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Abstract, We introduce in this paper a certain mathematical model of information storage and
retrieval system. This is based on a certain family of languages intermediate between sentential
and predicate calculi. To each language there is acorresponding semantics. We investigate our
languages from the logical point of view showing their completeness. This is done by exhibiting
nice and natural sets of axioms for the i.s.r. systems. The class of models for our languages is then
examined by the algebraical means. We introduce our algebraical operations in such a way that
they correspond to the actions performed while updating the system (in various ways). We also
examine the boolean algebra of describable sets (of documents). Having done all this we propose
a new implementational algorithm for the i.s.r. systems based on the form of atoms in the
boolean algebra of describable sets. In the appendix we show how to compute the code numbers of
these atoms (called generalized components). Let us also note that the class of queries relevant to
the system is quite rich in our case; we are not only able to ask questions of the form ,,what are
the documents fitting the following description®, but we may also ask certain general questions
on the system as a whole.

1. Introduction

In this paper we present a new mathematical approach to some problems occuring
in information storage and retrieval (i.s.r.) systems. By an i.s.r. systems I we mean
a quadruple consisting of set of objects X (like books, documents, etc.) together
with the set of descriptors A, the set of attributes 7, and the function U which asso-
ciates a subset of X to each descriptor from 4. Attributes are to be understood as
elements of A, all of the same ,,type”, e.g., descriptors: green, blue, brown, and
black form the attribute colour. Thus each object from X may be decribed in our
system by a vector of descriptors from 4 exhausting all possible attributes from 1.
Sometimes “incomplete” descriptions (in the sense that not all possible attributes
are specified in the descrip ion of an object) are of interest, however, we do not
consider the case here.

Our first goal is to describe precisely some fundamental facts about i.s.r. systems.
To do so we introduce in the first place a formal language tailored to deal with
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the problem. This language is a sort of intermediate language between propositional
and predicate calculi. We further show that the language is adequately chosen for
our aims. We show how the language may be used to prove theorems about i.s.r.
systems.

Then we introduce the notion of a describable set of objects and find necessary
and sufficient conditions to determine whether all sets are describable in 9 or not.
Since in general not all subsets X are describable in I, we investigate the structure
of the family of describable sets.

Since not all the subsets of X are — in general — describable and we may wish
to have a more fine description of objects in our systems, we sometimes have to
add some attributes or/and descriptors. If — on the o*her hand — our system
is “too fine”, we may remove some attributes and/or descriptors from the system.
The set of objects in the systems may also be varying; it may increase or decrease.
In order to take into account the dynamics of the system (in the above sense) we
introduce some algebraic tools, i.e. operations on i.s.r. systems, and study pro-
perties of the systems thus changed.

Finally a computer implementation algorithm resulting from our considerations
is briefly discussed and some other problems raised by our theory are stated at the
end of the paper.

Let us finally note that rudimentary versions of this paper were circulated as
preprints (see [6,7]). After finishing the paper we found that elementary conside-
rations of the similar kind were already performed by Wong and Chiang [8].

Throughout the paper we accept standard mathematical notation and assume the
reader to be familiar with it. In particular #(X) denotes the power set of X, f1Y
1s the restriction of fto Y and we distinguish descriptors (elements of A) from their
names by setting the latter in bold face type.

We express our gratitude to Prof. A. Blikle, Mr. W. Lipski, Jr., and Prof. A. Ma-
zurkiewicz for valuable discussions. Interesting remarks due to Prof. E. Engeler
had strong influence on the final draft of the paper.

1. Syntax

Let A be a nonempty set and let R be a fixed equivalence on 4. We assume that
all equivalence classes of R are finite. Since R generates a partition {4;};; of A
into family of equivalence classes, 4 = (J 4;, i #j= A; N 4; = @, it is reaso-

iel
nable to call R, R;. In the sequel 4 will be referred to as ths set of descriptors and
I will be called the set of attributes.

With each set 4 we associate the description language 12 ,

Definiton 1.1 (Alphabet of the language 2,). We define an alphabet of the lan-
guage 2, as follows:

(1) constans a (for each ae A),
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(2) constants T, F,

(3) constants A, V (truth values, respectively truth and falsity),
(4) symbols ~, -, 4+, =,

(5) symbols —, v, A, =,

(6) symbol =.

Definition 1.2 (Terms of the language (2 ,). The set T of terms is the least set T sa-
tisfying (1) and (2)
(1) TeT, FeT, acT;

2) if t,t, €T, then ~ty, "t +1t,', Tty t,, "t > t, e T.
1+42 sl 1 2 1 1

As it will turn out later the order of the sum is immaterial and so we shall abbre-
viate finite sums as Y. #;, similarly for products.
ieJ

Definition 1.3 (Formulas of the language /2,). The set F of formulas is the least
set F satisfying (1) and (2).

(1) if t,,t, €T, then "t; =t,'e F,e A € F;

(2) if @1, @2 € _E then ~ (D17 r@1 A @2—], r®1 Vv @2_}, r¢1 = ¢2_' EE.

In the sequel the letters s,z (possibly with indices) will denote terms and @,¥ pos-
sibly with indices) formulas.

Definition 1.3 (Axiomatization). We assume as axioms:
(1) substitution of the proposition calculus axioms for fomulas (see [5]);
(2) Substitution of the axioms of Boolean Algebra for terms (including equa-
lity axioms) (see [2]);
(3 a=~ > {b:bRia A b+ a},
this is sometimes noted as

a= b

bR;a
b#a

~

As an inference rule we take modus ponens.

