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1. Introduction

We present in this note a new approach to data analysis,
The method arose from studying some problems of artificial
intelligence, such as expert systems, inductive reasoning,
learning by examples, cluster analysis and others.

In many problems in those areas we face the following
situation: we are given set of objects (or states of an object),
and we are unable to distinguish some objects (states) by the
available means of observation or description. To cope with
such situations we introduce an indiscernibility relation which
expresses our ability to discern objects (or states) under
consideration. It is assumed that the indiscernibility relation
is an equivalence relation. Thus, the indiscernibility relation
express in a certain sense our accuracy of observation, and
equivalence classes of the relation, caelled here atoms, are
the least subsets we are able to observe "through" the indis~-
cernibility relation.

Clearly all observable sets by given indiscernibility
relation are only union of atoms. Others sets are not obser-
vable., Thus if we_wanﬁ to deal with any subsubset of a given
set, we can only do that with some approximation. To express
this precisely we introduce two operations on sets; lower
and upper approximation of a set. Lower approximation of set
X 1is the greatest union of atoms included in set X, and
upper approximation of X is the least union of atoms in-
cluding set X. Thus lower approximation of a set contains
all elements which definitely belong to set X, and upper
approximation of set X contains all elements which possibly

belong to X. The difference between upper and lower appro-
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Ximation is a borderline region of set X, which determine

limits of tolerance for deciding whether given elements belong‘

to X or not,

It turns out that lower and upper approximations coincide

with interior and closure operation respectively in a certain

topological space, generated by the indiscernibility relation,

8C one can use standard topological methods to investigate
the problem of uncertain membership of elements to set X.

Eventually this leads to a new concept of a set with no
clearly defined boundaries, called here rough set, Rough set
can be viewed as a pair of sets (lower and upper approxima-
tions) or a family of set having the same lower and upper ap-
proximations.

We shall not consider in this note the idea of rough set
itself, but we restrict our considefations to approximation
operations only. The idea of a rough set has been first pub-
lished in Pawlak (1982a).

Let us notice that the concept of rough set cannot be
éXpressed in terms of fuzzy sets, for there are essential
differences between those two concepts (see Pawlak (1984e)).

It seems however that this idea has some connections
with Alternative Set Theory (Vopenka (1979)) and Non-Standard
Analysis (Robinson (1966)), but these problems have been not
studied intensively as yvet.

The proposed approach needs deeper mathematical insight,
and some investigations are carried out to meet this require-

ment, but there are not concrete results until now.

The rough set idea has also some logical flavour, and

many results have been obtained in this direction by Ortowska

(see the enclosed references).
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The concept of the rough set although for from being
fully explored found some interesting applications.

From practical point of view the most interesting one
seems to be a new approach to expert systems design, Several
systems to support medical data analysis have been implemented
(see Pawlak (1984d), Doroszewski at el. (1984)) which show
some advantages in comparison to traditional methods, Also
the application of rough set approach to support industry
processes control has bqgn developed by Mrogek (see Mrozek
(1984)).

The rough set approach seems to be also a good departure
point to study foundations of knowledge representation (see
Ortowska, Pawlak (1984a)). There are also trials to apply
this idea to formal languages theory (Kierczak (1984)), ap-
proximate concept learning (Konrad et al. (1981), Tu-Hue Le
(1982)), probability (Pawlak (1984}, mechanics (WoZniak (1983))
measurement theory'(see Ortowska, Pawlak (1984d))} and others.

2, Basic concepts

2.1, Indiscernibility

Let U be a set called universe and let R be a binary

relation over U, called indiscernibility relation, We assume

through this paper that R is an egulvalence relation. If

(x,y)€R we say that x and y are R-indiscernible. Equiva-

lence classes of the relation R are called R-elementary sets

or R-atoms. An equivalence class of a relation R containing
element x will be denoted by [x]R. Any finite union of R-atoms

will be called R-definable set. We assume that the empty set is

R-definable for every R, The family of all R-definable sets
will be denoted by Def(R). We shall ommit the letter R if the
indiscernibility relation is understood, writing for example

atoms, elementary sets - instead R-atoms or R-elementary sets,
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Given an universe U and an indiscernibility relation R,
then the ordered pair A = (U,R) will be called an approxima-
tion space.

Speaking informally, the approximation space A = (U,R)
says with what accuracy we can distinguish elements of the uni-
verse U, or in other words, that we observe elements of the
universe U over the indiscernibility relation R. That is to
mean that elements of the universe U which are indistinguish-
able by given means of observation are glued together forming
atoms (equivalence classes of the indiscernibility relation),

and each atom can be observed only as a whole, Consequently we

are able to observe only definable sets. Not every subset of
the universe U 1is thus observable; some sets can be observed
only with some approximation. To express this fact precisely

we employ the notion of an approximation of a set in a given

approximation space,

Let A = (U,R) be an approximation space, and let X cU,

be a certain subset of U,

An upper R-approximation of X, denoted BX is defined

as
RX = {xEU : [x]R NX#9 },
i.e. RX is the least R-definable set including X.

