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ABSTRACT. We propose in this article the application of the rough
sct concept as a basis for decision tables theory. The proposed approach
yields interesting, new theoretical results and has given rise to a wide
class of practical applications.
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1.Introduction. The main objective of this article is to show that
the rough set concept [6] can be used as a mathematical basis for
the decision tables theory {7], [8]. In particular the decision tables
analysis and simplification {10} seems $o be the most interesting area
of research within the framework of the proposed approach.

Decision tables are commonly meant to be used mainly in program-
ming [1-4},[10], however it turns out that machine learning [13], expert
systems (5], vagne data analyais [9] and other fields of artificial intelli-
gence may also be chosen as possible fields of applications , especially
in the rough set setting.
2.Decision Tables. We assume that the reader is familiar with the
basic concepts of decision tables ,and we will start from the formal def-
inition of a decision table employed in our considerations throughout
this paper.

A decision table is a system

S = (UJC’DlVIn
where

U-is a nonempty, finite set called the universe
C, D - are finite sets such that CUD # 0 and Cn D =0, called
condition and decision (action) attribules respectively

V= Va, Va-is the set called the domain of attribute a
acCubD
J:U X (CuD)—YV isa decision function (total) such that

f(z,a) €V, foreveryac CUDandz € U.
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A function g: CUD — V is called a decision rule in § if there
exists an £ € U such that g = fz.

H g is a decision rule, then the restriction g to C ,denoted ¢|C
,and the restriction of g to D, denoted g|D are called conditions and
decisions (actions) of g respectively.

The decision rule g is determinisiic (in S) if forevery z € U ,f4|C =
g|C implies f,|D = g|D; otherwise g is nondeterministic.

Decision table is deterministic (consistent) if all its decision rules
are deterministic; otherwise decision table is nondeterministic (incon-
sistent).

An example of decision table is shown below. In what follows we
assume that decision rules are labelled by integers.

U a b ¢ d e
1 1 0 2 2 0
2 01 1 1 2
3 2 00 11
4 1 0 0 2 2
5 1 0 2 01
[ 22 0 11
7 2 1 1 1 2
] 0 1 1 01
Decision Table 1

Attributes a, b, ¢ are conditions whereas d, ¢ are decision atiributes.
For example the decision rule 1 is nondeterministic and the decision
rule 3 is deterministic in the table.

3.Rough Sets. In this section we will present the basic concepts
concerning rough sets which will be nsed throughout this paper.

Tt is easy $o see that every subeet of attribute A C CUD generates
a binary realtion over U ,denoted A and defined thus

(z,y) € A iff fo(0) = fy(a) for every a € A.

The relation will be called an indiacernibility relation. Obviously
Ais equivalence relation over U. Hence every subset of attributes
A generates a partition of U ,denoted A*. In other words A? is the
family of all equivalence classes of the relation A. The equivalence
classes of A are called bocks of A°*.

For example the attribute ¢ in the decision table 1 generates the
pantition of U consisting of three blocks X; = {1,4,6}, X2 = {2,8}
and Xj = {3,6,7} ,whereas the set of condition attributes generates
the partition consisting of 6 following blocks: Y; = {1,5} ,Y; = (2,8}
Ya={3) ,Yo={4},¥s = {6} Yo = (T}
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Our next important concept is that of approximation of a set.

Let § =(U,C,D,V, f) be a decision table, ACCUD and X C U.
The A-lower approzimation of X, denoted AX and A-upper approzi-
mation of X ,denoted AX , are defined as below

AX={z€VU:[z}z C X}

AX={zeU:[z]znX #¢}

where [z]7 denotes block of the partition A* conaining the element
zeU.

Set Bny(X) =AX ~ AX will be called the A-boundary of X.

More about appraxiamtion can be found in [6]. The intuitive mean-
ing of approximations is as follows: the A-lower approximation of X
is the set of all elements of U which can certainly be classified as
elements of X, employing the set of attributes A ,and the A-upper
approximation of X -which can be poseibly classified as elements of

X using the set of attributes A. The A-boudary of X is the set of
elements which cannot be properly classified either to X or — X using
the set of atributes A.

Now we are about to define our main notion, the notion of a rough
set.

H AX = AX we shall say that X is A-discernsble, otherwise set X
is A-indiscernsble, or rough with respect to A.

Thus rough sets are sets with unsharply defined boundaries or, in
other words, sets which cannot be clearly defined using the set of
attributes A.

