ON THE NOTION OF A COMPUTER

Z. PAWIAK

nsringre s Adapkewiores, PUEG Avalemy of Scieners, Wawsas, Poland

I e thoory of mathemstical machines vartens machines are considered,
such 25 Tunng machiass, push-down machines, fine automate, ce. but
Fotle attention is gives 1o foanad delmon of digita) eomputers, programs
and the study of thar properties,

Thewuthor's beitet gs well as that of many other proply werking in com-
puter £01d 48 that a Turtker development of this feld requires more close
selatiors with the existing compuiers,

Tie paper contains formal defivitions of g computer, a vniversal computer
amd 2 prograny, To the sreposed languags one can define and studdy machmes
which scem 1o be fairly good models of real computers, Some clementary
theorerts concermng computers are stated. One can Snd more details cone
cerning (e ontlined tops iy Pawtak [1867],

I. Computers

Lot 48, V. he sets. Flements of A are called addresses, X is refered (o as
an afrs.*w,w and clements of & are ealled bl Elements of Voare called
markers. We allow toe sets A, X 1o be Goite or infinite amd the set V15 as
st to b always fioite. By A4 we desote the distinguished symbol of Y
calied the emipry symbol.

Leiand 2. bethe seisofTunctionasith domainandcodomain s pivesn below

cortoLe At
Every e Cis called canrear of the memory and every fe L s calied docation

ol the memory. We assume that for every ¢ O, #{1)# 4 for almost all xe 4.

Desisizion 1. The memory is a system 2 AL 2L O3, where M=(Cx 1

286 ZPAWLAK

is referred to as a set of memory states, and 1, O are input and output functions
of a memory with domain and codomain as follows:

IEYxA"xM-M, O:A"xM->Mx),

where n=0, 1, 2, ... is fixed for given memory.
The function ¢ may be considered as a pair of functions

04"« MM and O;:4"x M X,
We can extead functions 7 and O for finite sequences of symbols and
obtain new input and output functions 1*, O*:
I xA"x MM and O0%:A" x M- M x Z5,
where k=0, 1, 2, ... is some fixed number for given memory,
Thus with every memory P we can associate the memory function

MpZx A" x M - 5
defined as follows

Foo= (%, dg, m) = 07 {d,, I"(%,, d,. m)).
WHEPE Jes= Voo Min 5= X0y X dp=dy, ..., 0, and y, xie 2, ae d, nie M.
Two memorics P and P’ are said to be equivalent if and only if
nra = IIP) .

If the memory function does not depend on some arguments we shall
omit those arguments and write simple for example 17,(%,).

Example 1. Onc address memory. Let ¥V denote the set of natural numbers
0,1,2,.... We assume for this memory A=N, X=N¥uAd and the set of
murkers V consists of only one element v. Input function for one address
memory is as follows

Hx,o,m)=n; =, [,>., where

x il z=d(v),
e {a)=9 .)
ez} i z#1ir),

and a, ze A, xeX, meM, m={c, 1>,
The output function for this memory is

Ofa, m) = {my, c{a)y, where my;={c;, [,y and ¢;=c.
Livy=a.

DN THE NOTION OF A COMPUTER 257

The extended input and output functions for one address memory are

e, aomy=m, = (e, 1
(z)=x;, f z=a+i-1 and ¢
Ly = u, 1€

T~

oy, where
((z}=c{z) otherwise,
=k

O (a, m) = {my, %>, where m, =<cy b, and o, = ¢,
2 k 2z 21 Y2,
{3_{{“) = qt,
X=cla+i-—-1),

One can easily show that for one address memory 1 ,{ X)— X for all X I*,

Example 2. Stack memory. The sets A, X, V¥ are the same as in the Ex-
ample 1. Input function for stack memory is the following

Ix,m)=m,; = {e|, 1y, where
()= X iz =1, ().
YT de@) it oz 0 (0),
Li(e) =1ty + 1.

