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Rough classification
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This article contains a new concept of approximate analysis of data, based on the idea
of a *“‘rough” set. The notion of approximate (rough) description of a set is introduced
and investigated. The application to medical data analysis is shown as an example.

1. Introduction

This article is concerned with “‘approximate” classification of objects, based on the
concept of a “rough” set introduced in Pawlak (1982). The idea of approximate
classification was introduced in Pawlak (1983), where an algorithm for approximate
classification was outlined.

The article discusses in more detail the concept of “‘rough” classification. A program
for approximate classification—based on the rough set concept—has been developed
(see Fila & Wilk, 1983) and aplied for computer-assisted medical diagnosis. Results
of computation are briefly discussed.

We have used standard mathematical notation throughout this paper and we assume
that the reader is familiar with basic notions of set theory and topology.

2. Basic notions

2.1. SETS AND THEIR APPROXIMATIONS

In this section we recall after Pawlak (1982) the notion of an upper and a lower
approximation of a sct, which are basic concepts in our approach to approximate
(rough) classification.

By an approximation space A we mean ordered pair A= (U, R), where U is a set
called the universe and R is a binary relation over U, called an indiscernibility relation.
We assume that R is an equivalence relation. If (x, y) € R we say that x and y are
indiscernible in A. Equivalence classes of the relation R are called elementary sets, or
atoms, in A. We assume that the empty set is also elementary for every approximation
space A.

Any finite union of elementary sets in A will be called a definable set in A. The family
of all definable sets in A will be denoted by Def (A).

Let X« U. By an upper approximation of X in A, in symbols AX, we mean the least
definable set in A containing set X; by a lower approximation of set X in A, in symbols
AX, we mean the greatest definable set in A, contained in X; set Bna(X) =AX—AX
will be called a boundary of X in A.
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2.2. PROPERTIES OF APPROXIMATIONS

Approximation space A=(U,R) defines uniquely the topological space T, =
(U, Def(A)), where Def(A) is topology for U, and it is the family of open and closed
sets in T,. The family of all elementary sets in A is a base T,.

The lower and upper approximation of X in A are interior and closure operations
respectively in the topological space Ta.

Thus AX and AX have the following properties:

(A1) AXc X< AX,

(A2) AU=A=U,

(A3) AO=AD=0,

(A4) A(XuY)=AXUAY,

(A5) A(XuY)>AXUAY,

(A6) A(XNY)=AXNAY,

(A7) AXNnY)c AXNnAY,

(A8) A(—X)=—-AX and

(A9) A(—X)=—-AX.

Moreover in topological space T, we have the properties:

(A10) AAX=AAX=AX and

(All) AAX=AAX=AX.

2.3. UNDEFINABLE SETS

Let us notice that set X is definable in A iff AX = AX: otherwise set X is undefinable
in A.

We introduce four classes of undefinable sets in A.

Let X be an undefinable set in A.

(B1) If AX# @ and AX # U, X will be called roughly definable in A.
(B2) If AX# @ and AX=U, X will be called externally undefinable in A.
(B3) If AX=0 and AX # U, X will be called internally undefinable in A.
(B4) If AX=0 and AX =U, X will be called totally undefinable in A.

Let us give some intuitive meaning of the definitions introduced above.

If set X is roughly definable in A it means that we can define set X with some
‘“‘approximation”’, i.e. define its lower and upper approximations in A.

If set X is externally undefinable in A it means that we are unable to exclude any
element x € U being possibly a member of X.

If set X is internally undefinable in A it means that we are unable to say for sure
that any x €U is a member of X.

If set X is totally undefinable it means that we are unable to define even its
approximations (both approximations in this case are trivial,i.e. AX =, and AX =U).

2.4. ACCURACY OF APPROXIMATION
In this section we introduce a measure of accuracy of an approximation of a set in the
approximation space A. The measure is defined for finite sets only.

An accuracy measure of set X in the approximation space A = (U, R) is defined as
#a(X) _card(AX)
ga(X) card(AX)

ra(X) =
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Instead of u,(X) we shall also write wgr(X).

Notice that 0= u (X) =1, and u.(X) =1 if X is definable in A; if X is undefinable
in A, then p (X)) <1,
2.5. APPROXIMATION OF FAMILIES OF SETS

Let A=(U, R) be an approximation space and let F={X,X,,...,X,}, X;cU, bea
family of subsets of the universe U. _
By lower (upper) approximation of F in A, in symbols AF(AF), we understand the
family
AF={AX19 AXZv ey AXn}
and
AF={AX,,AX,,...,AX,}
respectively.
If F is a partition of U, i.e.