Note that the restriction of R,, namely that all equivalence classes of it are finite
is essential in (3). In case when some 4; is infinite, the expression Y {b :bR;a} may
be undefined. We could overcome this obstacle allowing infinite sums operator into
the language. This leads to a parallel, more general theory, We shall not, however,
pursue the matter in this paper.
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2. Semantics, interpretation of terms and formulas

Definition 2.1, (Basic definition). An information storage and retrieval system (i.s.r.
system) is a quadruple

g = <X>A>—R19U>:s

where X is some set called the carrier of S and elements of X are referred to as ob-
jects of U. A4 is the set of descriptors in U and R; is an equivalence on A4 of finite
index. Umaps 4 into P(X)(U: 4 - P(X)) and satisfies the following two conditions:

(1) if aRb A a # b, then U(@) S (b) = 0;

(2) U {U(b):bRa} = X (for each ae A).

Conditions (1) and (2) may be expressed equivalently as (1), (2').
(1) if iel, ae A;, be A;, a #b, then U(a) n U(b) = 0;

(2) U U(@) = X (for each i e I).

ac€A;

Definition 2.2.  (Valuation of terms). Let J = (X, 4,R,,U) be an i.s.r. system.
We define inductively the value of a term zin J, [|t]l5, as follows:

(@) llalg = U(a)

(®) lI~tlg = X\l

© ity -1l = litsllg O lit2ll,

(d) llts +tallg = ltillg Y litallgs

(e) ity = tillg = (X\Iltsllo) Y lit2llo,
&) IFllg = 0,

(g 17Ty = X.

Definition 2.3 (Valuation of formulas). Unlikely to the terms, formulas wiil
take as values truth values \/ and A, we define inductively {|®|] (we assume that
litll; is already defined):

= J\/ if lit1llg = llezllg,

()l = 12l l /\ otherwise;
. Vo if [Dllg= A,
I Pll =
© =% {/\ it @y = V.

(d) for other connectives we extend our definition in the natural way.

Theorem 2.4. (Adequacy of axiomatization) If @ is an axiom, then [Pl = V.
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Proof. As our valuation was defined in a way to make the first two groups of
axioms true, it is enough to check axiom three. Therefore we need to show that

la =~ 8]y =V,
bR;a

b#a

i.e., according to Definition 2.3(b) that

lallg = ”",,2,{, bllg.

b#a

easy transformation, according to Definition 2.2(b) and (d) reduces the problem
to checking
lallg = X\ U lIblls.

bR,a
b+*a

This, however, is easily seen to be equivalent to Definition 2.1 (1) and (2) ]

There is nothing strange in that we used in our proof only conditions (a), (b)
and (d), from Definition 2.2 since other connectives may be expressed with the
help of ~ and +.

Definition 2.5. Let 9= (X,4,R,,U) be an i.s.r. system. Let x e X.

(a) An information on x in Jis a function f; : I — A4 such that for all i e I, f,(i)e 4
and x e U(f.(i)).
(b) A description of x in Jis a term t, = [1£:(0).

iel

An information on x in & determines several terms, all of them provably equi-
valent (they differ only in that the order of contants occuring in them may be
different). This explains our usage of one symbol, z,.

This leads to:

Definition 2.6. An i.s.r. system J is selective iff for all x e X, |t.lly = {x}.

Thus a selective system is one in which different elements have necessarily diffe-
descriptions, i.e., are distinguishable.

3. Completeness properties of i.s.r. systems

Since we introduced in Section 1 an axiom system and the rule of inference, we are
able to prove formulas. We denote by |-— @ the fact that @ is provable. It is immediate
from Theorem 2.4 and the fact that the rule modus ponens is preseved under ll-llg
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(ie, Dllg=V and[|® =y |g =\ implies Yllg = V) cf. Definition 2.2 for a
definition of |-|l; that the following lemma holds:

Lemma 3.1. (Adequacy of inference). If |— @, then, for all i.s.r. systems I,
1Pllg = V.

We shall also obtain a conseverse result soon.

Definition 3.2. We define relations < and &~ on & as follows:

ty <ty iff |—1t, =t +1,,
tl ~ tz iﬁ l-_tl = t2.

Lemma 3.3. (a) < is reflexive and transitive, (b) = is an equivalence relation,
(c) < has the antisymmetry property with respect to ~,i.e, t; < ;A t, <t; =
4R L,

Each is.r. system O generates relations <o and =g as follows:

(b) t; =gty <=ty = lit,llo

Lemma 3.5. ¢, < t, = (V9)t; <gt,,

Proof. As in Lemma 3.1. [J

This leads to the following:

Definition 3.6. #; <* ¢, < (VO)t; <gt,,
L R*t,<e (NIt xgt,.

Notice that ¢, <* ¢, means that in every interpretation, ¢, determines smaller
set then ¢, does. Similarly ¢t; ~* ¢, means that in every interpretation both terms
determine the same set.

Thus Lemma 3.5 says that < € <* and ¥ < = *. In the sequel we shall prove
converse inclusions.

Definition 3.7. (a) We define a@° = a,a' = ~ a.

(b) A term ¢ is called primitive iff t = [ aﬁj where each &, is O or 1.
JjeJ
c) A term ¢ is in normal additive form iff t = ) ¢, where each ¢, is primitive.
i j18Pp
JeJ
(d) A term ¢ is in positive form if ~, - do not occur in ¢.
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Theorem 3.8. (Normal form I). If t is a term, then there is a term t, in normal additive

Jorm such that \— t = t,.
(b) If t is a term, then there is term t, in positive normal additive form such that

l"—“t = tz.