Qutput function Tor this memory is

O(m}= (o, e{(6))>, where my=<{eg l,y and ¢ = ¢,
Liley=1(e})—1 Tor {e)=0 aoduandefined for 1{#) =0,

The extended input and output functions for stack memory are as follows

(5, m)=m, = e, 1,>. where
] fx, i z=Hepri (Isigk)
cifz)= te(z) otherwise,
L{ey=1I{r)+1i.
0% (m) = {my. 5>, where my— (el and ¢, = c,
Ly{e) = o) (k- 1),
x,=c{l{v)- i+ 1),

One can easily verify that [T,{X)=X "' for all Xe3* wherec X ™! is to mean
Xieooon Xy

1.2, Iastructions

With every computer there is associated the finite set of instructions,

R=1rg, ry.....r,}). Instruction re R is a function r; A" x M— M, where n=0
is some fixed number for a given computer,

Two instructions r and r* are said to be equivalent if and only if for all

258 Z.PAWLAK
d.eA" and lor all me M
r{d. my=r'(d, m).
If for all d,e A" and for all me M
r{d, m)=m
then r is called identity instruction and will be denoted by r,.
Composition of instructions r, and r, is the instruction r such that
F=1r (f?m "x (&n! "l)} t dm ISREAN

written short as r=r,r,.
The instruction

is called an ireration of the instruction r and is written ¢'=r”,
With cvery computer there is associated a finite sct of operations, F=
[fo- f1: -+ £, } Operation fe F is a function
SiEM =" n,n >0,
Instruction r is called admissible for the memory £ and the sct of operations
Fif r can be represcnted in the form
r{d, m}y=I"{f10,(d,. m)], 4,. OF (4,. m)},

where f is some operation from F and 7*, O" are the extended input and
output functions of the memory P.

Example 1. Transfer instruction. Let P be the memory for which 4= N,
I=Nud, V={r, r,}. Let us assume the following input and output func-
tions for the memory P:

F(x,a, bymy=m, = (e,), where xeZ, a, bed, m,meM
and
() J."C I[‘ == f(iuz) == {?,
Ci\e) = .
’ le(z) if = #i(ry),

b il y=uv,,

L= o
1) {f(y) it yFu,.

0*(a, b, m) = {my, x>, where my=< ey, ;> and e;=¢,
a if y=uv,,

() = {f(:«') ir y#uv,,
x = ¢(l; (1)) = c(a).

L2]

L&

ON THE NOTHIN OF A COMPLTER 259

Let us denote the transfer instruction by T{a, b, m) and assume that the set
of computer operations I containg the identity operation #{x)=x. We define
transfer instroction as
Tla, b, my=m" =, 'y, where

") cla) iF z=1{,),
(D=4 77 ’

‘ ciz) itz H{v,),
, a it y=uy,
'iy)= j ,

(b il y= 0,

One can easily see that so defined transfer instruction is admissible for the

assumed set of operations and assumed memory because
T(a, b.mi= I*{i[0F{a, b, mY].a. b, O (a, b, m)},

for aay a, b, m.

Example 2. Two acdress addition instruction. Let us consider memory
with 4, X, ¥ and 7* the same as tn the Example | but the output function
defined as follows

O*(a, b, m) = (my, 5,0, where my = (ep) and ¢ =¢,
u “. | B 1:1 .
{) (1} = { -
h W v=u,
xy = el (0y)) = c(a),
Xg = CU;(‘L*E]) = C{{)) .
Let A{a, b, m} denote a two address addition instruction, defined as
Ala, b, my=n'"={", 1" where
(2) cla)+c(by if z2=1H{vy)=b,
ofz)= .
¢(z) itz 4+ 1(r;).
if M=y,

=0

W y=u»¢

One can easily verify that if the computer operations set contains addition,
then the instruction 4(a, b, m) is admissible

Afa, by mys= 11+ [0, (a. b, m)] a. b, O{a, b, m)}.

Tn the sequel it will be assumed that all the instructions are admissible, thus
“instruction” will always mean “admissible instruction™,

260 2. PAWLAK

Deviximion 2. [astruction which changes the content of at most one ad-
dress in the memory or chianges the location of 4t most one marker in the
memory is called simple.

Tieorem 1, Every instruction can be represented as a composition of
simple instructions.

1.3. Conditions

With every computer we associate a finite set W= {W,, W,,..., W}, Wc M.
The elements of W are called condirions. We say that the memory state me M
satisfics the condition W; il and only if me W,

We say that a condition W, is admissible for the memory £ if and only if

W= {m:meM and 03(d, m)=x}

for some d,. wherc O} is the output function of the memary 7 and x is some
fixed symbol of the alphabet £. We shall consider only admissible conditions
in this paper. For example for one address memory the condition may be
the set

Wy={m:meM and c(a)=0}, bez,

for some geAd.

