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Rough classification 
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This article contains a new concept of approximate analysis of data, based on the idea 
of a "rough" set. The notion of approximate (rough) description of a set is introduced 
and investigated. The application to medical data analysis is shown as an example. 

1. Introduction 

This article is concerned with "approximate" classification of objects, based on the 
concept of a " rough"  set introduced in Pawlak (1982). The idea of approximate 
classification was introduced in Pawlak (1983), where an algorithm for approximate 
classification was outlined. 

The article discusses in more detail the concept of " rough"  classification. A program 
for approximate classification--based on the rough set concept--has been developed 
(see Fila & Wilk, 1983) and aplied for computer-assisted medical diagnosis. Results 
of computation are briefly discussed. 

We have used standard mathematical notation throughout this paper and we assume 
that the reader is familiar with basic notions of set theory and topology. 

2. Basic notions 

2.1. SETS AND THEIR APPROXIMATIONS 

In this section we recall after Pawlak (1982) the notion of an upper and a lower 
approximation of a set, which are basic concepts in our approach to approximate 
(rough) classification. 

By an approximation space A we mean ordered pair A = (U, R), where U is a set 
called the universe and R is a binary relation over U, called an indiscernibility relation. 
We assume that R is an equivalence relation. If (x, y)~ R we say that x and y are 
indiscernible in A. Equivalence classes of the relation R are called elementary sets, or 
atoms, in A. We assume that the empty set is also elementary for every approximation 
space A. 

Any finite union of elementary sets in A will be calleda definable set in A. The family 
of all definable sets in A will be denoted by Def (A). 

Let X c U. By an upper approximation of X in A, in symbols ,~X, we mean the least 
definable set in A containing set X; by a lower approximation of set X in A, in symbols 
_AX, we mean the greatest definable set in A, contained in X; set BnA(X)----AX- _AX 
will be called a boundary of X in A. 
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2.2. PROPERTIES OF APPROXIMATIONS 

Approximation space A = ( U , R )  defines uniquely the topological space TA = 
(U, Def(A)), where Def(A) is topology for U, and it is the family of open and closed 
sets in T A. The family of all elementary sets in A is a base Ta. 

The lower and upper approximation of X in A are interior and closure operations 
respectively in the topological space TA. 

Thus _AX and AX have the following properties: 

(A1) A X e  X c / ~ X ,  
(A2) _AU = A = U, 
(A3) _AQ = ,S,Q = @, 
(A4) ,~(X u Y) = AX u AY, 
(A5) _A(X u Y) = _AX u A_Y, 
(A6) A(X n Y) = AX n _AY, 
(A7) A(X n Y) c AX n _AY, 
(A8) A ( - X ) = - A X  and 
(A9) _ A ( - X ) = - , ~ X .  

Moreover in topological space TA we have the properties: 

(A10) _A_AX = A._AX = _AX and 
( A l l )  AKX = _AXX =~kX. 

2.3. UNDEFINABLE SETS 

Let us notice that set X is definable in A itI _AX = g,X: otherwise set X is undefinable 
in A. 

We introduce four classes of undefinable sets in A. 
Let X be an undefinable set in A. 

(B1) If _AXr Q and A X r  U, X will be called roughly definable in A. 
(B2) If _AX # Q and AX = U, X will be called externally undefinable in A. 
(B3) If _AX = Q and ,~X ~ U, X will be called internally undefinable in A. 
(B4) If _AX = Q and A,X = U, X will be called totally undefinable in A. 

l~et us give some intuitive meaning of the definitions introduced above. 
If set X is roughly definable in A it means that we can define set X with some 

"approximation", i.e. define its lower and upper approximations in A. 
If set X is externally undefinable in A it means that we are unable to exclude any 

element x ~ U being possibly a member of X. 
If set X is internally undefinable in A it means that we are unable to say for sure 

that any x c U is a member of X. 
If set X is totally undefinable it means that we are unable to define even its 

approximations (both approximations in this case are trivial, i.e. A_X = Q, and ,~X = U). 

