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Summary. This paper is an extended and modified version of previous papers in which
the rough set approach as a basis for decision tables theory is proposed.

1. Introduction. We show in this article (cf. [3-4]) that the concept
of the rough set [2] can be used as a basis for the decision tables
theory [5]. The ideas introduced in this paper have been applied to the
implementation of cement kiln control algorithm [1] and showed considerable
practical advantages as compared to other methods.

2. Decision tables

2.1. Concept of a decision table. In this section we recall after [3]
and [4] a formal definition of a decision table which will be wused
throughout this paper.

A decision table is a system

§ = (Univ, Att, Val, f)

where:
Univ —is a finite set of states, called the universe,
Att = ConUDec — is the set of attributes; Con — is the set of conditions
attributes and Dec — is the set of decisions atiributes,
Val = | ] Val,, where Val, is the set of values of an attribute aeAtt

asALl

(domain of a),
f: Univ = Att — Val —is a total function, called the decision function,
such that f {(x, a)eVal, for every xeUniv and acAtt.
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A decsion rule in S is a lunction f.: Att — Val, such that f, (a)=1
for every xeUniv and ae Att.

If f; is a decision rule in § then f,/Con and f./Dec arc calle
conditions and decisions of the decision rule f,. respectively,

A deaision rule f, in 5 is deterministic (consistent) if for every yelr
v # x, f./Con =f,/Con implies f,/Dec = f/Dec; otherwise the decision rule
15 nondeterministic (inconsistent).

A decision table § is deterministic (consistent) il all i1s decision r
dare deterpumistic. otherwise the decision table 5 is nondeterministic
consistent)

A decision table §'=(X, Att, Val',f") is said to be an X-restrictis
of the decision table § = (Univ, Att, Val,f), if X — Univ, f"=//X = 4
and Val' = {veVal: \/ f; (a) = v},

aEl

22, Rough sers. Let § = (Univ. Att. Val.f) be a decision table and l=
deAtt, ye Univ,

With every subset of attributes A4 — At we associate the eguivilenc
relation 4 defined thus

(x.vJed il fil@)=f,(a) for every aeA

If (x,y)ed we say that x and y are indiscernible with respect 1o
in § (A-indiscernible) and A is called an indiscernibility relation in
Equivalence classes of the indiscernibility relation 4 are called A-elementa-
sets in § and the family of all equivalence classes of 4 is denoted by ¢

Let A = Att and X = Univ in a decision table § = (Univ, Att. Val.

By A-lower (A-upper) approximation of X in § we mean the sets

AX = |xeUniv: [x]3 = X}
AX = {xeUniv:[x]3N X #0).

Set Bn,y(X)= AX—AX will be called A-boundary of X in §.

We shall use also the following definitions: A-positive region of set
is the set AX; A-doubtful region of set X is the set Bn,(X); A-negatne:
region of set X is the set Neg, X = Univ—AX.

If AX=AX we say that set X is A-definable in S: otherwise set
is A-nondefinable in §.

Nondefinable sets will be called also rough sets in §.

The number

card AX

e 2 =5
% (X) card 4X
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will be called the accuracy of the X with respect to 4 in 8, and the
number

ealX)=1-a,(X)

will be called the roughness of the set X with respect to 4 in §.

Let us notice that each subset of attributes 4 = Al in a decision table
§ = (Univ, Att, Val, f) defines uniquely the topological space Ty = (Univ,
Def, (5)). where Def,(S) is the family of all A-definable sets in §.
and the lower and upper approximations are interior and closure in the
topological space Ty, thus approximations have the following properties:

1) AX S X 2 AX
2) AD = A® = 0; A Univ= 4 Univ = Univ,
) AXUY)=2 AXUAY
4) AXUY)=AXUAY
5) A(XNY)= AXNAY
6) A(XNY)= AXNAY
N A(-X)=-A(X)
B) A(—X)= —A(X).
Moreover in this topological space we have the following two properties:
9) AAX = AAX
10) AAX = AAX.

