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ary. We show in thie note the application of the rough set approach to decision tables
veis yields a simple method of checking whether the decision table is deterministic or not,
we also demonstrate how such an approach can be used to decwsion tables and decision

rithms simplification.

1. Introduction. The main objective of this note is to show that basic
blems of decision tables analysis (see [4]) can be casly {ormulated and
Ived within the framework of rough set theory (see [2, 31).

First, we define formally the notion of & decision table and next some
sic propertics of decision tables are stated. Further we introduce a decision
guage in which the concept of a decision algorithm is defined We show
t the correctnes of a decision algorithm can be proved in the language
5 introduced.

_The proposed approach has been applied to an ¢xpert system design amd
plementation, which controls the cement kiln operations (see [1]).

1. Dwecision tables
2.1. Basic definitions. A decision table is a system
S=(U,C, Db, V.f)

ere: IJ ~ is a set of states, called the universe, C and D are sets of conditions

decisions attributes, respectively, ¥ = || ¥, and V- is the set of values
welw D
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of attribute a, or domain of an attribute @, f:UxCuD—=V is a »
function (total). We assume that sets U.C and D are not empty and §, =
least two-element set for every attribute.

The function [,:CUu D = V. such that 1 {a) =J(x, a) for every xel
aeCu D will be called the decision rule in § (the semantical decision

If f. is a decision rule in § then LfJ/C and £/D are called condition
decision of f,, respectively, f :

A decision rule f, is deterministic in 5 if for every y#x fLIC=f
implies f./D = f./D; otherwise fv 1s nondeterministic.

A decision table is deterministic (consistent) if all its decision rule
deterministic: otherwise a decision table is nondeterministic (inconsistent

Let S=(U,C,D, V.f) be a decision table and. let B=Cub
B-restriction of § is a system S/B=(U,E,F,W,g), where B—E._

W= | ¥,g=f/UxB.
acl

Let § = (U, C, D, ¥, f) be a decision table and let X = U, The X-
of 8 is a decision table S/X=(X,C,D, F'. 1), where

V= U V. x

weCuf
Vox = {ve V. :there exists xe X such that fe(x, @) = v}
= F b
An example of a decision table Nao, 1 is shown below.

== B I ST N U S e
(=1 S R SR . T Y
Ll SR =T T S
Ll = - . TSR A
=T R = I e -
— el e ek e b3S | oAy

Drecision Table No.

—

where a, b, ¢ and d, e are conditions and decisions attributes, respect

2.2 Indiscernibility relation. With every subset of attributes B= ( _
in 5 we associate an indiscernibility relation 5= U x [, defined as foll
(x, WeB iff f, (a) = f, (a), for every aeB and x, ye U/

If (x. y)e B we say that x and y are B-indiscernible in S.
It is obvious that B is an equivalence relation for any BcCul
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lence classes of the relation B are called B-elementary sets in S.
subsct X <= U is B-definable in S if it is a finite union of B-elementary
m S

r example, in the decision table No. 1 states 2 and 8 are a-indiscernible
states 3 and 6 are {d, e}-indiscernible.

Approximations of sets. Let $=(U,C,D.V.f) be a decision table
R CuD XU
B-lower and B-upper aproximation of X in § arc defined as follows:

BX = {xeU:[xJs = X}
BX = [xeU:[x]gn X #0}.
The st

Bng(X)= BX —BX

be called the B-boundary of X in S,
It is easy to see that set X = U is B-definable in S iff BX = BX.

The B-lower and B-upper approximation of a family of subsets of U
= 'X,,X;, ..., X;}, X, U is defined as follows:

Eﬂq - Ex‘l: E-xfh e | EXH}
Eﬂ‘r = {EXP. EX;,..., ﬁX*}

IfBs C w D, then B* denotes the family of all equivalence classes of the
ion B. Let A, B< CuD. The A-positive region of B* in § is the set

POSA {B*} = U BXr

fm]

the A-doubtful region of B* in § is the set

Bn, (B*) = U' Bny X;

i=1
B = (X1, Xq, o X}
Certainly, Pos, (B*)u Bn, (B*)= U.
The number
card Pos, (B*)
card U

be called a quality of the approximation of B* by 4 in §. and the

Ta (B*) =

B, (B*) = card Pos, (B*)

Y. card AX,
i=1
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will be called the quality of the approximation of B* by 4 in §
Obviously

O B (BY <y, (B¥)< 1.