XinX;=2 foreveryi j1=<ij<n,
U Xi=U5
i1

we call then F a classification of U and X, are called classes or blocks of F.

If F is a classification of U we shall write C(U) instead of F, and the corresponding
approximations of C(U) in A are denoted by A(C(U)) and A(C(U)) or in short C(U)
and C(U) when A is understood.

The number

nAC(U) = card( U Ax,-) / card U
i=1

will be called the quality of the classification C(U) ={X,, ..., X,}in A and the number
BAC(U) = card( U AX,—)/card( U[\X,—)
i=1 i=1

will be called the accuracy of the classification C(U) in A. Instead of n,C(U) and
BAC(U) we shall also write ngC(U) and BgC(U), respectively.

3. Information systems and classification

3.1. INFORMATION SYSTEMS

In this section we shall consider a special kind of approximation spaces needed when
classifying objects on basis of their properties, and we identify properties with some
attributes characteristic of those objects. With each attribute a set of values is
associated. Description of an object is given when one value for each attribute is chosen.

The above idea can be expressed more precisely by means of the notion of an
information system introduced in Pawlak (1981).
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By an information system S we mean an ordered quadruple
SZ(U)Q’V’p)’

where U is a set called the universe of S—elements of U are called objects; Q is a set
of attributes, V(= .o V,) is a sct of values of attributes—V, will be called the
domain of q and p:UX Q- V is a description function, such that p(x, g) € V, for every
geQ and xc U.

We introduce function p, : Q- V such that p,(g) = p(x, q) for every g€ Q and x € U;
px will be called the description of x in S.

For the sake of simplicity, function p, will be written as a sequence of attribute
values v, v,,...,v;, assuming that v, € V. Of course, the order of values in this
sequnce is immaterial.

We say that objects x, y € U are indiscernible with respect to g€ Q in A, iff p.(q) =
py(q), and we shall write x;y; certainly ; is an equivalence relation. Objects x, ye U
are indiscernible with respect to P< Q in S, in symbols xpy, ift P= (Mpep P-

In particular, if P=Q we say that x and y are indiscernible in S and write xzy instead
of xay.

Obviously, P is an equivalence relation, thus each information system S = (U, Q, V, p)
defines uniquely an approximation space Ag= (U, S), where § is the indiscernibility
relation generated by the information system S.

If xeU and p, is the description of x in S, then we assume that p, is also the
description of the equivalence class of the relation S containing x.

We say that subset X = U is describable in S iff X is definable in Ag; if X is undefinable
in Ag, X will be called nondescribable in S. Description of a describable set in S consists
of all descriptions of its elementary sets. Description of an empty set is denoted by ¢.

Example 1
Suppose we are given information system S= (U, Q, V, p) where

Uz{xl’xb-'-’xlo}’ Q={Pa‘1a’}, Vp={071a2}a
v,={0,1}, V,={0,1,2,3}

and information function p is given by the table:

C
g

X,
X2
X3
X4
Xs
X6
X7
Xg
Xy

HFONONE=S OO —
COO—= O = —==O B~
[SSTN S I i e N ew B N OV ]
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There are the following elementary sets in the system:
E;={xi, xiohy  Ex={xz x3,x7},
E3={x4, x5}, Eq={x¢, xs}, Es={xo}.

For example, sets

Xy ={x1, x3, x3, X9, X0} =E, UE,
and

Xo={x3, X3, X4, X5, Xe, X7, X} =E; UE3UE,
are describable in S, and sets

Xa={x1, X2, X3, X7, xg} and X;={xy, x3, xo}

are nondescribable in S.

We can introduce the following four classes of nondescribable sets in a information
system S.

Let X< U be a nondescribable set in S. Then:

(C1) if X is roughly definable in Ag then X is called roughly describable in S;

(C2) if X is externally undefinable in Ag, then X is called externally nondescribable
in S;

(C3) if X is internally undefinable in Ag, then X is called internally nondescribable
in S and

(C4) If X is totally undefinable in Ag, then X is called totally nondescribable in S.

The meaning of these definitions is obvious. They simply say that there are several
grades of nondescribability, from approximate describability to total nondescribability.
In other words, if we are given some properties (attributes) of an object, and we want
to characterize a subset of objects by means of these properties, the task can end in
failure, because only describable sets can be uniquely characterized by a given set of
attributes.