From the topological view the rough sets can be classified as follows:

a) Set X is roughly A-definable in § if AX £0 and AX s Univ,

b) Set X is internally A-nondefinable in § if AX =0 and AX # Univ,
c) Set X is externally A-nondefinable in § if AX = Univ and 4X #0,
d) Set X is totally A-nondefinable in § if AX =0 and AX = Univ.

2.3. Dependence of attributes. Let § = (Univ, Att, Val f) be a decision
table, F = {X . X;,.., X,}], where X, = Univ, a family of subsets of Univ
and A4 = Att.

By A-lower (A-upper) approximation of F in § we mean the families

AF = {AX,, X, .., AX,)
AF = {AX,, AX,,.., AX,}.
The A-positive region of a family F is the set

Pos, (F)= | AX,.
XgF
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The A-doubtful region of a family F is the set
: Bn,(F)= |)Bn, X,
XF
The A-negative region of a family F is the set
Neg, (F) = Univ— | | AX,.
XgF
The number

card Pos, (F)

FalF)= :
card Univ

will be called the guality at the approximation of F by 4 in §.

Let B, C = Att be two subsets of attributes in § =(Univ, Att, Val
and k — real number such that 0 =k < 1.

We say that C depends in a degree k on B in §, in symbols B
if k=yg(C*).

If k=1 we say that C totally depends on B in § and we wros
also B— C instead of BLC. If 0 < k < 1 we say that C roughly depenc
on Bin 5. If k=0 we say that C is totally independent on B in 5

The following properties are valid:

Property 2.3.1. A decision table § = (Univ, Att, Val, ) is determims
ilf Con—Dec in §.

A decision table § = (Univ, Att, Val, /) is called roughly determims
il Con“ Dec and 0 <k < 1.

Froperty 23.2. The following properties are true:
1) Con & Dec in §/Pos.,, (Dec*)

2) Con & Dec in §/Bne,, (Dec*).

Note. The above property says that every decision table can be decompose:
into two paris (possibly empty) such that one is deterministic and
second totally nondeterministic.

24. Reduction of attributes. Let § = (Univ, Att, Val, ) be a decs
table and let A4 < At

Set 4 is independent in S if for every B A4, B A. Set 4
dependent in § if there exists B = A such that B= 4.

Set B A is a reduct of 4 in S if B is the maximal independes
set in §.

Subset B< 4 is a reduct of A with respect to C < Att in S
15 an independent subset of A such that y,(C*)=y,(C*) (or Posg(C* =
= Pos, (C*)).
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Let us notice that if A=C the reduct of 4 with respect to C
sencide with the reduct of 4.

Broperty 241. If A% B in § and C is a reduct of A, or reduct of A
wh respect to B in §, then C& B,

In particular, if C is a reduct of conditions attributes Con in a decision
a5e 5 and Con & Dec, then C % Dec. This is to mean that we can
smplify the decision table by reducing the set of conditions attributes,

We can also define the approximate reduct (or approximate reduct with
=spect to a subset C) in the following way:

Let 0=eg<1 be a real number and let B= 4 = Att in a decision
able § = (Univ, Att, Val, /).

Subset B of A is a ereduct of A4 in § if B is independent in S
od yy(4%) = 1-¢.

Subset B of 4 is a e-reduct of A in 5 with respect to C = Att if B
= independent in § and y5(C*)=7,(C¥)=¢.

Directly from these definitions we have

Property 242 If B is a ereduct of 4 in § then B 1=%s 4.

Property 243, If B is a s-reduct of 4 in § with respect to C = Att,
wmd A5 C, then BA5 (.