It is obvious that the decision table 5 is deterministic iff Ve (D=
{U‘[" ﬂ(_‘ ED*] - 1]

24. Dependency of attributes. Let S = (U, C. D. V./h, A, B= CuD
O< k<1 We say that set of attributes B depends in degree k (k-dep
on set A in S, in symbols A5 B, if k=17, (BY).

Thus, the decision table §=(U,C, D, V, f) is deterministic iff the
of decision atiributes D I-depends on the set of condition attributes ¢

From the above there follows an important property:

Property 1. Each decision table § = (U, C.D, V, f) can be decompe
into two decision tables §/Posc (D*) and S/Bnc (D*), such that C =3
§/Posc (D*) and C 5D in S/Bn. (D%

Thus, cach decision table can be decomposed into two decision e
(possibly empty) such that one table is deterministic and the secomnd

nondeterministic and does not contain the deterministic subtable.

For example, the decision table No. 1 is nondeterministic and can
decomposed into two tables:

L

u

a b ¢ d .LI a b ¢ d e
3 2 00 11 1 1 § 2 21
4 1 1 0 ) o 2 0 11 i 2
4] 220 | gt | 5 1 0 2 -1
7 R R | 1 2 3 0 1 1 o1
Decision Table Mo 2 Decision Table Mo, 3

The decision table No. 2 is deterministic and the decision table Mo
is nondeterminmistic,

2.5. Reduction of attributes. We say that a subset of attributes Bc €
is independent in S =(U.C,D, V.f) if for every A= B, A= B; oth
the subset B is dependent in S
- ‘%hat is, B= CuD is dependent in § if there exists A= B such ¢

Set ASB=CwuDis areduct of B in § if A is the least inde
set in B.

If the only reduct of B in S is B itself, we say that the decision tabie
is B-reduced.

Il the decision table S= (U, C, D, V.f) is C-reduced we say that §
reduced.
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s casy to see that the decision table No. 1 is not reduced, and the
condition attributes is dependent. The set of control attnibutes C has

reduct, which is the set {a, b}. Thus, the decision table No. 1 can
ced to table No. 4

L a b d e
1 1 0 1 0
2 o1 1 2
3 2 0 1
4 I | e
5 10 0 1
& R [l
7 2 1 L. ok
H o1 o -1

Decision Table Mo 4
The decision language.

. Syntax of the decision language. With each decision fable 5=

' C.D.V.f) we associate a decision language L.

The set of terms T; in Lg is the least set satisfying the conditions:

A1) Constans (.1 are terms in Lg

A2) Any expression of the form (a:= v), where a€ CubD, veV, is
a term in Lg

A3) If ¢ and s are terms in Lg, 80 are —t,{t+s) and {t-5)

The set of formmlas Fy in L5 is the least set satisfying the conditions:

B1) Constans T (trug) and F (false) are formulas in Lg

B2} If t and 5 are terms in Ig thenf ==& and 1= s are formulas In g

B3) If ¢ and ¥ are formulas in L, then ~ @, (v P)and (@A F)
are formulas in Ls

For example,

—(la:= 1) {b:=0)+{c:=2))

term and

~(a:=1)(b:=0)= —(e:=2)

(@a:=1)+(b:=0)=(c:=2)
formulas.

4 Semantics of the decision language. Semantics of the decision language

function which assigns the meaning to terms and formulas. The meaning
4 term is subset of objects from the universe U obeying the properties
by the term; the meaning of a formula is the true or false.
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The formal definition of semantics is as follows: the meaning of a »
in Ly with respect to the decision table S=(U,C,D,V,f) is the funciion
(denoted g —when § is understood), defined inductively with respect e
complexity of the term. as shown below

Al) g@=0,9()=U
A2) gla:=uv)={xelU:f, (a)=v}
A3} gl(=t=U—g(
Ad) glt.s)=g(0ngl(s)
v A3 glr+s)=g(ug(s).