Example 2
Let us consider the information system as in example 1. Then set
Y, ={x1, x2, X4, X5}
is roughly describable in S; set
Y2 ={x1, X2, X3, X4, X Xo}
is externally nondescribable in S and set
Y3 ={x1, X2, X5, Xz}

is internally nondescribable in S.
There are no totally nondescribable sets in this system.

3.2. ATTRIBUTE DEPENDENCES AND REDUCED INFORMATION SYSTEMS

By means of the indescernibility relation, we can easily define some important features
of information systems; first of all the most important one—dependency at attributes.
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Let S=(U, Q,V, p) be an information system and let p, g € Q.

(a) Attribute p is said to be dependent on attribute g in S, (¢—>p) iff §< b.
(b) Attributes p, g are called independent in S iff neither p > g nor g~ p hold.

The meaning of these two definitions is obvious. For more details see Pawlak (1981).

Example 3
Consider the information system S= (U, Q, V, p) such that U ={x, x,, x3, x4, x5}, Q=

{91, 92,93, 92}, V,,=10,1}, V,,={0,1}, V.. ={0, 1}, V,,={0, 1, 2}, and function p given
by the table:

U 9 q> q3 q4
x, 0 0 0 0
X, 0 1 0 2
X3 1 1 0 1
X4 1 1 0 1
Xs 0 1 1 2

It is easy to see that q,~ ¢, and g, q, because §,< §, and §,< §,.
For a later purpose we introduce some new definitions.

(c) A subset P<Q is said to be independent in S iff for every P'c P, P'>P. L.

(d) A subset P< Qissaid to be dependent in S iff there exists a ~P’ < P such that P’ =P,

(e) A subset P'< P is said to be superfluous in P iff P—P'=P.

(f) A subset P< Q is called reduct of Q in S iff Q—P is superfluous in Q and P is
independent in S; the corresponding system S’ = (U, P, V, p’) is called reduced
system {p' is the restriction of p to set UXP).

Example 4
In the information system considered in example 3 the set of attributes Q is dependent
in S and sets {q,, 42, 93}, {43, 94} are reducts of Q.

Note that a system can have more than one reduct!

Now we give some properties of attributes, which enable us to simplify the decision
procedure whether the set of attributes is dependent or not, and the procedure for
finding reducts of the set of attributes. The proofs are by simple computation.

Fact 1. If a set of attributes Q is independent in S then all its different attributes
are pairwise independent in S.

Fact 2. Subset P< Qis dependent in Siff there exists P’ = P such that P’ is superfluous
in P.

Fact 3. If P Q is independent in S then every P’ = P is also independent in S.

Fact 4. 1If P< Q 1s dependent in S, then for every P'>P and P’ < Q, P’ is dependent
in S.

Let P={p,,ps,...,p.}, PcQandlet P;=P—{p}. 1=i=n.
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Fact 5. Set P< Q is independent in S iff for every i (1=i<n)P,>P. X

Fact q Set P< Q is independent in S iff for cvery i (1=i<n) card(U/P;,) <
card(U/P).

By Facts 5 and 6 in order to check whether set P< Q is independent or not in S it
is enough to check for every attribute whether removing of this attribute increases the
number of elementary sets or not in the system. This leads to very simple algorithm.

If the set of attributes is dependent we can be interested in finding all reduced systems.

The reduction algorithm can be based on the following property.

Fact 7. If P< Q is superfluous in Q and {p} is superfluous in Q—P, then Pu {p} is
superfluous in Q.

By this property we can eliminate superfluous attributes step by step from the system;
after exhausting all possible patterns of reduction we get all reducts of Q in S.

In order to explain the above ideas in more detail let us first define the notion of
representation of an information system. .

Let S=(U, Q, V, p) be an information system. The system $* = (U/S, Q, V, p*) will
be called the representation of S where

p*:U/SXxQ->V

and
p*(X,q)=v, XeU/S, qeQ
iff
p(x,q)=v
for all xe X.

In other words, if we omit all duplicate rows in the table of function p and replace

objects by elementary sets containing these objects so we obtain the representation of
the system.

Example 5
Let us consider information system as in example 3, i.e.

