Bestell-Nr: SUBITO-2010041302724
PPN: 40815
Bestelldatum: 2010-04-13 16:51:03

Staats- und Universititsbibliothek

Bremen

SUBITO-Bestellung

Warsaw University of Technology
Main Library - ILL

Politechniki 1
PL-00-661 Warsaw

Kontaktperson:
Ms Izabela Fornal

wypmb@bg.pw.edu.pl

NORMAL

Tel: +48 22 2347401
Mail: wypmb@bg.pw.edu.pl
Fax:

Ben.-Gruppe: USER-GROUP-8

Benutzer-Ausweisnummer
SLI07X00293E

00 00 T OO

Lieferbibliothek: <46>
Staats- und Universitédtsbibliothek Bremen
BibliothekstraBie

28359 Bremen
Telefon: +49(0)421/218-2644, -2645

Fax: +49(0)421/218-2040
E-Mail: fernleihe @suub.uni-bremen.de

Leihfrist: Biicher 6 Wochen

Reklamation erbitten wir
innerhalb von 10 Tagen

Lieferschein/ delivery note

Datum / date

Rechnung folgt - Bitte veranlassen Sie erst dann eine Zahlung, wenn die

Rechnung bei Ihnen eingetroffen ist.

Bills are mailed every three months or according to arrangements.

Kopien / copies

Unter Anerkennung der Benutzungsbedingungen wird bestelit:

Verfasser: W. Marek, Z.Pawlak
(Aufsatz)

Titel: Computers and Programs
(Aufsatz)

Seiten: 17-19

Sipen
Titel (Monographie/ Zeitschrift)
Computer education

Bowker & Dally

Stafford, Engl.

0010-4590

Bemerkung 1: 111/10
Bemerkung 2:

Standort:

fc 5684

Band/Heft: Jahr

13 1978
Lieferform: Lieferart:
KOPIE EMAIL
Lieferung erwiinscht bis:

2010-04-16 16:52:08
SUBITO-2010041302724

usschliesslich zum privaten oder sonstigen eigenen Gebrauch verwenden diirfen und weder entgelthch noch unentgeltlich in

apierform oder als elektronische Kopie verbreiten diirfen. SuUB Bremen

F%r weisen Sie als Empfiinger hin, dass Sie nach geltendem Urheberrecht die von uns tibersandten Vervielfiltigungsstiicke

COMPUTERS AND PROGRAMS

by Zdzislaw Pawlak, Polish Academy of Sciences

This article considers the concept of the computer and its program in a novel manner, using a common die as

a teaching aid!

The digital computer has had a revolutionary impact
on many branches of science, technology and
administration. At the same time the design and
application of computers have given rise to interesting
investigations of a purely logical or mathematical
nature. In this paper we look at one branch of these
investigations into the notions of a computer and of a
computer program.

Digital computers are, of course, very complicated
devices. None the less the main problems concerning
computers can easily be illustrated by means of a
simple model.

Memory. The principal part of every computer is its
memory. This memory can be thought as a device
capable of being at any given moment in one of
several possible states. As a very simple example of a
computer memotry we consider a cube. Each wall of
the cube is marked with a different natural number,
say one of the numbers 1, 2, 3, 4,5, 6. If the cube
stands on the wall marked 4 then we say that the
cube is in the state 4 (similarly for the walls marked
1, 2, 3, 5, 6). If we turn the cube over so that it
stands on a different wall then we say that the cube
has changed its state.

On each wall of a cube we distinguish arbitrarily four
directions N, W, S, E, as illustrated in fig. 1.

N
W 5 E
Fig. 1 S

Each such cube with directions marked on its
numbered walls can be represented by a diagram as
in figure 2. Walls of the cube are represented by
small circles and the numbers assigned to the walls
are written into the corresponding circles. If two
walls have an edge in common we connect the
corresponding circles by a line. Next to each circle
and by the appropriate line we write one of the
directions N, W, S, E, as shown in fig. 2. Such a

Fig. 2

diagram is easier to use than the orqinary.
representation of the cube iq two dimensions and so
we shall use this representation in what follows.

Instructions. A number of instructions are associated
with each computer. These instructions are operations
which change the memory from one state to another.
For our example we suppose that we have four
instructions denoted by the letters N, W, S, E.
Instructions a (¢ = N, W, S, E) means that we
have to turn the cube over from the wall it stands on
onto the wall pointed to by the direction «. If for
example the cube is in state 5 and we apply the
instruction S then the resulting state will be 1. We
can represent all of the instructions in a table

X N(x) W(x) E(x) S(x)
1 6 2 5 4
2 1 3 4 6
3 4 6 2 5
4 1 3 2 5
5 6 3 4 1
6 5 2 3 1
Table 1

where N(x), W(x), E(x), S(x) denote the result of
applying the corresponding instruction to the state x.
Instructions therefore are functions taking states of
memory (in our case the numbers 1, 2, 3,4,5, 6)as
arguments and as values.