The meaning of formulas is the function hg lor in short h) def
inductively, thus

Bl) W(T)=T,h(F}=F

. T gl =g
R2) .f:{.-—bl—{}—, if g 1) g (5)

B3) h{t=s)= {; ;i; hﬁiﬂ“ (s)
T if hid)=F
F, ifh{dh=T
B3} h(®v P)=h(®)v h(¥)

Bo)  i(®aA V)= h(P)n h(P).

If h(®)=T we say that @ is true in S;1f h(®)=F then @ is said m
be false in S If @ is true (false) in § we write b5 (H5 @) We omit the
subscript § if § is understood.

For example the meaning of the term (a:= 1)(b:=0) in the decision
table No. 1 is the set {1, 4},

The formula (a: =1) = (b: = 2) is false and the formula (a: =1)=(a:=1
is true in the decision table Ne. 1.

As axioms for thus defined language we assume a substitution of the
axioms of Boolean algebra for terms and substitutions of the propositionz.

calculus axioms - for formulas. Moreover, the following specific axiom wit
be assumed for terms

B4) h[m¢J={

lar=v)=— ¥ (a:=u). I
L T |
Let §=(U,C,D, V,f} be a decision tabie, Is —the decision language
and Bc CuD.
Term te Ly is B-elementary if ¢ = [] (a:= v).
ag B
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m te Lg is in B-normal form if 1 = } s, where s are some B-clementary

m L.

rty 1. For every term 1€ Lgy there exists the term s€Lgy in B-normal
ch that — = s,

t X< U is said to be B-describable in Lg if there exists a term
such that kg () = X. The term ¢ is called the B-description of X in Lg.

perty 2. Subset X = U is B-describable in Ly iff X is B-definable in S.
viously, B-elementary terms in Ig are descriptions of B-elementary
m S

Decision rubes in L., Let S=(U,C,D,V,f) be a decision table,
and s€ Lgp.

h formula of the form = s will be called a decision rule in Lg
terms t and s are called the condition and the decision of the
pon rule, respectively. '

Two decision rules r= s and p==g in [s are equivalent in S if h (r)=h (p)
kis)= hig).

decision rule r=-s in L is deterministic in § if D-normal form of s
D-elementary term; otherwise the decision rule is nondeterministic.

Property 3. A decision rule t==5 in Ly is true in 5 iff all Cu D-elementary
occurring in Cu D-normal form of ¢ occurs in Cu D-normal form of 5.

Decision algorithms. A decision algorithm in L; is a finite set of decision
m s

decision algorithm is deterministic if all its decision rules are deter-
ic: otherwise the decision algorithm is nondeterministic.

ith every decision algorithm % = {f;=s;} 0 <i<m we associate the

¥y = }h'\ ty ==&
=1
the decision formula of 91

decision algorithm ¥ in Lg is said to be correct in 5 if ¥o 15
in S; otherwise the decision algorithm 2 is imcorrect in §.

periy 4.

I—'E\ (t=3s) iff I—[‘i ki==3).
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Two decision algorithms in Lg are equivalent in S if both &
algorithms consist of equivalent decision rules in § or the decision
of both algorithms satisfy the property 4.
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3. Tlapnzx, TaliHie DpEETTHA PEINEEH 1l PLITANMNHE 3NOPETMED

B Filﬁﬂ'lﬂ NUEASLIBACTCR, YUTD ECHOABIDBEAHE I'.IF!H&J'IH:IH!HHHI MHOBECTE I8
'I-I]E-.-'[H]il, TPUEHATHA DFLL[EI!HH BCAET E NpOCTOMY MCTOSY, N EOTOPOMY MOMWHO N
HBNHCTOH TR 'I'EE.-THI.'I,-H. D,CTCPMFIHH[}GIHH[Iﬂﬁ HITH 'Hd.'T.‘-[{pﬂ'MC TOTD, AOKAIRBACTCH, YTO
NoOINGI MOKCT OPHMEHATRCH X YOPOIUEHHHD Tﬂ.ﬁ'.:'I'HIJ, H PEIIARMIEX AATCPHTMOB.