Proof. (a) A reasoning used in this case is a standard one; we refer the reader
to [5].

(b) By (a) we may assume that ¢ is already in normal additive form. Using the
axioms x =y=>~x = ~ y, ~~ x = x, from Definition 1.3 (3) we get

~a=Zb.

bR;a
b#a

Putting right-hand side in every place where the left-hand side occurs we eliminate
negation from ¢,. Consecutive applications of the distributive law finish the proof. [_]

Definition 3.9. (a) A primitive term ¢ is called complete iff for every i el there
is exactly one a € A; such that a occurs in ¢.

(b) A term ¢ is in complete positive normal additive form iff ¢ = Z t, and each
t, is a complete positive primitive term. kek

Theorem 3.10. (Normal form II). For each term t there is a term t5 in complete positive
normal additive form such that |—t = t;.

Proof. It is clear that it is enough to find such a term for a positive primitive term,
by Theorem 3.8 (b). Since |— ~ a = . b, we have — Y b = T. Using in turn
) bR,a

bRIa
b+#a
F—t-T=twegett: Zb = t. Assume that no b (for b € 4;) occurs in ¢, then t =

bed i

= Y t-b. Thus we diminished in ¢ a number of i such that no b (for b€ 4,) occurs
beAi

in t. Since I is finite this gives an inductive procedure. [ ]

Notice that #; is unique up to a possible order of primitive terms and a possible
order within the terms.

Theorem 3.11. (Completeness property for terms).
(@t < iff 1) <* 1y,
(b) t, = t, iff t; =*1¢,.

Proof. Clearly (b) follows from (a).
(a) = was already proved in Lemma 3.5.

(a) <= Assume ¢, <*t,. We may assume that both ¢, and ¢, are in complete nor-
mal positive additive form. It is clear that if every primitive term occuring in #,
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occurs also in t,, then ¢, < f,. Thus it is enough to show the this first property
holds. Assume it is not true.

Let ¢, be a primitive term occurringin ¢, but not in #,. We construct ani.s.r. system 9’
in which [[tollor # 0. Using the fact (which we leave to the reader) that different pri-
mitive complete positive terms have disjoint values, we find that [|t;|l5 is not in-
cluded in #,, which contradicts #; <*¢,. []

Dually to the additive normal form one may — as usually — introduce a multi-
plicative normal form.

A construction from the proof of theorem 3.11 suggests the following question:
Is there an i.s.r. system O such that ~ 4 is identical with ~ ?

In fact there is one. A construction of it strongly resembles the construction of
a family {4,} such that all components corresponding to it are nonempty (cf. [2]).

Construction: Let each A; be in the form {a...a,}. We produce the Cartesian
product P 4; and define J,,, as follows

: i€l

gmax = <PA1A3 -RI, U>s
iel
where U(a) = {fe P A;: f(i) = a, for the unique i such that a e 4,}.
i€l

We leave it to the reader to check that the system J,,, has the property that each
complete primitive positive term has in I_,, @ non void value.

Before we prove the completeness theorem for formulas we need some termino-
logy and facts.

(1) By a procedure similar to that applied in case of transformation of a term into
normal form, we are able to transform every formula into the following form:
D: =D A ... D, where each @; is of the form y; v ... v, and each ¥,
is of the form t; = t,, or of the form #, 5= ¢, for some terms ¢ being in normal,
positive, additive, complete form. We describe this fact symbolically as @ = M W ;.

(2) Another fact needed in proof is the following: ¢ = s is equivalent to the con-
junction of equations of theform ¢; = F, ..., f; = F. Indeed assume that both ¢ and s
are in the positive normal additive complete form. Then ¢ = ¢;+...+¢, and s =
= §;+...+5,. There are possibly some primitive terms which appear in both ex-
pansions. Let t{,...,t; be primitive terms which appear in either ¢ or s but not in
both. We leave it to the reader to prove that |— (t =s) < (t; = F A ... A t; = F).
Similarly ¢ £ s <> (t; = Fv...v t; # F).

(3) Finally let us note that if @: = @, A..A @, then|— & iff forall 1 <j < k
— ;.

Theorem 3.12. (Completeness theorem for formulas). - @ iff for all I,||Pllg = V .

Proof. = was already proved in Theorem 2.4 (adequacy theorem). <= By our
remark (1) we may assume that @ is M Wy; where each ¥; is of the form ¢, = f;
or of the form ¢, # t,. We want to prove that |— @. By remark (3) it is sufficient
to show that |— W ;. We shall transform W y; to certain form which
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finally allows to find a proof for it. Indeed, using remark (2) we may substitute fory;
either a conjuction (¢;, = F A...A t, = F) or alternative (t;, #Fv..vt; #F)
depending whether ¢; is ¢ = 5 or else ¢ # s.

Thus instead of the proof of W/; we need a proof of a certain formula = built
from the primitive formulas of the form ¢, = F and ¢, # F where each ¢, is in pri-
mitive, positive, complete form.

Using our remark (1) once more we find a formula 5| in conjunctive normal
form equivalent to Z. Since in the process of building conjunctive normal form
no new atomic formula is used, we find that our formula = has the form M\ W @,
where each 0, is of the form ¢, = F or t; # F and ¢, are in primitive, positive,
complete, normal form. Since M W /; was valid in every i.s.r. system, so is W,.
Thus also & and = are valid in all i.s.r. systems since the transformation used in the
above reasoning preserves validity. Thus M W 6, is valid in every i.s.r. system.
This in turn is equivalent to the fact that W6, is valid in every i.s.r. system. But

W 6, is of the form.

t,=Fv ..vit=Fvtly #FVv .. Vtim # F.