U q g s s
x, 0 0 0 0
x5 0 1 0 2
X3 1 1 0 1
X4 1 1 0 1
Xs 0 1 1 2

For the sake of simplicity throughout the remainder of this article we will identify
the notion of the information system with the table of the information function.
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The representation of this system has the form

U/S 4; 'R 4 s
(x} 0 0 0 0
(x,} 0 1 0 2
{x3, x4} 1 1 0 1
{xs} 0 1 1 2

Thus each row in the table is the description of an elementary set, and we can treat
the whole table as the description of the whole information system.
In order to simplify the notation the above table will be also presented as follows:

ot
[\
w
£

o= OO
— e O
-0 o0
N=NO

The set of attributes in this system is dependent because by removing attribute 4
we obtain the system

1 2 3
0 0 0
0 1 0
1 1 0
0 1 1

with the same number of elementary sets as the original system.
After removing attribute 3 from the last system we obtain the system

—
N

o= OO
—t e O

in which the second and the fourth rows are the same, which means that the second and
the fourth elementary sets are “‘glued’ together and in this way we get a smaller number
of elementary sets so attribute 3 is not superfluous. Proceeding in this way we get that
1, 2, 3 and 3, 4 are the only reducts of set of attributes 1, 2, 3, 4.
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The corresponding reduced systems are the following

1 2 3 3 4
0 0 0 0 0
0 1 0 0 2
1 1 0 0 1
0 1 1 1 2

One can easily see that each elementary set in these systems has a different description
and that removing any attribute (column) from the system changes this property.

If a set of attributes Q is independent in S and we remove subset P from Q, then
we obtain independent set of attributes Q—P in S again. If the relations Q and Q—P
differ “a little”’, we can say that set P is roughly superfluous in S.

More exactly, we say that set P< Q is &-superfluous in S iff

pa(X)—ugp(X)=%
for every X = U, and consequently we say that P< Q is &-reduct of Q in S iff

ro(X)—up(X)=¢€
for every X< U.

To this end let us remark that sometimes we are interested in removing superfluous
(Z-superfluous) attributes not for the whole set of objects U, but for a certain subset
X of U.

In such a case we can simply use the same methods as before assumming only that
the universe of the system is not U but X.

4. Example of application

4.1. THE PROGRAM

On the basis of the presented approach a program has been developed (see Fila &
Wilk, 1983) which

(1) computes lower and upper approximations of sets,

(it) checks whether a set of attributes is dependent or independent,
(iii) computes reducts of a set of attributes and
(iv) computes accuracy of approximation.

The program is very simple and contains about 200 lines in Fortran.

4.2. MEDICAL DIAGNOSIS

As an example, the program has been used for medical data analysis.

A file of 150 patients suffering from heart disease seen in one of the hospitals in
Warsaw was used as a data base. All patients have been divided by experts into six
classes corresponding to their health status.

With every patient seven items of information (attributes) were associated. For the
sake of simplicity attributes were numbered 1, 2, 3, 4, 5, 6 and 7, and their domains
were V,=V,=V,;=V ={0,1,2}, V¢={0,1,2,3,4} and V,={0, 1, 2, 3}.
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The problem was to find the description of each class in terms of data available for
each patient of this class, check whether the set of attributes is dependent or indepen-
dent, find reducts for each class, and compute accuracy of descriptions.

4.3. APPROXIMATIONS AND ACCURACY

There were 125 elementary sets in the system under consideration (104 one-element
sets, 19 two-element sets, one three-element set and one five-element set).
The table below shows the accuracy of description of each class:

Class Number Lower Upper
number of patients approx. approx. Accuracy
1 10 4 15 0-27
2 46 33 54 0-72
3 42 39 45 0-87
4 33 30 36 0-83
5 15 15 15 1-00
6 4 4 4 1-00

We see that classes 5 and 6 are describable in the system, and the remaining classes
are roughly describable with the accuracy given in the last column. That is to say that
data (symptoms) available from the patients characterize exactly classes 5 and 6 only,
and the remaining classes not are characterized exactly by these data; especially class
1 has very low accuracy.

The quality of the whole classification is 0-87 and the accuracy of the whole
classification is 0-95 (see section 2.5).

For the sake of simplicity we show only approximations for class 1.

Lower approximation

1 2 3 4 5 6 7
0 1 0 0 1 1 0
0 1 2 0 1 1 0
1 0 0 0 0 1 0
2 0 0 0 1 1 0

Upper approximation

—
%]
W
S~
W
o)
~

0 0 0 0 0 1 0
0 0 0 0 1 1 0
0 0 0 0 1 0 0
0 0 0 0 1 1 1
0 1 0 0 1 1 0
0 1 2 0 1 1 0
1 0 0 0 0 1 0
2 0 0 0 1 1 0
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The boundary

1 2 3 4 5 6 7
0 0 0 0 0 1 0
0 0 0 0 1 1 0
0 0 0 0 1 0 0
0 0 0 0 1 1 1

4.4, INDEPENDENCE OF ATTRIBUTES

According to Fact 6 (section 3.2) in order to check whether the set of attributes is
dependent or not we have to remove one attribute step-by-step and compute the
number of elementary sets for each case.