A lower R-approximation of X, denoted RX 1is defined as
RX = {xEU : [x]R c X },
i.e. RX 1s the greatest R-definable set included in X,

Set BnRX = RX -~ RX will be called R-boundary of X.

By means of approximations we can define positive, negative

and borderline region of a set, i.e.
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, RX - R-positive region of set X
U-RX - R-negative region of set X

BnRX - R-borderline region of set X.

In R-positive region of set x there are only elements which

definitely belong to set X; in R-negative region of set X there

are only elements which definitely do not belong to set X, and

the R-borderline region of set X is a doubtful area, consisting

of elements which membership to set X cannot be decided by the

given "accuracy" of observation, expressed by the indiscernibility
relation R.
To express facts mentioned above we can also introduce two

membership functions sR' ER defined as follows:

XE€p X iff X€ERX
xgk X iff *x€RX

and which read "x surely belongs to X", and "x possibly Belongs
to X" respectively. Thus we may interpret approximations as co-
unterparts of necessity and possibility in model logic.

It would seem that the concept of approximations of a set,
can be expressed in terms of fuzzy set theory (see Zadeh (1965))

assuming the following fuzzy membership function

1 iff  xX€RX

1/2 iff

/Mx(x) = xEBnRX

0 iff x€U-RX,

however this membership function cannot be extended for union and

intersection of sets (for details see Pawlak (1984d)).

Thus the concept of approximation of a set cannot be expres-

sed in fuzzy sets theory.
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Approximation space A = {(U,R) defines uniquely the topo-

logical space Ty = (U, Def(R)), where Def(R) is topology for
U, and it is the family of open and closed sets in TA' The
family of all R-elementary sets in A is a base for TA, and

lower and upper approximations of X are interior and closure

respectively in the topological space T Thus RX

IS
the following properties:

(A1) RX € X € RX

(A2) RU =TRU =U

(a3) RGP =R =9
(A4)  TR(XUY) = RXURY
(A5)  R(XUY) D RXURY
(a6)  R(XnY) < RxnEKy
(A7)  RAXNY) = RXNRY
(a8) R(-X) = -RX
(a9)  R(-X) = -K

Moreover approximations obey the following properties:

el

RX

(A10) RRX = RX

—— -

(A11) TRRX = RRX = RX,

I

2.4, Undefinable sets

It is obvious that set X is R-definable iff RX = iX;

otherwise set X is not R-definable, i.e., X is R-undefinable.

One car split undefinable sets into four following classes:

(B1) If RX #@ and RX # U, X will be called roughly R-
definable

(B2) If RX = @, X will be called internally R-undefinable

(B3) If BX = U, X will be called externally R-undefinable

(B4) If RX =9 and RX = U, X will be called totally R~

and RX havi

i
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undefinable.

Thus "looking" at the subset XcU with "precision" deter-

mined by the indiscernibility relation R, we can face the

following five situations:

1) Set X is R-~definable, i.e. for every element x€U we can

decide whether x belongs to X or not,

2) Set X 1is roughly R-definable, i.e. for some elements x€U

we can decide whether x belongs to X or not, but there are

elements (belonging to R~borderline region of set X), for
which we are unaPle to decide their membership to set X.

3) Set X 1is internally R-undefinable, i.e. for any element

X€U we cannot decide whether x definitely belongs to set X.

4) Set X 1is externally R-undefinable, i.e. for any element

Xx€U we cannot exclude x being member of X.

5) Set X 1is totaily R-undefinable, i.e. for any element X€U

we cannot decide whether x belongs to X or not.

The above five cases are depicted on figure 1.

In order to express more exactly concept of approximation

of a set we.introduce the notion of acauracy coefficient x R(X)

of a set X (U,R), defined as

in the approximation space A =
follows:

CMg(X) w(RX)

R )

where /Av is Jordan measure of set X,

o (X}

R

In case when X is finite
we assume/u (RX) = card(RX) and/u (Rx) = card(EX) .

Obviously
o] ﬁ«xR(X) <1

and ok R(X)=1 iff X is R~definable and G(R(X)=O iff X is

R-undefinable.
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The accuracy coefficient express ratio of elements surely

belonging to set X, to those possibly belonging to set X.

’
3. Examnple of application

3.1. Introduction

In this section we give an application of ideas introduced
in previous section to some artificial intelligence problems.

In inductive reasoning or learning by examples we charac-
terize objects in terms of attributes like, colour, size etc.
Each attribute assume values from given set, for example colour
may have value, blue, green, etc.

The question arises whetherkwe can define uniquely any sub-

set of object in terms of their attributes? In other words: we

are given set of examples of a certain concept, and we ask whether

this concept can be characterized in terms of features (attribu-

tes) of examples?