Syntactic definition of programs. A program is a finite
string of symbols. For the computer under
consideration we define the notion of program as
follows:
1. The letters N, W, S, E are programs,
2. If A is a program then the expression ?, A is
also a program,
3. If A and B are programs then so is A, B.
4. The only programs are the expressions which can
be obtained by the rules 1, 2, 3.
The expression ? is called the conditional
instruction. The following strings of symbols are
programs:
N,E, E, 2N, 2SN
,E

trings as below are not programs
?

The set of all programs is called a programming
language. A memory and a programming language
together uniquely define a computer. Thus to define
a computer is to give its memory and its
programming language. More precisely a computer C
is a function C:L x M>M where L is a programming
language and M is a computer memory.

The semantics (meaning) of programs. With every
program we can associate a function whose
arguments and values are memory states. This
function is called the meaning of the program. The

17

program is an expression representing the function.
Let P be a program and let P(x) be the function
associated with P. In order to define the meaning of
the program (i.e. the function P(x)) we have to show
how to obtain the value of P(x) when the program P
and the state x are given.

in order to obtain the value P(x) we first apply to the
state x the right-most instruction of the program
P = ay a; ..., ak According to the definition
of a program this instruction axis one of N, W, S, E
(not?). Applying ak to x we obtain a new state x!
If we have just applied the instruction <; (i<k) of
the program P and the resulting memory state is y
and «a;., is an unconditional instruction then we
apply to y the instruction o4; if aj;isa
conditional instruction (i.e. ?) then we apply to y
either the instruction a;-, or a . The instruction

a, is applied to y if y is an odd number and «;.,
is applied if y is even.

This procedure is terminated if and when we have
reached and applied the left-most instruction g .

Each unconditional instruction of the program causes
a change of state in the memory of the computer
(turning over the cube). The conditional instruction
denoted by ? investigates whether the present state
of the memory satisfies some condition (in our case
whether the cube is in an odd or even state).
According to the result of this test either the first or
the next instruction of the program is applied to the
present state of memory. The sequence of states
Xo.X1, - . - Xk, . . . caused by applying the program P
to the state x, is called a computation of the program
P. If the computation is finite then the last state of the
computation is the value of P(xp). If the computation
starting from x, is infinite then the value of the

P(xo) is undefined.

Example 1. Consider the program P = E, S, 2, N, E
and the memory state 2. According to the definition
of the function P associated with the program P, we
first apply to the state 2 the instruction E, obtaining
E(2) = 4, then to the state 4 we apply the
instruction N, which gives the state N(4) = 1.
Because the next instruction in the program is ? we
have to check whether the state of memory is now
odd or even. Because it is odd we apply the first
instruction of the program again and obtain E(1) = 5.
We apply the next instruction and obtain N(5) = 6.
Because the resulting state is even we apply the
instruction S which yields S(6) = 1 and then the last
instruction E (1) = 6. Because the program contains
no additional instructions we have P(2) = 6. This
computation may be represented in the form

2

4 =E(2)
1 =N(4)
5=E(1)
6 =N(5)
1=5(6)
5=E(1).

Proceeding similarly for the arguments 1, 3, 4, 5, 6 we
obtain the following table representing the function
P.

x|123456

P(X) |

The function P is the meaning of the program P.

5 6 6 5 5 4

Example 2. Let us consider the program Q =2, S E.
The computation of this program for the state 1is as
follows:

=E(1)
= §(b)

...... etc.

The computation is infinite because after state 1 we
always obtain state 5 and after state 5, state 1. Thus
the function Q is undefined for the argument 1.
Similarly Q is undefined for the arguments 2, 5 and 6.
For the arguments 3 and 4 the value of the function
Q is 6. The following is therefore the table for the
function Q:

X 1 2 3 4 5 6

Q(x) - - 6 6 - -

Problems. We are now in a position to state some of
the problems involving computers and their programs.

Halting problem. Given a computer and a program we
can ask if the program will terminate for a given
initial memory state. If the total number of memory
states is finite then this problem is of course
solvable. In this case to solve the problem we need
only compute the value of the corresponding
function for a finite number of cases. This method,
however, is not adequate if the set of all memory
states is infinite. To solve the problem for this case
we need a method which involves only examining
the structure of the program and avoids computing
the final state of the memory. (This sort of method is
also desirable in the finite case when the number of
states is large and the computation of the final state
is time consuming). This problem has been widely
investigated and there are many interesting results
concerning different notions of programs and
computers. These results are closely related to certain
problems in logic.

Equivalence of programs. In our example of a
computer the set of memory states is finite. There are
therefore only a finite number of functions whose
arguments and values range over the set of memory
states. There are, however, infinitely many programs.
So some programs must have the same meaning, i.e.
compute the same functions. Such programs are said
to be equivalent. The problem arises of determining
whether two programs P and Q are equivalent, i.e.
whether P(x) = Q(x) for all x.