2.4. ACCURACY OF APPROXIMATION 

In this section we introduce a measure of accuracy of an approximation of a set in the 
approximation space A. The measure is defined for finite sets only. 

An accuracy measure of set X in the approximation space A = (U, R) is defined as 

~A(X) card(_AX) 
~A(X) 

~A(X) card(,g,X)" 
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Instead of tzA(X) we shall also write IZR(X). 
Notice that 0-< Is ~ 1, and IzA(X) = 1 if X is definable in A; if X is undefinable 

in A, then tzA(X)< 1. 

2.5. A P P R O X I M A T I O N  O F  F A M I L I E S  O F  SETS 

Let A = (U, R) be an approximation space and let F- -{XI ,  X2 . . . .  , X,},  Xi c U, be a 
family of subsets of the universe U. 

By lower (upper) approximation of F in A, in symbols A_ F(.~F), we understand the 
family 

_AF = { _AX1, _AX2 . . . . .  _AXn} 

and 

respectively. 
If F is a partition of U, i.e. 

AF = {AX1 ,  m x  2 . . . . .  ,t~kXn } 

Xi c~Xj = Q for every i, j, 1 -< i, j _< n, 

0 X i = U ,  
i~-I 

we call then F a classification of U and Xi are called classes or blocks of F. 
If F is a classification of U we shall write C(U) instead of F, and the corresponding 

approximations of C(U) in A are denoted by A(C(U))  and _A(C(U)) or in short C(U) 
and _C(U) when A is understood. 

The number  

rlAC(U) = card _AXi card U 

will be called the quality of the classification C(U) = {XI . . . . .  Xn} in A and the number  

flAC(U) = car i car i 

will be called the accuracy of the classification C(U) in A. Instead of ~TAC(U) and 
/3AC(U) we shall also write rlRC(U) and flRC(U), respectively. 

3. Information systems and classification 

3.1. INFORMATION SYSTEMS 

In this section we shall consider a special kind of approximation spaces needed when 
classifying objects on basis of their properties, and we identify properties with some 
attributes characteristic of those objects. With each attribute a set of values is 
associated. Description of an object is given when one value for each attribute is chosen. 

The above idea can be expressed more precisely by means of the notion of an 
information system introduced in Pawlak (1981). 
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By an information system S we mean an ordered  quadruple  

S = (U, Q, V, p), 

where U is a set called the universe of S - - e l emen t s  of U are called objects;  Q is a set 
of attributes, V(=l._Jq~_o Vq) is a set of values of a t t r i bu te s - -V  u will be called the 
domain of q and p : U x Q --, V is a description function, such that p(x, q) ~ Vq for  every 
q c Q a n d x c U .  

We int roduce function px : Q --> V such that px(q) = p(x, q) for every q ~ Q and x c U; 
p~ will be called the description of x in S. 

For  the sake of simplicity, function px will be written as a sequence of at t r ibute 
values vi,, vi . . . . . .  vi,. assuming that vlj ~ Vqj. Of course,  the order  of values in this 
sequnce is immaterial .  

We say that objects x, y c U are indiscernible with respect to q ~ Q in A, iff px(q) = 
py(q), and we shall write x4y; certainly ,~ is an equivalence relation. Objects  x, y ~ U 
are indiscernible with respect to p c  Q in S, in symbols x~y, iff P = (-~p~p/~. 

In particular,  if P = Q we say that  x and y are indiscernible in S and write xgy instead 
of x0y. 

Obviously,  P is an equivalence relation, thus each in format ionsys tem S = (U, Q, V, p) 
defines uniquely an approximat ion  space As = (U, S), where  S is the indiscernibility 
relation genera ted  by the informat ion system S. 

If x ~ U and p~ is the description of x in S, then we assume that  px is also the 
description of the equivalence class of the relation S containing x. 

