimal, if every decision rule in

# is reduced and for every decision rule ¢ -> y in L, 4 is
reduced.

Thus in order to simplify a PQ-algorithm, we must first
reduce the set of attributes, i.e. we present the algorithm
in a normal form (note that many normal forms are possible in
general). The next step consists in the reduction of the
algorithm, i.e. simplifying the decision rules. The least
step removes all superfluous decision rules from the
algorithm.

The example which follows will depict the above defined
concepts.

Example

Supouse we are given the following KR-system

[
Q
o
)
R
o

GO D W N
NN e O =
NN -0 OO
moOoOCcOoCoO
NN O S =
MR NOC ==

Table 1

and assume that P ={a, b, ¢, d} and Q = {e} are condition and
decision attributes respectively.

It is easy to compute that the only e-dispensable
condition attribute is ¢. Thus Table 1 can be simplified as
shown in Table 2 below.
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1 1 0 1 1
2 1 0 0 1
3 0 0 0 0
4 1 1 1 0
5 1 1 2 2
6 2 2 2 2
7 2 2 2 2
Table 2

In the next step we have to reduce the superfluous
values of attributes, i.e. reduce all decision rules in the
algorithm. To this end we have tirst computed core values of
attributes, and the result is presented in Table 3.

U a b d e

1 - (] - 1
2 1 - - 1
3 0 - - 0
4 - 1 1 0
5 - - 2 2
6 - - - 2
7 - - - 2
Table 3

In the table below we have listed all value reducts



-220- -221-
or
U a b d e a bd -
o v21% 77 %0
1 1 0 x 1 For the decision class 2 we have also one minimal
1’ x 0 1 1 decision rule
2 1 0 x 1
2° 1 x 0 1 a
———————————————————— -> e
3 0 X X 0 2 2
‘1____5____1_“_1____9
5 N x N 2 s Finally we get twD minimal decision algorithms
6 2 1 x 2
6’ 2 x 2 2
e x 1z 2 a9 77 %)
) 2 2 x 2 : a ->e
7' 2 x 2 2 ' b° 0
7' x 2 2 2 , 1d1 -> e,
d, ->
i 2 7 2
Table 4 1 and
A8 we can see from the table in row 1 we have two : bd ->e
reducts of condition attributes - ¢ > and b_d_. similarly 01 1
10 01 ? ad ->e
for the row number 2 we have also two reducts - al bo and al 170 1
3 a. -> e
do. There are two minimal sets of decision rules for decision . bod 0
% —) e
class 1, namely 3 1 Y
i d_->e
2 2
->
1) albo e, ‘ .
2) bodl -5 el f The combined form of these algorithms are
adg 7> €y . N
or al o > e1
- a vbd ->e
bodlvaldo >el : do 11 0
->
2 77 2
For decision class 0 we have one minimal set of decision and
rules
->
ao eo
bld1 -> e,

— e ———————————————
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b d1 v ald0 -> e,

(=]

a. v bldl -> eo

d. -> e

N
]
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