The following example will depict the above introdnced notions
of approximations and of boundary. Consider the decision table 1
s#the set of condition attributes € = {a,b,c} and the subset of the
universe X = {1,2,3,4, 5} Employing the definition of approxima-
tions and boundary it is easy to compute that CX = {1,3,4,5)}
CX = {1,2,3,4,5,8} and the boundary Bnc(X) = {2,8}. Thus
the set X is rough with respect to the set of condition atiributes.
That is to say that we are unable to decide whether elements 2 and
8 are members of the set X or not. For the rest of the universe such
decision is possible.

Now we shall extend the concept of approximation from sets to
families of sets, which will be needed to define further notions.

§ = (U,C,D,V, [} be a decision table, AC CUD and F =
{X1,X3, ..., Xa} 3 family of subsets of U, ie. X; CU.
Lower and upper approximations are defined as follows

AF = {AXI)AXQ’ -'wAXl}
AF = (X, DXy, AXn).

In this paper we will be interested in families which are partitions
generated by some subsets of attributes A C CU D, L.e. families of
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the form A*, and we will try to define how closely we approximate
a partition B* by another partition A*, where 4,B C CU D.In
order to do so we shall introduce a coefficient, called the accuracy of
approzimation of B* by A*, and defined in the following way:

74(B) = _i_r_“'dCZZ‘#)B')) ;

Posa(B)= |J 4AX,
XeB*

where

is called positive region of B* with respect to A

Of conrse 0 < 74(B) < 1, for every 4, B.

Intuitively speaking, the positive region of B* with respect to A4
is the set of all members of the universe U, which can be properly
classified to blocks of the partition B* employing attributes from A

For illustration let us compute (D) for the decision table 1, where
C and D are sets of condition and decision attributes respectively. It
is easy to compute that the partition D* consists of the following
blocks, X; = {1}, Xa = {2,7}, Xs = {3,6}, Xa = {4}, Xs = {5,8}
and the partition C* consists of blocks ¥; = {1,5}, ¥a = {2,8},
Ys = {3}, Ya = {4}, Ys = {6}, Yo = {7}. Next let us compute the C-
lower appraximation of D*, and we get CXy=¢,CX3=Ys, CX3 =
Y3U13,§1X4==Yiand§LX3==¢.Thu1}%wc(1r)==Y3U)2U}3Ul%==
{3,4,6,7}. That is to say that only these elements can be properly
classified to blocks of the partition generated by decision attributes
D employing the condition atiributes C. Hence the accuracy of the
approximation ¢(D) = 0.5.
4.Dependency of Attributes. One of the basic problem in the
decision tables theory is the question whether the set of conditions
uniquely determines the set of decisions to be performed if the condi-
tions are satisfied. In order to consider this problem in detail we shall
define the notion of dependency of attributes.

Let § = (U,C,D,V, f) be a decision table, and let A, BCCUD.

Wesayihathependainadegreek(OskSI)onA(in 8) i
k = 44(B). (symbolically A—* B).

If k = 1 we say that B depends totally on A (or in short -depends);
if 0 < k < 1, we say that B depends partially on A, and if k=0, we
say that B is totally independent of A. If A—! B we shall also write
A— B.

Let us notice that A — B,iff AC C.

The following property connects two improtant notions, that of
determinism and dependency of attributes.

PROPERTY 4.1. A decision table S = (U,C, D,V, ) is deterministic
(consistent) iff C — D.
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The next property may be regarded as the decomposition theorem.
PROPERTY 4.2. Fach decision table

S$=(U,G,D,V, ()
can be uniquely decomposed into two decision tables
8 = (Uy,C,D,Vy, f1) and §3 = (Us,C, D, Vs, f2)
such that C—+! D in 5, and C—° D in S3, where
Uy = Posc(D*),

fi is the restriction of f to U,

Ua= | ) Bro(x)
X€D* :
fa is the restriction of f to Uy,

and Vj, V3 are ranges of function f; and f; respectively.

Employing the above property we can decorpose the decision table
1 as shown below:

U a b ¢ d e
3 2 0 0 1 1
4 1 1 0 2 2
8 2 2 0 1 1
T 271 1 12

Decision Table 2

Ua a b ¢ d e
1 1 0 2 2 0
2 01 1 1 2
5 1 0 2 0 1
8 011 0 1

Decision Table 3

Decision table 2 is deterministic and decision table 3 is totally non-
deterministic, which is to say that all decision rules in table 2 are
deterministic, and in the decision table 3- all decision rules are non-
deterministic.
8.Reduction of Attributes. Our second moet important notion is
that of reduction of attributes. We might for example be interested
to know whether all condition attributes are necessary to undertake
decisions specified in a decision table, and if not - to find out the
minimal subeet of condition attributes having this property. In order
%o solve this problem we need some notions which will be defined in
what follows.