We  say that subset X c U is describable in S iff X is definable in As; if X is undefinable 
in As, X will be called nondescribable in S. Descript ion of a describable set in S consists 
of all descriptions of its e lementary  sets. Descript ion of an empty  set is denoted  by $. 

Example 1 
Suppose we are given information system S = (U, Q, V, p) where  

U = { x , , x z , . . . , x l o } ,  Q={p ,q , r } ,  Vp ={0,  1, 2}, 

Vq = {0, 1 }, V,  = {0, 1 ,2 ,  3} 

and information function p is given by the table: 

U p q r 

xl 1 0 3 
x 2 0 1 1 
x3 0 1 1 
x4 1 1 0 
x5 1 1 0 
x6 2 0 1 
x7 0 1 1 
x8 2 0 1 
x9 2 0 2 
x~0 1 0 3 
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There are the following elementary sets in the system: 

E1 ={Xl,  Xlo}, E2 ={x2,  x3, x7}, 

E3 = {x4, xs}, E4 = {x6, xs}, E5 = {x9}. 

For example, sets 

and 

X 1 ={Xl ,  x 2, x 3, x9, xlo} = E l  u E 2  

X 2 = {x2, x 3, x4, xs, x6, x7, x8} ~--E2 u E3 • E4 

are describable in S, and sets 

X3 = {Xl, x2, x3, x7, xs} and X4 = {xl, x3, x9} 

are nondescribable in S. 
We can introduce the following four classes of nondescribable sets in a information 

system S. 
Let X c  U be a nondescribable set in S. Then: 

(C1) if X is roughly definable in As then X is called roughly describable in S; 
(C2) if X is externally undefinable in As, then X is called externally nondescribable 

in S; 
(C3) if X is internally undefinable in As, then X is called internally nondescribable 

in S and 
(C4) If X is totally undefinable in As, then X is called totally nondescribable in S. 

The meaning of these definitions is obvious. They simply say that there are several 
grades of nondescribability, from approximate describability to total nondescribability. 
In other words, if we are given some properties (attributes) of an object, and we want 
to characterize a subset of objects by means of these properties, the task can end in 
failure, because only describable sets can be uniquely characterized by a given set of 
attributes. 

Example 2 
Let us consider the information system as in example 1. Then set 

Y1 ={xl, x2, x4, x~} 

is roughly describable in S; set 

Y2 = {xl, x2, x3, x4, x6, Xg} 

is externally nondescribable in S and set 

Y3 = {xl, x2, xs, xs} 

is internally nondescribable in S. 
There are no totally nondescribable sets in this system. 

3.2. ATTRIBUTE DEPENDENCES AND REDUCED INFORMATION SYSTEMS 

By means of the indescernibility relation, we can easily define some important features 
of information systems; first of all the most important one---dependency at attributes. 
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Let  S = (U, Q, V, p) be an information system and let p, q �9 Q. 

(a) At t r ibute  p is said to be dependent on at t r ibute q in S, (q -~p)  iff 4 c / ~  
(b) At t r ibutes  p, q are called independent in S iff neither p ~ q nor  q ~ p hold. 

The  meaning of these two definitions is obvious. For  more  details see Pawlak (1981).  

Example  3 
Consider  the information system S = (U, Q, V, p) such that U = {xl, x2, x3~ x4, X5}, Q = 
{ql, q2, q3, q4}, Vq 1 ={0,  1}, Vq2 ={0, 1}, Vq3 = {0 , 1}, Wq4 ={0, 1, 2}, and function p given 
by the table: 

U ql q2 q3 q4 

xl 0 0 0 0 
x2 0 1 0 2 
x3 1 1 0 1 
x 4 1 1 0 1 
x5 0 1 1 2 

It is easy to see that  q4 ~ q2 and q4 ~ q~ because q4 c q2 and q4 c 47. 
For  a later purpose  we in t roduce some new definitions. 

