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Summary. In this article we consider a machine learning mechanism with an imperfect
teacher. We show that in some cases the teacher’s lack of kmowledge (ignorance) does not
affect the learning process —and cannot be discovered by a “student”™ To show this we
employ the rough set approach.

1. Introduction. In this article we analyse a machine learning process with
an imperfect teacher, and we show that in some cases the lack of teacher's
knowledge is not relevant and cannot be detected by a “student™.

Our approach is based on the concept of a rough set (see [1, 2]) which
seems to be a very suitable mathematical tool to deal with this kind of
problems.

2. Rough sets, In this section we introduce, after [1]. basic notions
concerning rough sets being necessary in this paper. A learning system is
a 4tuple § =(E, A, V.[f), where

E—is a finite set of examples,

A= B— e} —is a finite of atiributes; B —is the set of “student™ attributes
and e is a teacher (expert) attribute,

V= | Vo, V,—is a finite set of values of attribute aed f1ExA—-V-is

ae A
a training function (total) such that [ (x, a)e ¥, for every ae 4, and xe E
If C - A, then by C we mean a binary relation defined thus

C = lix,y)eE*.f (x,a)= f(y,a) for every acC}.
Obviously € is an equivalence relation for any € — A. The family of all
equivalence classes will be denoted by C*. Any union of equivalence classes

of C is called C-discernible set in §: sets which are not C-discernible are
called C-indiscernible in 8, or rough sets with respect to C in S
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The C-lower approximation of X € E is defined as:
CX = {xcE:[x)r= X},
and C-upper approximation of X < E is defined thus:

CX = {xeE:[xlgn X #0},

where [x]7 denotes an equivalence class of the relation €, containing the
element x.
The set

BN (X)= CX—CX,
will be called a C-boundary of X in §.
The number

card CX

card CX

is referred as an accuracy of the approximation of X by C in 5.
Obviously X < E is C-discernible (C = A) ilf CX = CX: otherwise set X

is rough with respect to C in §. We shall distinguish the following classes

of rough sets:
a) if CX#0 and CX # E, set X will be called roughly C-discernible,
b) if CX #0 and CX = E, set X will be called externally C-indiscernible,
¢) if CX =0 and CX # E, set X will be called internally C-indiscernible.
d) if CX=0 and CX =E, set X will be called totally C-indiscernible
Let us observe that if X is discernible (roughly discernible or totally

indiscernible) so is —X; if X is externally indiscernible (internally indiscer-

nible), then — X is internally indiscernible (externally indiscernible) - for any

C- A

o, (X)=

3. Learning from examples. The application of rough sets to learning
from examples can be found in [2]. Here we define only some notions
needed in the rest of the paper.

Any subset X — E will be called a concept (in 5). Elements of X are
called examples of X and elements of — X are called counterexamples of X

We assume that the classification of examples of E into X and —X
is provided by a teacher (expert, enviornment etc) and a “student”, who
is able to observe the values of attributes from B, is supposed to describe
(i.e. to learn) the expert classification. From the previous considerations
it follows that the concept X (and consequently —X) can be learned if
BX = BX: otherwise, ie if BX + BX, the concept X (and — X)) cannot be
learned using the set of attributes B. This is to mean that only B-discernible
sets can be learn, employing set of attributes B, and set rough with respect
to B cannot be learned. Using, however, the classification of rough set we cas
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ay something more about sets which cannot be learned in the learning
astem S, namely:

a) if X is roughly B-discernible, the concept X and — X can be learned
«1th certain approximation (expressed by the accuracy coefficient oy (X), ie. the
sudent can learn only some examples and counterexamples of the concept
I —but not the whole concept X,

b) if X is externally B-indiscernible, the student is able to learn only
some examples of the concept X, but is unable to learn any counter-
sxamples of X,

¢) if X is internally B-indiscernible, the student is unable to learn any
sxamples of X but is able to learn some counterexamples of X,

d) if X is totally B-indiscernible, the student iz unable to learn neither
:ziamples nor counterexamples of X,

Thus the case (d) is the worst one, because the student is unable to
learn anything from ihe teacher; in cases (a), (b} and (c) he is able to learn
some exaniple and/or counterexample of the concept considered.

4. The case of an imperfect teacher. In what follows we assume that
he teasLer is imperfect, ie. he is unable to classify all examples from E,
nat ‘s to mean he does not know whether some examples belong to X
of —X.

The problem ariscs how the teacher’s lack of knowledge, ie. ignorance
in classifying examples, affects learning of concept X by the student.