In particular, if Con% Dec in § and € = Con is a e-reduct of Con
2 5, then Cf=%4 Dec. That is to mean that we can reduce the set of
waditions attributes, in such a way that the degree of dependence between
tecisions and conditions attributes is decreased by the constant &,

1. The decision language

31. Syntax of the decision language. With each decision table § =
= (Univ, Att, Val, f) we associate a decision language L¢, which consists
terms, formulas and decision algorithms.
Terms are built up from some constants by means of Boolean operation
—. We assume that 0, 1 are constants and Att, Val are some
aite sets of constants called attributes and values of attributes, respectively.
The set of terms is the least set satisfying the conditions:
Constants 0 and 1 are terms in L,
20 Any expression of the form (g: = v) where aeAtt and veVal, 1s a term
m L,
If t and s are terms in L, so are —i, (r435) and (r-5) [or simple (1s)).
The set of formulas in the information language L is the least set
stisfying the conditions:
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1} Constants T (for true) and F (for false) are formulas in L,
2y If ¢t and 5 are terms in L, then =5 and ¢ =5 are formulas in L.
NIf & and ¥ are formulas in L, then ~ @, (@& v P), (& A F), (d—*
and (@ + ¥) are also formulas in L.
Any formula of the form r=-s will be called a decision rule in
t is referred as a predecessor and s the successor of the decision =~
respectively.
Any finite set of decision rules in L is called a decision algorithm =
With every decision algorithm U = {t;=5],. 1 =i <min L we assocs

“lmir

the formula ¥, = Jﬁ (t; = ;) called the decision formula of 2 in L
=1

32. The meaning (the semantics) of terms and formulas in L
we shall define formally the meaning of terms and formulas in a decs
table 5§ = (Univ, Att, Val. /). Terms are intended to mean subsets of
universe Univ and the meaning of formulas is truth or falsity. Of cowwe
the meaning of a certain term or formula can be different in war
information systems.

In order to define the meaning of terms and formulas we shal
the meaning function gg: Terw For =y (Univ)w [T, F}, where Ter and ¥
denote the set of all terms and formulas, respectively.

The meaning lunction g, for terms is defined as follows (we oms
subscript § if § is understood):

1) g(0)=@: g (1) = Univ
2) glg: =v)= IxeUniv: f (x, qg) = ¢!}
3 gi—th= Univ—glt)
glir+si=g(t)Ug(s)
g (ts) =g (t)7g (s).
The meaning of formulas is defined thus:
N g(T)=T g(F)=F,
[T, if g@ty=gls)

2 =35)= 4
) gle=3) {F. otherwise
_a_ T, it gl=als
) a6 ”_I!F. otherwise
T, if ) =
4}q{~¢,}=‘1 , i g(P)=F

|F, if g(®)=T
5) gl Py=g(P) v q(P)
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gl o ¥)=g(®) ~ g(¥)
=Py =g(~d) v gl¥)
pP)=g(P—F)rgld—1P).

f g ) =T we say that @ 1s true m §: if g,(®)=F then @ 15
e 10 be false in 5. If & s true in § we shall write =5 @ or simply = &
soen 5 15 known.

If =.(r = 5) we sav that terms r and s are equivalent in S if E=glt=73)

say that term ¢ implies term s in S. If E=g(P+— V) we say that
woulas @ and ¥ are eguivalent in § and if =4 (¢ — %) we say that
wmula @ implies formula ¥ in §

“or the transformation of terms we shall use the axioms of Boolean
we=ora and the following specific axiom

(@:=v)=— Y [a:=u).
m = ¢, reVal,
For the transformation of formulas we shall employ the axioms of
sopositional calculus.
4 term ¢ in L is A-elementary (4 < Att) if t = [] (a: = v,).

aed
L term s in L is an A-normal form if =35, where all s are
~=Sementary.
Let §=(Univ, Att, Val, f) be a decision table A = Att subset of
~butes, and L, — an information language with the set of attributes A.

Property 3.2.1. For every term ¢ in Lp there exists the term s in L,

t-normal form, such that =5t =s: s is referred as the A-normal form

m L.