Again we are not interested in solving this problem by
actually computing all the possible values of the
functions P and Q (even when the set of memory
states is finite). We are interested instead in solving
the problem by a method which investigates the
structure of the expressions P and Q. Alternately we
may attempt to find a finite or infinite set of axioms
and a set of inference rules such that two programs
are equivalent if and only if they can be shown to be
so by derivation from the given set of axioms by
means of the inference rules. Not many results have
been obtained in these areas. Solutions have been
found only for some simple cases of programs.

Equivalence of programming languages. The computer
in our example has five instructions N, W, S, E, ?. It
is easy to see that we can remove the instruction E,
for example, and replace it by a program causing the
same changes of states as the instruction E. From this
it follows that both programming languages, one
with and the other without the instruction E, define
the same class of functions (meanings of programs).
We say that two programming languages are
equivalent if they define the same class of functions.
Given a computer memory and two sets of
instructions are the corresponding programming
languages equivalent ? A general method for
answering this question has not been found. We can
also ask for a minimal set of instructions equivalent
to a given set of instructions, or equivalently for a
minimal set of instructions defining a given

programming language. This is yet another
unsolved problem.

Semantics of programs. In the examples 1 and 2 we
have associated with each program its meaning by
computing for ali possible initial memory states the
value of the corresponding function (when the value
was defined). This method is not adequate for
practical purposes. We are interested instead in
assigning meaning to programs in the following way:
to each instruction we assign a function and then
extend the assignment to the whole program,
consisting of instructions, obtaining the function
assigned to the program. If we have some program
we are interested in knowing what function the
program is computing. But at present there are no
methods known for dealing with this problem, and
for example we are unable to prove in general that a
given program does or not compute sin x.

Complexity of programs. If two programs are
equivalent we might be interested in determining
which of them is in some sense the simpler of the
two. For example as a measure of the simplicity of
a program for a given argument we can take the
length of the computation for the argument. By the
length of computation for a program P and state x
we mean the number of changes of memory states
caused by the program P beginning with the initial
state x and ending with the final state P (x). The
program P is simpler than the program Q if and only

if for all states x the length of the computation of
P(x) is less than the length of the computation Q(x).
Here too investigations are only in their initial stage
and not many results have been obtained.

Simulation and equivalence of computers. We say
that computer C’ simulates computer C if for each
computation xq,X;, ... X« in C there exists a
computation xq',x,’, .. .,x;" in C’ such that for all i

(0 <i<k) there exists j (0<<j<<m) such that xi = x;’
and x; = x;" and xk = xm and if forj; and i,,x;,
corresponds to xi, then j, 2>i,. This means that in
order to simulate computer C by C’ we have to
simulate by a computation in C’ the whole of each
computation in C step by step in such a way that
each state of memory in the computer to be simulated
is represented in the corresponding computation of
the computer which simulates it. When such a
relation holds between computers each action in the
first computer C can also be performed in the second
computer C’ If the computer C simulates the
computer C' and vice versa we say that the computer
C and C’ are equivalent.

The topics of simulation and equivalence of computers
have not been investigated very intensively even
though they are of great practical importance.

Polish Academy of Sciences
Computation Centre
Warsaw 1.X1L.1971 r.

LOURSES

The Middlesex Polytechnic

COMPUTERS IN EDUCATION

The advent of the computer is having, and will
continue to have, a profound influence on our way of
life. The Middlesex Polytechnic has been involved for
over six years with providing practical assistance to
teachers who wish to introduce computing into their
school curriculum, and the short full-time ‘Computers
in Education’ courses have arisen as a natural
consequence. This is their fifth year of operation.

‘An introduction to Computer Education in School’ is
intended for teachers wishing to introduce computing
into the middle school curriculum. It covers all aspects
of computing, including elementary programming and
the elements of data processing. The remaining
courses cover various aspects of computing in more
detail, enabling the teacher to acquire enough
familiarity with the subject to teach it in the upper
school or Technical College. Despite this
specialisation, each course, except Further Fortran,

is designed to be suitable for those witr no previous
knowledge of the subject, or even any specialist
mathematical background.

Fee £6-00, including course material (subject to

confirmation). Five days full-time, from 9.30 — 4.30

p.m.

MC1C Basic Fortran, or

MC2 Practical approach to Logic. 25th to 29th
June 1973.

MC3 An Introduction to Computer Education in
School. 25th to 29th June 1973.

MC4 Further Fortran or

MC5 Electronic Data Processing, or

MC6 City & Guilds Code. 2nd to 6th July 1973.

For further information, write to:
N. Bowker,

Course Organiser,

Computers in Education,
Middlesex Polytechnic,
Queensway, Enfield, Middlesex.

19