(c) A subset P c Q is said to be independent in S iff for every P'  c p,  ~' = ~. 
(d) A subset P c Q is said to be dependent in S iff there exists a P'  c p such that  13' = P. 
(e) A subset P ' =  P is said to be superfluous in P iff P-L----P' = P. 
(f) A subset P c Q is called reduct of Q in S iff Q - P  is superfluous in Q and P is 

independent  in S; the cor responding  system S' = (U, P, V, p ' )  is called reduced 
system (p' is the restriction of p to set U • P). 

Example  4 
In the informat ion system considered in example 3 the set of at t r ibutes Q is dependent  
in S and sets {q~, q2, q3}, {q3, q4} are reducts  of Q. 

Note  that a system can have more  than one reduct! 
Now we give some propert ies  of attributes, which enable us to simplify the decision 

p rocedure  whether  the set of at tr ibutes is dependen t  or  not,  and the p~ocedure for 
finding reducts  of the set of attributes. The  proofs  are by simple computat ion.  

Fact I. If  a set o f  attributes Q is independent  in S then all its different attributes 
are pairwise independent  in S. 

Fact 2. Subset P c Q is dependent  in S iff there exists P' c p such that  P'  is superfluous 
in P. 

Fact 3. 
Fact 4. 

in S. 

If P c Q is independent  in S then every P'  c p is also independent  in S. 
If P c Q is dependent  in S, then for every P'  = P and P'  c Q, p '  is dependent  

Let  P={PI ,P2  . . . . .  Pn}, p c Q  and let Pi = P - { p i } .  l_<i_<n. 
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Fact 5. Set p c  Q is independent in S iff for every i (1-< i_< n)Pi D ~. 
Fact 6. Set p c Q  is independent in S iff for every i (1 -< i<-n)  ca rd(U/F ' i )<  

card(U/P) .  
By Facts 5 and 6 in order to check whether set P ~ Q is independent or not in S it 

is enough to check for every attribute whether removing of this attr ibute increases the 
number  of elementary sets or not in the system. This leads to very simple algorithm. 

If the set of attributes is dependent we can be interested in finding all reduced systems. 
The reduction algorithm can be based on the following property.  

Fact 7. If p c  O is superfluous in Q and {p} is superfluous in Q - P ,  then Pw{p}  is 
superfluous in Q. 

By this property we can eliminate superfluous attributes step by step from the system; 
after exhausting all possible patterns of reduction we get all reducts of Q in S. 

In order  to explain the above ideas in more detail let us first define the notion of 
representation of an information system. 

Let S = (U, Q, V, p) be an information system. The system S* = (U/S,  Q, V, p*) will 
be called the representation of S where 

and 

iff 

p * : U / S X Q ~ V  

p*(X, q) = v, X c U/S,  q c Q 

p ( x , q ) = v  

for all x c X. 
In other words, if we omit all duplicate rows in the table of function p and replace 

objects by elementary sets containing these objects so we obtain the representation of 
the system. 

Example 5 
Let us consider information system as in example 3, i.e. 

U ql qz q3 q~ 

xl 0 0 0 0 
x 2 0 1 0 2 
x3 1 1 0 1 
x4 1 1 0 1 
x 5 0 1 1 2 

For the sake of simplicity throughout the remainder  of this article we will identify 
the notion of the information system with the table of the information function. 
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The representation of this system has the form 

Z. P A W L A K  

U/S q~ q2 q3 q4 

{x~} 0 0 0 0 
{x2} 0 1 0 2 

{x3, x4} 1 1 0 1 
{xs} 0 1 1 2 

Thus each row in the table is the description of an elementary set, and we can treat 
the whole table as the description of the whole information system. 