Sgbset X = Univ is said to be A-definable in Li{4 = Att) if there
==s a term + in L, such that g¢(t)= X the term ¢ is called the
sescription of X in L.

f set X = Univ is not A-definable in L, then the terms r and s
w= that gg(t)= AX and gy (s)= AX are called the A-lower and A-upper
~<riptions of X in L, respectively,

13, Decision rules. Our basic concept is that of a decision rule We
. discuss this concept in some details in this section.
Let 1=5 be a decision rule in L, and let 4, B be two subsets of
~butes which occurs in ¢ and s, respectively. We shall call then ==
1. B)-decision rule. If 4 and B are single element sets, for the sake
mplicity, we shall use the expression (a, b)-decision rule.
Let § = (Univ, Att, Val, f) be a decision table and t =5 an (A, B}-decision
= in L.
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We say that an (4, B)-decision rule is B-deterministic in § if go(s = o
i€ gs(s) is a description of some equivalence class of the equivalens
relation B; otherwise the decision rule is B-nondeterministic.

We say that an (4, B)-decision rule t=5 is in AU B-normal fvs
if ¥ and s are in AU B-normal form.

Property 3.3.1. An (A, B)-decision rule ¢ =5 is true in S iff all nonemer
AU B-elementary terms occurring in A4 U B-normal form of ¢ occur als
the AU B-normal form of 5.

This property enables us to prove the validity of any decision ~ue
in a simple syntactical way.

3.4. Decision algorithms. Now we shall discuss the most important conces
of our approach — the decision algorithm.

A decision algorithm ¥ in L is said to be correct in § if = ¥.

A decision algorithm % in L is A-deterministic in § (4 = At) f »
its decision rules are A-deterministic in §: otherwise the algorithm
A-nondeterministic,

If A and B are the sets of all attributes occurring in the predecess -
and successors of the decision rules in an decision algorithm 20, ther =
will be called the (4, Bydecision algorithm.

An (A, Bl-decision algorithm is total in § if for every equivalescs
class X of the equivalence relation B, there exists a decision rule r =
in 2 such that gs(5) = X;: otherwise the decision algorithm is partial m &

The following properties are used as transformation rules for decis =
algorithms:

Property 34.1.

1) s A=)~ (5 =3,
| L £ |
2) #sl’{r:x]n{{!::-:;]—r[p:r}]]-p{p:ar}_

Property 34.1. 2) can be regarded as a “modus ponens” for decision ruls
The following important property establishes a relationship betw e
dependency of attributes and the decision algorithm.
Property 342 Let ¥ be an (A, B)-decision algorithm in [
Es¥y iff Ap B

4. Example. Let us consider the following decision table taken fro=
Mrozek [1]. and describing cement kiln control.



On Decision Tables 571

Univ Fi] b o i) @ _f
S TR B T R e TR
- 3 . 2 | 2 4

| 3 3 2 2 2 4

4 2 : 2 I 1 4

3 2 2 2 2 I 4

6 3 2 2 3 2 i

7 3 1 2 3. 2 1

3 4 3 r k] 2 3

9 4 3 3 2] 2 2
10 B e S ik
11 4 4 3 2 2 2
12 4 1 3 2 2 2
13 4 | 3 2 2 2

shere a,b,¢ and d are conditions attributes and ¢ and f are decision
sttributes.

It is easy to check that the decision table is deterministic, ie {a. b c.d} —
= ‘e ', and the set of control attributes as well the set of decision
attributes are independent.

The corresponding decision algorithm is the following:

(a: =Nid: #=N=e=2(=4)
fa:=2=(e:=1)(f: = 4)
c:=2){d: =3)=(e:=2) (1 =3)

c:=3=(e:=2)(f: = 2).
shere d: # 3 is an abbreviation of (d: = 0)+i{d: = 1)+(d: = 2).

DEPARTMENT OF COMPLEX CONTROL SYSTEMS POLISH ACADEMY OF SCIENCES, BALTYCKA &
L GLIWICE
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DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF NORTH CARCLINA, WO 2225 LISA
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