The results of computation are:

Removed attribute

none 1 2 3 4 5 6 7
Number of
elementary 125 106 111 113 118 106 100 101
sets

Because the number of elementary sets is always smaller than 125 that means that
set of attributes is independent, and consequently all different attributes are pairwise
independent.

In the next table we give the accuracy of approximation for each class when removing
one attribute.

Removed attribute
Class
number none 1 2 3 4 5 6 7

0-27 006 0-19 012 0-27 0-19 0-18 0-25
0-72 059 059 058 065 0-57 054 0-59
0-87 065 067 0-65 069 059 055 055
0-83 0-60 060 072 078 062 068 0-46
1-00 0-68 076 1-00 0-88 (-82 055 063
1-06 0-40 1-00 1-00 1-00 1-00 000 0-17

o G RS

It is easily seen from this table how the attributes influence accuracy of description.
For example, removing attribute 4 gives the smallest changes in accuracy. The accuracy
without attribute 4 differs at most about 0-18. So we can say that attribute 4 is
€-superfluous for the classification (€ =0-18).



480 Z. PAWLAK

4.4. REDUCTION OF ATTRIBUTES

In this section we will show reducts of some classes, i.e. minimal sets of attributes
necessary for the description of these classes.
Let us first consider class 5 which is describable and has the following description:

—
o
A
wn
@)}
-~

NRNDNNNNNR =S COOoOD000
DR RRNNPDRODNDNN=CO
NN =N NNRN
RO =IRRRNFRDRRDN—=N=NOD
NN ==L NNRNNNO=NON
BWNWWWNWREWNDSNSEW
NOWWNWEWWWWONNDW

By Fact 7 (section 3.2) we can compute that attributes 2, 3 and 5 are superfluous
for class 5 in the system and we can have the following description of class 5:

—
EN
(o}
~

(SN SN SN SR SN S N el Jlon Rl Jlan e o)
RN =NDNNNOND N —-O
BUWWWNWRWNRAEPRLLWONNDW
NWNOWWWRWNLOWNW

If we consider nondescribable class, for example class 1, then we get the following
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descriptions:

Lower approximation

1 2 3 4 5 6 7
0 1 0 0 1 1 0
0 1 2 0 1 1 0
1 0 0 0 0 1 0
2 0 0 0 1 1 0

Upper approximation

1 2 3 4 5 6 7
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 1 1 1
0 1 0 0 1 1 0
0 1 2 0 1 1 0
1 0 0 0 0 1 0
2 0 0 0 1 1 0
The boundary
1 2 3 4 5 6 7
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 1 1 1

Reducts of the lower approximation, upper approximation and the boundary are
{1,3},{1,2,3,5,6,7} and {5, 6, 7}, respectively.
Consequently we have the following descriptions of these sets:

Lower approximation

—
w

— OO
SOoON
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Upper approximation

1 2 3 5 6 7
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 1 1 1
0 1 0 1 i 0
Y 1 2 1 1 0
1 0 0 0 1 0
2 0 0 1 1 0

The boundary

4.6. COMBINED CASE

5 6 7
0 1 0
1 0 0
1 1 0
1 1 1

Z. PAWLAK

Sometimes we can be interested in combining same classes together, for example in
our case classes 1 and 2, and 5 and 6.
In this case we obtain the following results:

Class Number Lower Upper
number  of patients approx. approx. Accuracy
1 56 54 58 0-93
2 42 39 45 0-87
3 33 30 36 0-83
4’ 19 19 19 1-00

We see that now the classification is much better described by the attributes than in

the previous example.

The quality and accuracy of this classification are both 0-95.
In the table below we give results of computation showing how the accuracy of class
description changes when removing one attribute from the system.

Removed attribute

Class
number none 1 2 3 4 5 6 7
1 0-93 08 082 084 085 080 074 081
2 0-87 065 067 065 069 059 055 055
3 0-83 060 060 072 078 062 068 0-46
4’ 1-:00 063 071 1-060 090 090 040 0-52
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5. Conclusion

The proposed method can be viewed as a new approach to approximate data analysis,

especially in approximate classification, approximate clustering, approximate learning
algorithms, etc.

Thanks are due to Professor M. Warmus for providing medical data to experimental computa-
tions and valuable discussions. I am also indebted to Dr E. Ortowska and Dr E. Pleszczyiska
for reading the manuscript and helpful comments and remarks.
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