In order to simplify the notation the above table will be also presented as follows: 

1 2 3 4 

0 0 0 0 
0 1 0 2 
1 1 0 1 
0 1 1 2 

The set of attributes in this system is dependent because by removing attribute 4 
we obtain the system 

1 2 3 

0 0 0 
0 1 0 
1 1 0 
0 1 1 

with the same number of elementary sets as the original system. 
After removing attribute 3 from the last system we obtain the system 

1 2 

0 0 
0 1 
1 1 
0 1 

in which the second and the fourth rows are the same, which means that the second and 
the fourth elementary sets are "glued" together and in this way we get a smaller number 
of elementary sets so attribute 3 is not superfluous. Proceeding in this way we get that 
1, 2, 3 and 3, 4 are the only reducts of set of attributes 1, 2, 3, 4. 
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The corresponding reduced systems are the following 
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1 2 3 3 4 

0 0 0 0 0 
0 1 0 0 2 
1 1 0 0 1 
0 1 1 1 2 

One can easily see that each elementary set in these systems has a different description 
and that removing any attribute (column) from the system changes this property.  

If a set of attributes Q is independent in S and we remove subset P from Q, then 
we obtain independent set of attributes Q - P  in S again. If the relations 0 and Q-'-'P 
differ "a  little", we can say that set P is roughly superfluous in S. 

More exactly, we say that set P c Q is ~-superfluous in S iff 

~ ( x )  - ~ - ~  ( x )  <- 

for every X c U, and consequently we say that P c  Q is ~-reduct of Q in S iff 

~o (X)  - ~ ( X )  ~- ~' 

for every X c U. 
To this end let us remark  that sometimes we are interested in removing superfluous 

(g'-superfluous) attributes not for the whole set of objects U, but for a certain subset 
X o f U .  

In such a case we can simply use the same methods as before assumming only that 
the universe of the system is not U but X. 

4. Example of application 

4.1. THE PROGRAM 

On the basis of the presented approach a program has been developed (see Fila & 
Wilk, 1983) which 

(i) computes lower and upper  approximations of sets, 
(ii) checks whether a set of attributes is dependent  or independent,  

(iii) computes reducts of a set of attributes and 
(iv) computes accuracy of approximation.  

The program is very simple and contains about  200 lines in Fortran.  

4.2. MEDICAL DIAGNOSIS 

As an example, the program has been used for medical data analysis. 
A file of 150 patients suffering from heart  disease seen in one of the hospitals in 

Warsaw was used as a data base. All patients have been divided by experts into six 
classes corresponding to their health status. 

With every patient seven items of information (attributes) were associated. For the 
sake of simplicity attributes were numbered 1, 2, 3, 4, 5, 6 and 7, and their domains 
were V~ = V 2 = V 3 = V 4 = V ~ = { 0 ,  1,2}, V6={0,  1,2,  3, 4} and V7={0,  1,2,  3}. 
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The  problem was to find the description of each class in terms of data available for  
each patient  of this class, check whether  the set of at tr ibutes is dependent  or  indepen-  
dent,  find reducts for each class, and compute  accuracy of descriptions. 

4.3. APPROXIMATIONS AND ACCURACY 

There  were 125 e lementary  sets in the system under  considerat ion (104 one-e lement  
sets, 19 two-e lement  sets, one  three-e lement  set and one f ive-element  set). 

The  table below shows the accuracy of description of each class: 

Class Number Lower Upper 
number of patients approx, approx. Accuracy 

1 10 4 15 0.27 
2 46 33 54 0.72 
3 42 39 45 0.87 
4 33 30 36 0.83 
5 15 15 15 1.00 
6 4 4 4 1.00 

We see that classes 5 and 6 are describable in the system, and the remaining classes 
are roughly describable with the accuracy given in the last column. That  is to say that 
data (symptoms) available f rom the patients character ize exactly classes 5 and 6 only, 
and the remaining classes not  are character ized exactly by these data;  especially class 
1 has very low accuracy. 

The  quality of the whole classification is 0 .87 and the accuracy of the whole 
classification is 0.95 (see section 2.5). 

For  the sake of simplicity we show only approximat ions  for class 1. 