If we show a proof for W@,,, then we are done.

Now the main step of the proof follows: We claim that if W®,, is valid in every
i.s.r. system, then there must be a primitive term ¢ such that both t = Fand t # F
occur among @,. Assume this is not true. We construct a i.s.r. system 9 in which
W6, = F.

Indeed such a system is produced from the previously constructed system J,,,
by throwing out generalized components corresponding to #.%,,...,5x4m- Then since
no ¢} is ¢,’, in this particular system 9, ¢; % F for all 1 < j< k, and at the same time
t;'=F for all k+1 <r < k+m.

Thus ||t} = Fv..vty= FVityy, ZFV..Vtin # Fllg = A, contradicting the
validity of W0,,. Therefore there must be a primitive term ¢ such that both ¢t = F
and ¢t # F occur among 0,,. Since, however, formula ¢t = F v t # F is provable, so is
formula W@,,. Since all alternatives W, are provable, so is M\ WO,,. Thus Wy;, is pro-
vable, being equivalent to a provable formula. So finally M\ Wy, is provable and thus

|—&.]

Let us notice, that as in any formalized system we may consider theories based
on some additional axioms. (We shall encounter this situation in the sequel). In such
enriched system we may again prove theorems. Let us denote the fact that a proof,
using possibly additional axioms from 7, exists, by T |—®. By the reasonings
virtually identical with that of Theorems 3.11 and 3.12 we prove:

Theorem 3.11. (Generalized completeness property for terms). T |— ¢, = ¢, iff
lt; = tallg = v for every i.s.r. system 9 such that (V@) (@ e T = ||D|y = V).
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Theorem 3.12. (Generalized completeness property for formulas). T }—— Y iff for
every is.r. system J such that V@) (PeT = (Do = V = [Vlg = V.

As a corollary we get the following:

Theorem 3.13. Let I be an is.r. system with A finite. Then there is a single
Jormula @g such that, for all formulas v,

”1/)”9 = V< fpg }—— p.

Theorem 3.13. was also proved — using different reasoning — by W. Lipski.

Definition 3.14. Let 9 and 9’ be i.s.r. systems. We say that J is equivalent to
9 (9= 9) iff for every @,

[12llg = 1Pllg-

Obviously = is an equivalence relation.

The equivalence classes of = are determined (according to Theorem 3.13) by
some special formulas. In fact the formula y determining the equivalence class
of = isof the form Mt = F) A (Mt; # F), where ¢, are those primitive complete
positive terms whose value in J is empty, whereas ¢; are those whose value in J is
nonempty. Using this remark we have Theorem 3.15. In every = equivalence class
there is exactly one (up tc isomorphism) selective system. Thus for every system 9
there is a selective system J such that 9= 9’.

We also get — as a corollary — the following fact: We are not able to express
within the formal language of an i.s.r. system the number of elements of the

universe of the i.s.r. system.

4. Algebraic properties of i.s.r. systems

Definition 4.1. Let Iy = (X, 4, R}, Uxy and 9y = (Y, B, R;, Uy> be two is.r.
systems. We say that Jy < 9y iff

(a) X<y,

(b) 4 < B,

(c) R, N 4% = R,

(@) (VaeAd)Uy(a) N X = Uxl(a).

Let us note that whenever 4 < B then /2, < 2. Thus the terms of £, are, in par-

ticular, terms of .
The adequacy of our definition is shown by the following:
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Lemma 4.2. If 9y < Yy and t is a term of the language 24, then ltlo =ity N X.

Proof. By induction on complexity of ¢ If ¢is a, then the desired equality
is nothing else but Definition 4.1(d). In case of F and T the condition is seen imme-
diately.

Assume now that tis ~ ¢,. We have

e, = li~tillg, = X—litylg
by inductive assumption we have [tllg = X—(XNljtyllg .)
But ’ Y
X—(X0tillg) = XN Y—(XN it lg) =

= (T—tllg) N X = XO|l ~ t]lg .
If t =t,-t,, then we have
e, = ltallg, Nlitally, = litallg N X [tallg N X
(here inductive assumption is used) thus

e, = ltallg, Nlitallg, O X = Ity £allg O X = ity N X.

The case when ¢ = t,;-+t, is similar. Finally when ¢ = ¢, — ¢, we eliminate
the case using equality ¢, — ¢, = (~%;)+¢, and then applying inductive assum-
ption. ]

IN*

Definition 4.3. (a) Iy < Iy iff Iy < Iy and X = ¥,
(b) gx%g}' iff gxggy and 4 = B.

Fact. 4.4. If Iy < Yy, then R; = R,.

Proof. Immediate by Definition 4.1(c). []

Theorem 4.5. (Interpolation property). If Iy < Yy, then there are systems 9’ and
9" such that the following holds:

g &9,
2°) 9x < 9" = Yy.

Proof. Define 9’ as follows: 9" = (Y,4,R,U">, where U’ = Uy A4; and 9"
as follows: 9” = (X,B,R;,U’"), where U"(b) = Uy(b)N X.

It is straighforward to check that 9y < 9,9 < 9,,9, < 9", 9" < 9, because
all remaining conditions hold by our construction. []

(1°) Yx

N* *IN
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Definition 4.6. Let 9 = (X, 4, Ry, U) be an is.r. system. Let {/;},; be a par-
tition of the set I. An induced family {9,}e; of i.s.r. systems is formed as follows:
9; =<X, 4, R;,U;>, where

@ A =Ud,
(b) Ry, = RiN(A7x 47),
© U, = Ut4’.