This gquestior can be very easily answered, employing notions introduced
in the previous section of this paper.

Let V,={+.0, -} and

X;,=I{xeE:f. (&= +1].
Xy=IxecE:f (=0},

X.=ixcE:fe)=~1,

where
X ; —is the set of teacher's examples of X (X, X,
X _ —is the set of teacher’s counterexamples of X (X._ - X,

Xy —is the set of examples which cannot be classified by the teacher
(he says: [ do not know)

The set X* =X, - X_ will be called the teacher’s knowledge. and the
set X, we will call the teacher’s ignorance. The teacher’s knowledze and
ignorance can be measured by the coefficient =y (A*) and =, (X ), respectively:
2 (X o) will be referred as an ignorance coefficient.

Our problem, whether the student can detect the teacher’s ignorance X,
employing the set of attributes B. is reduced now to the question whether
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X, is B-discernible or not. From the consideration in the previous section
it follows that if X, is B-discernible the teacher’s ignorance can be fully
detected by the student (the ignorance coefficient 2, (X, )= 1); il X, is
B-indiscernible (rough with respect to B) we have the following four pos-
sibilities:

a) X is roughly B-discernible: the teacher’s ignorance can be recognized
only partially (0 < oy (X,) < 1),

b) X is internally B-indiscernible; the teacher’s ignorance cannot be
recognized (ay, (X o) = 0),

¢) Xy is externally B-indiscernible; the teacher’s ignorance can be reco-
gnized only partially (0 < 2y (X,) < 1),

d) X, is totally B-indiscernible: neither the teacher’s ignorance nor
knowledge can be recognized by the student (ay(Xg) = 0).

Thus, in cases (a) and (c) the teacher’s ignorance can be discovered by
the student and in cases (b) and (d) cannot. The case (d) is not interesting
from our point of view because neither the ignorance can be discovered
nor the knowledge can be learned. Thus let us discuss the case (b) in a litile
more detail.

Let X, be internally B-indiscernible and suppose that BX, £ 0 and
BX_ #0. It is easy to check that in this case X, < BN, (X*), that is to say
that the teacher’s ignorance is “hidden™ in the boundary region of the
teacher’s knowledge. In other words, it does not matter whether the teacher
is unable to classify some examples or not because the student can learn
in both cases exactly the same concepts BX . and BX _. Thus the theacher's
ignorance does not influence the learning ability of the student, in this case

5. Examples

Example 1. Let us consider the learning system shown in Table 1.

_E d b c
| 0 2 ¥
2 0 1 +
3 | 0 +
4 1] | 0
5 1 W] 0
[ I | -
T 2 I -
g ] 1 -
g 1 0

Table 1

where [a. b! = B are student attributes and ¢ 15 teacher attribute.
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In this system we have:

X,= 4.5
X,=11,2,3]
X_=16,7,8,9}
and
BX. = {1} Bx,=1{1,2,3,4,58,9]
BX,=0 BX,={2,%,4,58,9)

BX =16,7} BX_ =1{(2,3,4,56,7.89)
BN, (X*) =1{2,3,4,5,8,9}.

Obviously Xy = BN, (X*), and X, is internally B-indiscernible. Thus the
student, vsing the set of attributes B = {a. b} is unable to discover that

the teacher failed in classifying examples 4 and 5. The ignorance coefficient
1y (4, 3) = 0.

Example 2. In the learning system as shown in Table 2

E a b c
1 0 2 +
z 0 1 +
3 1 0 +
4 0 1 +
5 1 0 0
f 1 1 0
7 2 1 -
) 0 1 =
9 1 0 -
Table 2

attributes @ and b are also student attributes and ¢ is the teacher attribute.
In this table we have

Xy =15, 6}
X,=1{1,2,3 4}
and X_=(7.8,9]
BX,={1} BX,={1,234,589}
BXy={6} BX,=1,56,9
BX .= {7} EXs=42,3,4,5.8,9

BN, (X*)=(2,3,4,58,9 and X, £ BN, (X*).

In this example the student can discover that the teacher failed in
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classifying exampie 6 (but not 5), so he is able discover partially the teacher’s
ignorance. The ignorance coefficient in this case is x,(3, 6) = 0.25

6. Conclusion. In general case the theacher is supposed to classify examples
into n classes, where n > 2. In this case the teacher’s ignorance is manifested
by pointing out some classes (instead of ome class) to which an example
may belong. This case will be discussed in detail elsewhere.
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