In order to formulate this problem precisely we introduce

first some necessary notions.

Let U be set of objects and let Q be set of attributes

of objects belonging to U. With every q€Q we associate set V

values of g, called domain of g. We describe each object from

U by determining all its features, i.e. by giving values of all
attributes associated with it. This description of objecﬁs in
terms of their attributes, can be understood as knowledge about
objects.

To express above considerations more precisely we introduce

the notion of Knowledge Representation System.

By a Knowledge Representation System S we mean an ordered

quadruple (see Pawlak (1981b))}

S = (UrQerg]

e e

E————— L

103

where
U - is set of objects
Q —'is set of attributes

v v - is domain of g
v\ vy, vy - is domain
g=Q

g : UxQ = V 1is an information function

We assume that
9(x,q) € Vq»‘for every a€Q.

3 i b
Function gx(q)=g(x,q) for every x€U and g€Q will be

called information about x in §.
Thus information about any object in a given knowledge
representation system is a description of the object in terms

of its features available in the system.

Let S = (U,Q,V,g) be a knowledge representation system

and let P = © be a subset of attributes.

We say that objects x,yeU are pP-indiscernible in S,

x g ¥, iff
gx(p) = ?Y(p) for every PpeEP.

obviously P is an equivalence relation. So each knowledge

Representation System generates a family of approximation spaces

~

AP = (UIP)

where P c Q.
In other words having a knowledge representation system
s = (U,Q,V,9) we can employ the notion of approximations of

sets by means of subset P=Q of attributes in the system, Thus
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PX,PX, denote lower, and upper P-approximation of set X,

respectively.
P
For the sake of simplicity we shall write P instead of P,
- ~T
for example PX(PX) instead of gx(ﬁx) etc.
Suppose we are given knowledge representation system

s = (U,Q,V,8), XcU, PcQ, and we want characterise set X in

terms of attributes P. Then we have the following possibilities:

1) X is P-definable
2) X is roughly P-definable
3) X is internally P-undefinable
4) X is externally P-undefinable
5) X 1is totally P-undefinable.
That is to mean that if we want to learn a certain concept by
giving examples of that concept (set X), and we want characterize
the concept in terms of features (set P of attributes) of examples
which represent the concept we may face one of the following
situations:
1) The concept can be learned if X is P-definable
2) The concept can be learned roughly, if X 1is roughly P-de-
finable
3) The concept cannot be learned {(one can learn only counter
exanmple of thg concept) if X is internally P-undefinable
4) The concept cannot be learned fully (one cannot learn counter
example), if X 1is externally P-undefinable
5) The concept cannot be grasped by given examplex, if set X
is totally P-undefinable.
The idea mentioned above is of primary importance for many
branches of artificial intelligence, like pattern recognition,

inductive inference, expert systems and others.
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The proposed approach has been applied to medical data
analysis. A file of 150 patients suffering from heart disease
seen in ({ heospital in Warsaw was used as =~ data base. Every
patient were characterized by 7 symptoms (attributes), and
all patients have been divided by experts into six classes
corresponding to the grade of the disease advance.

The question w;s whether by means of assumed symptoms one can
determine the grade of disease advance.

Results of computation are given in ths tablevbelow.

Class Number of Lower Upper Accuravy
Nuimtc o Pohlonis 2OProX. Appras )
1 10 i 15 0,47

2 4% kM 3.1 a.72
3 42 29 5 87
4 33 30 36 0,83
5 15 15 15 1,00
6 1 4 4 1,00

Table 1

Higher class numbers in the table represent higher disease
advance.

One can see from the table that the assumed symptoms are
fully characteristic for classes 5 and 6 only representing
the highest degree of disease advance, i.e. these two classes
are definable by the assumed symptoms. The remaining classes

are roughly definable by the considered attributes and the
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accuracy of approximation is very low (0,27) for the initial
stage of the disease, what is to mean that the symptoms are
not enough characteristic in early stages of the disease.
For more details concerning this example see Pawlak (1984d).
Several other medical data analysis examples have been com-
puted using this method, and the results show, that the pre-
sented approach can be of practical value, especially when data

about patients are vaque.

4. Conclusion

In this note we presented only part of the research activity
concerning the rough sets approach to data analysis. It is to
early to state firmly whether the proposed approach gives really
new, valuable tools for data analysis or not, however results
obtained so far seem to convince that the area is worth of

investigating.
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In the Relational model (see /2/), data ar? st?red in tabl:z;the
central problem of relational database design 1st how to cth 0
these tables. The introduction of data depen§9?01es (mgre .e:nand
types), such as functional, multivalued and join depen e?zzd e
subsequent formalizations of desirable schemata are prozl tipnal
tial solutions to this centrel problem.‘The concept of functio