Lemma 4.7. Under the assumptions of Definition 4.6, for each je J, J, < 9

Proof. Since the universe of J; is X, it is sufficient to prove that 9; < 9. But all
the conditions (b), (¢) and (d) of Definition 4.1 are easily seen to be satisfied. [

Since each subset I’ < I induces a partition I = I'U(J—I'), we naturally get
a restriction of J; or 9 to I'<I and the complementary system J;—;'.

Definition 4.8. Let {J,},; be a family of i.s.r. systems with the same carrier
(9; = (X,4’,R,,U;») and suppose moreover that i 7 j= A'NA’ = g.
Define (P T as follows:

JjeJ
@ 9j = <X9 AaRIa U>9
JeJ
WheI‘e A = UAJ,RI = URIJ’ U= U Uj.
JjeJ JeJ JjeJ

Lemma 4.9. Under the assumptions of Definition 4.8, J;, < @ I;, moreover if the
JjeJ

family {9;},.; is obtained as in Definition 4.6, then 9 = @ J,.

JjeJ
We leave the proof to the reader.
Definition 4.10. Let R,S be equivalences on a set Z; we say that S < R iff § < R,
1.e.,
(Vx) (Vy) (xSy = xRy).

It is clear < is a partial ordering (i.e., that it is reflexive, antysymmetric and
transitive).

Definition 4.11. (a) Let R be an equivalence on Z. Z/; consists of all equivalence «lt=mes
of R in Z.

(b) Let S be an equivalence on Z and R an equivalence on Z/;. We define a re-
lation R+ S on Z as follows xRSy < (x/s) R(y/s).
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Lemma 4.12. (a) Under the assumptions of Definition 4.11, Rx S is an equivalence

relation on Z.
(b) Moreover R < R+ S.

Proof: (a) is a simple computation.
(b) assume xRy, then x/; = y/r and so, by reflexivity of S, we get x/g S y/g,i.€.,
xS+ Ry. []

Lemma 4.13. Assume S = (T * R) is defined. Then (S * T) * Risdefinedand S+ (T'+ R) =
= (S*T)* R

Proof. Assume T is defined on A/ and S defined on (4/z) / - then ST is defined

on A/z and so (S*T)* R is defined.
Let xS*(T*R)y. Then (x/1)/zxS(¥/7)/r- Having in mind that
(x/r)/g consists of all y/r which are (with x/z) in relation 7 we find that

(x/r) S* T (¥[p)
which is the desired result.[]

Lemma 4.14. If S < R, then there is unique T such that:
R =T=S.
Proof. We define T as follows:

(x/)T(ls) Hf xR Y.
T is an equivalence. Clearly 7 is both reflexive and symmetric. If (x/5)T(y/s) and

yls T z|s, then x Ry and y Rz, i.e., (x/5)T(z]s).
The uniqueness of T is easily proved e.g. by contraposition. [

Definition 4.15. Let S be an equivalence on 4, S < R;, 9 = (X,4,I,U) be an i.s.r-
system. We define the quotient system I/s as follows

9/5 = <X9 A/S7 TI: US>:

Where
(a) T; is the unique relation such that R, = T;* S,

(b) Uls(als) = U {U (b):bSa}.
Note that the equivalence classes of T may be indexed by / which makes our
Definition 4.15 (a) reasonable.

Clearly 9/s determines its language .2,,s(A4/s)-
Let us form now 9@ J/s. The language corresponding to this system consists

of constants a for ae 4 and a/s for a/se A/s.
The system obtained is such a way is denoted by J.
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Lemma 4.16. If S satisfies the assumptions of Definition 4.15, and T is the resulting
system, then |lals = Zb los = V.

bSa

Proof. We need only to show that [la//|9s = | [Ibllg,, but since [|b]lg; = [|b]lg, the right-

bSa

hand side is U |1bllg, i-e., U {U () : bSa}. On the other hand, la/sllgg = lla/slig/s i

bSa
U/s(als) which is by definition | {U(b): bSa}. [
The full power of the operation @ and in the same time the generality of our
approach allowing inclusion of the hierarchical approach is seen after Theorem 4.18.

Definition 4.17. Let S, < ... < S, < R; be an increasing sequence of equiva-
lence relations on A4, we define g;...5, as follows:

Ts,..5,= 9D (@ Is)-

i=1

Let T,,...,T,-, be equivalences such that S;;; = T, S,.

"Theorem 4.18.
”a/si+1 = Z b/si,lgsl...sn =V.

b/s; Tials;

Proof. It is clear that it is enough to give the proof for the case S; < S, < Ry,
S, = T*S,. Indeed, for a€ 4,

lals, = 3 Bos, =V

bS,a
and so,
1als, = 3 Bllos,s, = V-
bS,a
Similarly,
als, = > bﬂgsls2 = V.
bS;a

Since, however, S, < S,, we have, for ae 4,
|4/s. ]

Using the idempotence laws we get

Ha/s2 = Z b/s1

bS,a

gsxsz = ”a/sz Hgsxsz '

9s,s, — V-

‘There are identical terms on the right-hand side and grouping them together we
find that they correspond exactly to the equivalence classes of the relation T, which
gives the desired equation.[]
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The hierarchical construction is used when our system is “too fine”, i.e., when
the attributes are too small.

Let us see this on the following example: In the system I the attribute colour has
as its descriptors the following: red,, red,,, green,, greeny,, greeny,, blue,, blue;. By
grouping the descriptors: {red,, redy}, {green,, greeuy, green;,}, {blue\}, {bluey},
we get now in the appropriate 9/ the attribute colour having 4 descriptors: red,
green, blue,, blue;;. In the system 9@ I/s the following equalities hold: red = red;
+redyy, green = greeny+greeny +greeny,.