Lower  approximat ion  

1 2 3 4 5 6 7 

0. 1 0 0 1 1 0 
0 1 2 0 1 1 0 
1 0 0 0 0 1 0 
2 0 0 0 1 1 0 

U p p e r  approximat ion 

1 2 3 4 5 6 7 

0 0 0 0 0 1 0 
0 0 0 0 1 1 0 
0 0 0 0 1 0 0 
0 0 0 0 1 1 1 
0 1 0 0 1 1 0 
0 1 2 0 1 1 0 
1 0 0 0 0 1 0 
2 0 0 0 1 l 0 
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T h e  b o u n d a r y  

1 2 3 4 5 6 7 

0 0 0 0 0 1 0 
0 0 0 0 1 1 0 
0 0 0 0 1 0 () 
0 0 0 0 1 1 1 

4.4. INDEPENDENCE OF ATI'RIBUTES 

A c c o r d i n g  to  Fact  6 (sect ion 3.2) in o r d e r  to check w he the r  the  set of a t t r ibu tes  is 
d e p e n d e n t  or  not  we have to r e m o v e  one  a t t r i bu t e  s t e p - b y - s t e p  and c o m p u t e  the  
n u m b e r  of e l e m e n t a r y  sets for  each case. 

T h e  resul ts  of c o m p u t a t i o n  are :  

Removed attribute 

none 1 2 3 4 5 6 7 

Number of 
elementary 
sets 

125 106 111 113 118 106 100 101 

Because  the  n u m b e r  of e l e m e n t a r y  sets is a lways  smal ler  than 125 tha t  means  tha t  
set of a t t r ibu tes  is i n d e p e n d e n t ,  and  consequen t ly  all d i f ferent  a t t r i bu te s  a re  pa i rwise  
i n d e p e n d e n t .  

In  the  next  tab le  we give the  accuracy  of a p p r o x i m a t i o n  for  each class when r emov ing  

one  a t t r ibu te .  

Removed attribute 
Class 
number none 1 2 3 4 5 6 7 

1 0-27 0.06 0.19 0.12 0.27 0.19 0.18 0.25 
2 0.72 0.59 0-59 0-58 0-65 0-57 0-54 0.59 
3 0.87 0.65 0.67 0.65 0.69 0.59 0.55 0.55 
4 0-83 0-60 0-60 0.72 0.78 0-62 0.68 0-46 
5 1.00 0-68 0-76 1-00 0.88 0-82 0.55 0-63 
6 1.00 0-40 1.00 1-00 1-00 1-00 0-00 0.17 

It  is easi ly seen f rom this t ab le  how the a t t r ibu tes  inf luence accuracy  of descr ip t ion .  
F o r  example ,  r emoving  a t t r i bu t e  4 gives the  smal les t  changes  in accuracy.  The  accuracy  
wi thout  a t t r i bu t e  4 differs at  most  abou t  0 .18.  So we can say that  a t t r ibu te  4 is 

~ ' - superf luous  for  the  classif icat ion ( ~  -- 0 .18) .  
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4.4. REDUCTION OF ATTRIBUTES 

In this section we will show reducts of some classes, i.e. min imal  sets of a t t r ibutes  
necessary for the descr ipt ion of these classes. 

Let  us first consider  class 5 which is descr ibable  and has the fol lowing descript ion:  

1 2 3 4 5 6 7 

0 0 2 0 2 3 3 
0 0 2 2 0 4 2 
0 1 2 1 2 2 2 
0 2 1 2 1 0 0 
0 2 2 1 0 2 3 
0 2 2 2 2 3 3 
0 2 2 2 2 4 3 
1 2 2 2 1 3 3 
1 2 2 2 2 2 1 
2 2 1 1 1 3 3 
2 2 2 2 1 3 2 
2 2 2 2 1 3 3 
2 2 2 1 2 2 3 
2 2 2 2 2 3 0 
2 2 2 2 2 4 2 

By Fact 7 (section 3.2) we can compute  that  a t t r ibutes  2, 3 and 5 are superf luous 
for class 5 in the system and  we can have the following descript ion of class 5: 