Let S =(U,C,D,V, f) be a decision table and let AC CUD.
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We say that the set A is independent in S if for every B C A,
B # A; otherwise set A is dependent.

At BCACCUD isareductof Ain S, if B is a maximal (in
the sense of inclusion) independent subset of A.

For example in the decision table 1, the set of condition attributes
has one reduct {a,6}. A subset of attributes can have more then one
reduct, for example in the decision table below the set of condition
attributes has three reducts {a, b}, {5, ¢}, {s,c}.

U a b ¢ d
1 T0 2 2
2 0 1 1 0
3 2 00 0
4 1 10 1
5 1 0 2 2
6 2 0 0 1
i 0 1 1 2
8 1 11 0
[ 1 0 2 2
10 0 1 1 0
Decision Table 4

The following property can be employed to simplify decision tables.

PROPERTY 5.1. Let § = (U,C,D,V, ) be a decision table, and B
a reduct of C. If C=+* D, then B—* D.

Thus reducing the set of condition attributes, we preserve the de-
pendency between condition and decision attributes in the resulting
table.

For example, in the decision table 1 the only reduct of condition
attributes is {a,6} thus the table can be simplified as shown below:

U a b d e
1 1 0 2 0
2 0 1 1 2
3 20 1 1
4 1 1 2 2
3 10 0 1
6 2 2 1 1
7 T 1 1 2
] 0 1 0 1

Decision Table 5
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That means that in order to undertake decisions specified by de-
cision attributes d and ¢, condition attribute ¢ is superfluons and
attributes a and b are sufficient.

The idea of a reduct of condition attributes consists in preserving
a partition induced by the set of condition attributes, The idea of a
reduct can be generalised, a0 that it would preserve now the positive
region induced by the decision attributes - which leads to further
simplification of a decision table.

Let S = (U,C,D,V, f) be a decision table and let A,BCCuUD.
We say that A is independent with respect to B if for every 4’ C A
Posy(B*) # Pos,(B*). Let us notice that in particular, if A = B
we get the previously introduced concept of dependency of a set of
attributes.

A’ C A will be called a relative reduct of A with respect to B, orin

short - B-reduct of 4, if A’ is a maximal subset of A with respect to
B.

Again, if A = B the relative reduct of 4 with respect to B coincides
with the reduct of A.

The notion of a relative reduct enables us, when applied to condi-
tion and decision attributes, to reduce the set of condition attributes
preserving the positive region of partition induced by the decision
attributes, and consequently, the dependency between the condition
and decision attributes.

An example will exhibit in more detail the introduced concept.

Let us consider the decision table 6, which represents cement klin

control [5]. Attributes a,b,¢c,d are condition atiributes and ¢, f are
decision attributes.

U a b ¢ d e 1
1 3 2 2 2 2 4
2 3 2 21 2 4
3 2 2 21 1 4
4 2 2 72 1 4
[3 3 2 2 3 2 3
6 3 3 23 2 3
7 4 3 2 3 2 3
8 4 3 3 3 2 2
9 4 4 3 3 2 2
10 4 4 3 2 2 2
11 4 3 3 2 2 2
12 4 2 3 32 2 2
13 3 3 2 2 2 14
Decision Table 6
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In the decision table the set of condition attributes is independent,
but it is dependent with respect to the decision attributes. The only
D-reduct of condition attributes is the set {a, b, c}, thus the condition
attribute J is superfluous when making decisions specified by the de-
cision attributes. Hence the table can be simplyfied as below (after
removing duplicate decision rules, which are obviously redundant in
the table).

| vof w| 3

b3 COf G GO 2] | md 13§ R4
D B3] DI D3| =] st | D DI B
©3f B COf COf ] idd i o] o

g o[ il GO 3 W] GO O B
3 S B 2L B W I W O

sl QO] = | Wi

s

Decision Table 7

The relative reduct can be exploited also in another way leading
to further simplification of a decision table. Let us remark that any
partition consisting of n blocks can be represented as a crossproduct
of n partitions consisting of two suitable blocks. In the case of decision
tables this means that, for example, two decision attributes ¢ and f
can be replaced by four two valued decision attributes as shown in
the next decision table.