A converse construction is used when the system is ’too crude” and when we
need to split some descriptors (this should be used specially when the value of a des-
criptor is a too big set of objects). We present the construction below.

As introduced, for each i € I, {U(a) :a€ 4,} is a decomposition of X. Let T} be an
equivalence relation (on X) corresponding to this decomposition.

Assume now, that for each i € I there is an equivalence W; on X such that W; < T,.

The family {W,},q generates an is.r. system 9% = (X, B,R;,V) as follows:

B=U{x/w, :i€l},

iel
R, = {<x/Wpy/Wj> i =j},
Vix/w) = {y 5J’W1x}-
Theorem 4.19. J is isomorphic to a certain quotient system of 9%,
Proof. It is enough to give the relation S such that 9 is isomorphic to I9%/.

Since for each iel, W; < T}, S;is unique such that 7, = S;=W,. Put S=U §,.
We leave to the reader details of the proof that 9%/s is isomorphic to J.[]

Similarly we have:

Theorem 4.20. If S < Ry, then there is W such that (9/s)V is isomorphic to O.

5. Describable sets

Defini ion 5.1. Let 9= (X,4,R,U) be an is.r. system, Let Y < X.
(a) Y is said to be describable within I iff there is a term ¢ such that ||¢]lg = Y.
(b) B (9) is the family of all subsets of X describable within 9.

Lemma 5.2. (a) Describable subsets of X form a Boolean algebra.
(b) Moreover if Y is a describable subset of X then the subsets of Y which are de-

scribable in X also form a Boolean algebra.

Proof. (a) follows directly from the choice of the axioms for our system.
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(b) follows from the fact that if ¢ is a description of Y in J (i.e., g = Y), then
the values of terms of the form #(")s (s ranging over 9) form a boolean algebra.[]

Lemma 5.3. If 9 is a finite selective i.s.r. system, then 03 (9) = 2X (recall that
2% is the Boolean algebra of all subsets of X).

Proof. Assume that #, is a description of x in 9 (i.e., |4ly= {x}), then
ty = Y. t, is a description of ¥ in 9.[]

yeY
Remark. Here is a point in which a difference between finite and infinite i.s.r.
system occurs. Indeed assuming the language .2, finitary (i.e. allowing only finitary
conjunctions and disjunctions) with A infinite it is easy to produce infinite selective
system with indescribable subset (by cardinality argument).

Theorem 5.4. If Jis a finite te i.s.r. system then I is selective iff 93(9) = 2%

Proof. == was proved in 5.3.
<= Since PB(9) = 2” then in particular {x} € W(9). We need to show that ||t,llg = {x},

(where ¢, was introduced in 2.5). Let ||| = {x}. Wemay assume that ¢ is in complete
positive additive normal form. Thus ¢z = )’ ¢, where each ¢, is primitive term. if, for
each ¢, occuring in ¢, ||t,lg # {x} then, since |z, < |ltll; we have ||t,]|= @ and so
|¢]l = @. But this is not the case and so form some ¢, ||t,llg = {x}. Thus ¢, is
description of x.[]

Theorem 5.5. (a) If 9 is in an i.s.r. system and Y < X then there is 9’ such that

9<c 9 and YeB(9)
(b) If 9is an i.s.r. system and I3 a Boolean algebra such that )3(9) < B < 2*

then there is 9’ such that 9 < 9" and B(I') = B
Proof. (a) If Y is describable in 9 put 9’ = 9. Assume Y not describable
within 9. Add two new elements @ and a’ (both not in 4 U I) to the set 4. Define R’

on AU {a,a'} as follows
R = RV {a,a'y,{d ay,{a,a), {a', a’)}

form 9’ as follows
9 =<(X,Au{a,a}, R, U"

where U’'(b) = U(b) whenever be A
Ul@@=7Y
U@)= X-7Y.

(b) Let us notice the following easy fact from the theory of Boolean algebras.

If Ye9, A =93 (A,93 Boolean algebras of sets) then the smallest Boolean algebra
containing % and Y, [¥, Y] is included in 903.
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Now we proceed as follows. We order the elements of 3—3(9) into (possibly
transfinite) sequence {Y,},_; and form an increasing family of i.s.r. systems {J,}, g
as follows: 9,4, is 9; (Operation was described in the proof of parta) if Y,¢8(9,)
or 9,if Y € P (9).

In the limit step A we take a union of Uy, f € A Using the fact mentioned at the
beginning of the proof we find that for all a < 8, 9B(9,) < 93 and since ¥, € V(I +1),
and PB(9) € B(9,) for all & < B we get

B=BO U {Y}s UDBYG)<sPB

a<p a<f

thus | B (7)) < 8. But, by construction, the left hand side is <3 (95) and

f<a

ge gclfj

The construction given in § 3, as we mentioned resembles that of components
(cf. [2]). The selectiveness of the i.s.r. system means that each generalized component
(i.e., value of primitive complete positive term) consists of at most one element.
If each of the components is nonempty then the system is isomorphic with the uni-
versal system, constructed in Section 3. It is clear that every nonempty set of the
set of components determines selective system and conversly. This allows us to
calculate the cardinality of the family of all selective systems (up to isomorphism)
over A and L

Indeed let I = {0..k},A. = n;. Then we have

11 g
Theorem 5.6. There is exactly 2= —1 of nonempty selective systems over
A and R;.

k
: . . II n;
Producing an isomorphic copy each 9,0 < j <2 =o' —1 we are able to produce
a finite system (in extended language) such that each J; is isomorphic with certain
subsystem of J. (In fact it is simply @ ).