1 4 6 7 

0 0 3 3 
0 1 2 2 
0 1 2 3 
0 2 0 0 
0 2 3 3 
0 2 4 2 
0 2 4 3 
1 2 2 1 
1 2 3 3 
2 1 3 3 
2 2 2 3 
2 2 3 0 
2 2 3 2 
2 2 3 3 
2 2 4 2 

If we consider  nondescr ibab le  class, for example  class 1, then we get the following 
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descr ip t ions :  

L o w e r  a p p r o x i m a t i o n  

481 

1 2 3 4 5 6 7 

0 1 0 0 1 1 0 
0 1 2 0 1 1 0 
1 0 0 0 0 1 0 
2 0 0 0 1 1 0 

U p p e r  app rox ima t ion  

1 2 3 4 5 6 7 

0 0 0 0 0 1 0 
0 0 0 0 1 0 0 
0 0 0 0 1 1 0 
0 0 0 0 1 1 1 
0 1 0 0 1 1 0 
0 1 2 0 1 1 0 
1 0 0 0 0 1 0 
2 0 0 0 1 1 0 

The  b o u n d a r y  

1 2 3 4 5 6 7 

0 0 0 0 0 1 0 
0 0 0 0 1 0 0 
0 0 0 0 1 1 0 
0 0 0 0 1 1 1 

Reduc t s  of the  lower  a p p r o x i m a t i o n ,  u p p e r  a p p r o x i m a t i o n  and the  b o u n d a r y  are  
{1, 3}, {1, 2, 3, 5, 6, 7} and {5, 6, 7}, respect ively .  

C o n s e q u e n t l y  we have  the  fol lowing descr ip t ions  of these  sets: 

L o w e r  a p p r o x i m a t i o n  

1 3 

0 2 
2 0 
0 0 
1 0 
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U p p e r  a p p r o x i m a t i o n  

1 2 3 5 6 7 

0 0 0 0 1 0 
0 0 0 1 0 0 
0 0 0 1 1 0 
0 0 0 1 1 1 
0 1 0 1 1 0 
0 1 2 1 1 0 
1 0 0 0 1 0 
2 0 0 1 1 0 

The  b o u n d a r y  

5 6 7 

0 1 0 
1 0 0 
1 1 0 
1 1 1 

4.6. COMBINED CASE 

Some t imes  we can be in t e res t ed  in combin ing  same classes toge the r ,  for  e xa mp le  in 
our  case classes 1 and 2, and  5 and  6. 

In this case we ob ta in  the  fol lowing results:  

Class Number Lower Upper 
number of patients approx, approx. Accuracy 

1' 56 54 58 0.93 
2' 42 39 45 0-87 
3' 33 30 36 0.83 
4' 19 19 19 1.00 

W e  see tha t  now the  classif icat ion is much be t t e r  desc r ibed  by the  a t t r ibu tes  than in 
the  p rev ious  example .  

The  qual i ty  and accuracy  of this classif icat ion are  bo th  0 .95.  
In the  tab le  be low we give resul ts  of c o m p u t a t i o n  showing how the  accuracy  of class 

desc r ip t ion  changes  when  r emov ing  one  a t t r i bu t e  f rom the  system. 

Removed attribute 
Class 

number none 1 2 3 4 5 6 7 

1' 0.93 0,85 0.82 0.84 0.85 0.80 0.74 0-81 
2' 0.87 0.65 0.67 0.65 0.69 0.59 0.55 0.55 
3' 0.83 0.60 0.60 0.72 0.78 0.62 0.68 0.46 
4' 1.00 0-63 0.71 1.00 0,90 0,90 0,40 0.52 



ROUGH CLASSIFICATION 483 

5. Conclusion 

The proposed method can be viewed as a new approach to approximate data analysis, 
especially in approximate classification, approximate clustering, approximate learning 
algorithms, etc. 

Thanks are due to Professor M. Warmus for providing medical data to experimental computa- 
tions and valuable discussions. I am also indebted to Dr E. Or,l'owska and Dr E. Pleszczyfiska 
for reading the manuscript and helpful comments and remarks. 
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