<
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Decision Table 8

If the value of attribute g; equals 1 in this decision table, this
means: perform actions specified by value 2 of attribute ¢ and value
4 of attribute f, etc. Computing reducts of condition attributes with
respect to atiributes g, g2, g5 and gq we get {a,d}, {a}, {¢,d} and {c}
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respectively. This means that in order to perform decision g; we have
to know values of all attributes belonging to the g;-reduct of condition
attributes. Consequently the decision table 7 can be represented as
below

= G b b (=
e o) eof cof
M| G X | 091 o) Qg
[CECFNFNRNE

WM N[XINX]|O
| 2 =l 3 ]

Decision Table 9

in which all duplicate decision rules are removed, and croeses denote
*don’t care” values of attributes.

Because in general a subset of attributes can have more than one
reduct (relative reduct), the simplification of decision tables does not
yield unique results, and can be optimixed according to preassumed
criteria,

In the end let us notice that the decision table 9 is an abbreviation
of a *fully expanded decision table® without *don’t care” entries.
6.Declsion Algorithms. With each decision table one can associate

a decision algorithm. For example with the decision table 9 we can
associate the following decision algorithm:

{a:=3).(b:=1) = (e =2).(f =4) ‘

(a:=3).(b:=2) = (e:=1)(f:=4)
(a:=2)=>(e:=1).(f=4)

(c:==2).(d:=3) = (e:=2).(f:=3)
(c:=3)=(e=2)(f:=2)

The decision algorithm is a finite set of decision rules, expressed in a
certain formal language. Formally, decision rules take the form ¢ => s,
where ¢ and s are ferms called condition and decison respectively. The

terms are built up from expressions of the form (a := v), combined
by means of boolean operators *.*, *+* and *-*.

In order to connect the concept of a decision table with that of
decision algorihm we shall employ the semantics funclion, denoted
I} lls, which associates to each term a subset of the universe U of the

decision table 5, and to each formula (decision rule) - the truth (T
or falaity (F).
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Below, the inductive definition of semantics function is given.
1) l(a=1v)lls = {z €U : fs(a) = v}
2) llofls = 4 litlls =U
3) lit +olls = [itlls L llslls
litalls = litlls 0 llslls
| -tls =U-|itlls

T, if ||tlls €
1) llt=>au,={ T it 4s C lllls

A decision rule t = o is consistent (corvect) in S if ||t = olls =T,
otherwise the decision rule is inconsistent (incorrect) in S.

A decision algorithm is consistent (correct) in 8 if all its decision
rules are consistent (correct) in S; otherwise the decision algorithm is
inconsistent (incorrect) in S.

A decision rule t => s is deterministic in S, if ||s||s € D*; otherwise
the decision rule is nondeterminsstic in S.

A decision algorithm is deterministic in S if all its decision rules
are deterministic in S; otherwise the decision algerithm is nondeter-
ministic.

From the above definitions we see that the notion of decision fa-
ble is different to that of decision algorithm, for in the latter one we
can distinguish between inconsistency and nondeterminism, which is
impossible in the case of decision tables.We can have for example a
deterministic and incorrect decision algorithm or a nondeterministic
correct decision algorithm. The relationship between these two con-
cepts will be studied in more detail in a separate paper.

Finally let us discuss briefly another problem. In some applications
we might be rather interested in presenting our decision-making pro-
cedure not in the form of a decision table but as a decision algorithm
(for example in expert systems, see [9]).

In order to solve this problem we have two options. The first one (se-
mantic) consists of simplifying the original decision table, as shown in
the previous sections, and replace the simplified table by correspond-
ing decision algorithm. The second one (syntactic), requires that we
first replace the original decision table by proper decision algorithm,
‘which is then simplified by employing logical methods. We recom-
mend the semantical approach, for it is much simpler and faster then
the syntactic one.

When deriving decision algorithms from decision tables, special
attention must be paid to the nondeterministic (inconsistent) part
of the decision table. Suppose we are given a decision table § =
(U,C, D,V, f) such that C —* D and & is high, for example k = 0.9.
Then we can replace the original decision table by deterministic part,
removing in this way all nondeterministic (inconsistent) decision rules,
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and use only deterministic rules when making decisions. If k is low,
say k = 0.5 this procedure will yield rather poor results, since in
a substantial number of situations we will be unable to make deci-
gions. When some probabilistic information about nondeterministic
rules is available a very elegant method has been employed by Wong
and Ziarko (see [11],[12] and [13]), which enables us to derive efficient
decision algorithms from highly nondeterministic decision tables.
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