One may even produce an infinite ssttem 9’ universal in the above sense for all
finite (even non selective) systems over 4 and I.

Let us remark that 3 (9) is a Boolean algebra of subsets of X generated by [|t]l5
where ¢ is primtive complete, positive normal term. This fact has deep implementa-
tional consequences.

While performing < operation the notion of the generalized components chan-
ge; “old” generalized components are unions of “new” generalized components.

While performing = operation generalized components do not change in the
sense that the trace of a generalized component in new system on the carrier of old
system is again a generalized component (in old system). However if J, < g,
then there may be some generalized components which are empty is I, but not in I,.
However, if a component is nonempty in J, then it is also nonempty in ,. In the
hierarchical operations J/s and 9% the components are glued together (in the first
case) and split in parts (in the second).
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6. Implementation, combinatorial problems

Our syntactical approach suggests the following implementational proposal: We
store in the memory documents as follows; documents belonging to a generalized
component are stored “together”. Then, any query is transformed into the alterna-
tive of the description of generalized components; thus we need only to find the
generalized components. A quasi-practical suggestion is the following: In the line-
arly ordered memory, the documents are stored such that the generalized compo-
nents form segments in the ordering. Then, each component is determined by the
address of its beginning and the end. Thus, while the query is received we transform
it into the normal, positive complete form and find the addresses corresponding to
the primitive components of the term obtained. Similarly the question in the form
of statement about our system is reduced as in the proof of completeness theorem
the conjunction of alternatives of terms of the form ¢, = F or t; = F where t; and ¢;
are primitive complete positive terms and thus checked.

Definition 6.1. Let (7. < ) be a linearly ordered set and let 9 = (X, 4,R;,U)
be an i.s.r. system.

(a) A function @ : T-22°» Xis called enumeration of 9.

(b) A function ¢: T %’» X is called one-one enumeration of .

Roughly speaking enumeration is a listing of element of X in certain order
possibly with repetitions.

Definition 6.2. A term ¢ is called segmential in the enumeration ¢ iff there is a seg-
ment W < T such that the image of W, ¢+« W is ||t]|s.

It is obvious that segmential terms are particularly useful in the i.s.r. processes.
We need therefore some criterion to determine whether we may find an enumeration
in which given term is segmential.

Lemma 6.3. There always is a linearly ordered set (7, <) and enumeration ¢
such that all terms e O are segmential.

Proof. List all terms ¢ (te ) and consecutively order ||t]|,.

However this enumeration can be useful only in case of very simple i.s.r.systems.
In fact there will be a lot of repetitions, and so the memory will be used competely
uneconomically. The most important case is when the enumeration used is one-one-

Definition 6.4. A family of terms H is linear over J if there is a set (T, <) and
one-one enumeration ¢ of 9 in T such that for all t e H, ¢ is segmential in ¢.

Theorem 6.5. If for all ti,te H, t; #t, - t}llgN litzllg = O then H is linear
over J.
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Proof. Let us list all elements of H and order them consecutively, the elements.

of X—U ltllg are listed at the end.
teH

Corollary 6.6. The family of primitive complete, positive normal terms is linear
over every i.s.r. system J.

Proof. They satisfy assumptions of 6.5.

Definition 6.7. Let H be a family of terms. Subgy (H) is a family of all primitive,
normal, complete positive terms which are implicants of elements of H i.e. t; € Subg(H)
" iff ¢, is primitive normal, complete positive and there is ¢ € H such that ||¢;[l5< ltllg-

Theorem 6.8. If H is linear then also H'U suby(H) is linear.

Proof. Let @ be one-one enumeration of X in which all elements od H were
segmential. We show how to change ¢ in such a way that all generalized components.
of terms occurring in H become segments. Indeed the component may be split into-
the segments; then we fix one of them and push it up to contain all other parts.
This operation, when consecutively applied to all generalized components, gives
the result.

Therefore we may conclude that in order to know whether or not given family H
of terms is linear over J it is enough to check whether or not this family linear over
unique (up to isomoprnism) selective system with the same theory.

The question whether or not given family H of terms is linear over 9 may be re-
duced to the problem of so called interval graphs (cf. [1]).

In that paper there is a condition under which a graph is an isomoprhic to the
incidence graph on the real line. Thus considering a family H U Subg(H) we are
able to find whether it is linear or not. The method given there, together with Theo~
rem 6.8. allows to check linearity of H. We shall not pursue the matter in this paper..
If however H is not linear, we run into the problem of chosing of an enumeration
(which is not one-one then) optimal (for instance with respect to the power of T).
This problem is treated by Lipski and Marek [4].

7. Dynamical treatment

One can remark that our approach allows to see an i.s.r. system in “microscopic”,
i.e., static situation. Yet in a “real” situation, we have to modify our system according.
to requirements which may consist of:

(a) Changing of the set of documents — increasing or decreasing

(b) Adding or deleting of attributes (and so descriptors too)

() Changing a descriptors within the attributes.
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Let us note that relations &, f:‘_, =3 % serve to enable us to speak about first

two problems; the third one is treated as follows; With the help of hierarchical re-
lationship we are able to make the attributes “more crude” and with the help of
division relationship “more fine”. Thus we want to express the following “meta-
-theorem”. Relations: <, :>, <, 2, 95, 97 are sufficient to describe what happens

in real time while the i.s.r. system is subjected to accommodation changes.

8. Problems

The following general question seems to be of great importance:
Q1. How should be the memory of a computer organized to simplify the imple-

mentation of i.s.r. system?
For the important results in this direction we refer the reader to Lipski [3].
Another problem which seems to be of great practical importanceis the following:
In the axioms of i.s.r. systems we assume that the classification is complete i.e.
every element of our i.s.r. has full description. Thus:
Q2. What properties of our theory are preserved if we admit that some elements
are not fully classified ? Again some results were obtained in this direction by Lipski

.and the first author.

Appendix

‘While the i.s.r. system is implemented, it is necessary to enumerate the generalized
components. If 4, = n; (i € I) then there is exactly T} n; of generalized components.
‘We may assume that ] = {1,...,k} (i.e., i = k). Thus generalized components may
be viewed as sequences

(by..b> where 0 < by < n;—1..0 < by <np—1

We know that set of all these sequence has power m n; and so is equipollent
with the set {0,...,n,,...,m,, — 1} However we should be able1 to decode in some sim-
ple way form the number 0 < a < ny-ny..m—1 the sequence <{by,...,.b,» it codes.

We may assume that each n; # 1 since if #; = 1 then in the representing sequence
there will be always 0 at i-th position.

We define

uo == nl ° ees I’lk,

ul = nz' ver ‘nk,
Up—q = Ny,
u, = 1.

By our assumption uy > u; > u, > ... > u,
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Theorem Al. For every integer 0 < g < ny...m—1 there is exactly one sequeice
by, ..., by such that
@ 0<b <n—1

k
b)) a= Z b; u; (note the sum is taken from [ = I)
i=1

Proof. Existence Define b, as follows

a
br= E(_>

a— ijuj'
bn+1:_-E —']_z_.i_____

Uptt

(where F is “entier” function).
We prove first 0 < b; < n,—1.
This we show by simultaneous induction together with

m—

1
(*) 0<a———2 bju; < ny-...ome—1 (e u,_y—1)
j=1

Indeed, for n =1

O0<a<sn ...n—1

Then 0 < E(i> - E(;“—n) < E(ﬁ%;ﬂ) =n—1ie.0<b, <n—~1
l-.. k ..

Ul
Let us assume now

0<b- <n—1

r—1
=,
0<a—> bu; < upy—I1
J=1
Then
r—1
1
P oy — Mt Wy —
0<b=FE\—L I <p{l V- fl "W}znrml
\ u, u, Fpiq oee Tl
thus

0 < b, < n—1.
On the other hand
r—1
a— Y. b u,
J=1

b, = F|\—2——— | means
u,

r—1
a— . bu
i=1

7.
-5 <1
u, P

0<
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thus

r—1
0<a— Y bju;—bu <u,
=1

50
,
0<a— . bu <u—1
J=1
k
Now we prove a = . b;u;.
j=1

Notice that according to the definition

k—1
N

a— L b; uy

bk = E —_“—“—J=l
Uy

since however u, = 1 we have

k—1
bk = a-— Z bj Uj
Jj=1
thus

k—1 k—1 k
a = ijuj"l‘bk = ijuj""bk u, = ijuj.
Jj=1 Jj=1 Jj=1

Uniqueness. Instead of showing this directly which is also possible (by the method
we employ later) we notice that denoting

B = {O, N (T 'nk‘—l}
A= {0,y my—1} X oo X {0, ooy 1.

We have 4 = B.
Our proof of existence exhibits 1—1 function of B into A. Since they have the
same power it has to be onto, which shws uniqueness.
Let us notice that in the proof of existence we exhibited offective, iterative pro-
cedure which for every 0 < @ < n,- ... -m—1 gives the sequence <{by, ..., by).
Let us write
v-(a) = {b,, ...,b,> and

V(bl.-. bk) =da

when a= ) b;u,

Question. What is the relation < defined as follows?
<b15 eees bk> < <b],n sy bl’»> < v(bls T bk) < 'J’(b;, vee bllc)

T TR
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Theorem A2. < is lexicographic ordering of A.

'- Proof. Since < is connected therefore it is enough to show that (b,...,5> <
j iex By eos by = by, ..., by < (b, ..., by (where <., is lexicographic ordering
! on A). Le.

<b19 sy bk>> <lex <b1> s bl,c> - /V(bla cees bl;) < V(bia eeey bllc)a
Clearly it is enough to show

Bys o bid <iex b1, ooy B = Wby, -y b)) < (b1, .., By)

k k
Thus we need show that under our assumption ). bu; < Y. bju; holds.

Jj=1 Jj=1
We have by = by,....,b,—=b,_, b, < b,
k k
Thus we have to show Y bu; < . bju;
i . J=r Jj=r
‘ let us consider Y. b, u,
J=r+1
k r
Z bj u; = V(bl, coey bk)_ Z b_,-uj < u,.—l
J=rt+1 i=1

(last inequality holds by (%))

k

k
Thus > b,u; = byu+ . byu; < buy+u,—1= (b, +1)u,—1

J=r J=r+1
but (b, +1)u,~1 < bu,—1 < byu,
therefore we have

k

k
iju,- < b, u, st}u,-
Jj=r

J=r

thus

k k
Z bju; < Z b; u;
j=1

J=r

k
As is clear from our construction, w(b,, ..., b) = . b,u;. Since b; < n;—1 therefore
i=1

k

vby . b)) <V —1,.m—=1) = >, (n;—Du; = n- ... -m—1

J=1

the last equality is easly provable by induction and we leave it to reader.
Let us finally note, that lexicographical ordering is specially convenient when,
while extending the language we increase the number of attributes.

L 280 S K o I
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