1.4. Conrrol

Let @ be a finite set of numbers {1, 2,..., s}. A graph will be defined as the
system G={0, ', hy, >, where Q' Qand hy: Q-0 Q. h,: Q= Q'+ (.
Q is referred to as the set of points of G and @ is referred to as the set of
end points of G, qe @~ Q" is called initial point of G, if for every ¢'eQ,
g4hig’), i=0,1.

The sequence gy. ... 4., q;€Q s called the path from g, to ¢, in G, il Tor
all £, V<iecr, gy =htq). j=0,1.

By the flow graph we shall mean the graph G which satisfies the {ollowing
conditions;

1. G contains exactly one initial point, written g,

2%, The set of end points is not empty.

3", For cvery point geJ —q, there is a path from g, to ¢ in G.

4°. For every point geQ — @' there is a path from g to ¢', where ¢’ 0",

Dipvinimion 3. Fhe control § of the computer is a system §={G, @, ¢, v
where ¢ is the flow graph and ¢, b, v are functions with domains and co-

CNCTEHE SOTION OF & COMPLTER 264
domains as given below

@i 2,) - W, viM x QM xQ,

and R, W are some fixed sets of instructions and conditions respectively, M
is the fixed set of memory states and @ is the set of points of the graph G.
We assume that for every end point of O we associate the identity instruction
o

Elements of arc also called control states. Elements of the set T= A x
are called computer siates. The function v is called rransition funciion. If ¢,
is the initial state of the conwrol then (i, g, is culled the initial state of the
computer; il ¢ is the end state of the control, then {m. g) is called the end
state of the computer, where me M is some state of the memory, Let i=Om, g)
and r'={w', ¢">.

Transition funcuoen will be defined as follows

e{1y =1, where

m’ = [o(q)] (4, m)

c Jhela) 8 miey(y).
¢ l[hg(q) i m ey (y).
LS. Computers

Dermnimion 4, Compuler is a system . # = (P, R, W, §>. wherc P, R, W, §
are the memory, the s:t ol instructions, the set of the conditions and the
control of the computer respectively.

The sequence ¢, 14, ..., 1y is called the compuration of the computer . if
and only if for cach ;6T (where T is the set of states of .#), and for cvery
i, 1£ik, 1y =v(1) and 1, 7, are the inital state and the end state of the
computer & respective v, 1; are called szeps of the computation.

t, will be denoted by Comis,). The function Com may be considered as
a pair of functions Com, and Com, such that Com, {1,) = m and Com, (1} —=4q,
and Comf{r,)=t,=={m, ¢}.

Thus with gvery computer # there 18 associated the function

D (Koo dy, 1) = 0? {dy, Com, [’8(-{}: . M), ‘hr]} R

where I* and OF are input and output functions of the memory of the
computer A

Derinerion 3. We say that the function f{x,...., x3) is computable by the
computer .# if and only if /= ¢ , for some 4, and m,

262 Z.PAWLAK

DermviTioN 6. The set X' < ¥ is decidable on the computer . if and only
if for all xeX* there exist such 4, and m that

b o (x, 4, m) 0 if xel
X, d,, m}= . '
Py G M 1 il x¢X,

where 0, 1 are some distinguished clements of L.

Dersimion 7. The set X' e X* is generable on & if and only if for all
xeX' there is a sequence £, =X,,..., X, %;£2 such that
& o{%, d,m)=x forsome &, and m.*
Computers .# and & are equivalent if and only if f,=/,., where [,
denotes the function computable by the computer .4, and similar /4.

Note, If the function f is given and we search for the computer .# such
that f=¢ , one may speak of synthesis of computer .4, If computer .# is
given and we search for the function ¢ , one can speak about the analysis
of the computer .4,

2. Universal computers

2.1, Classes of computers

DerinerioN 8, Two computers € and 4" are of the same class if and
only if the memories, the instructions and the conditions of both computers
are identical.

In other words the computers belonging to the same class may differ at
most in the control, ,

Let 4 =[.#,, .#,, ...} be the class of computers. Then by fr={/,.
Faye---}y where £, is the function computable by the computer #; — we
denote the class of functions computable by the computers of the class .
Two classes of computers #7, " are equivalent if and only if fy-=f¢-.

One can easily define the class of one address computers, the class of two
address computers eic. and show that these classes are equivalent.

2.2. Universal computer

Let & be the class of computers with alphabet 2. Computers from X are:
denoted by . Let I he the following computer not belonging to the class
2, Fuor the sake of simplicity we assume that the computer IR has the same

¥ Definitions 5.6 and 7 arc modified versions of definitions given in Scorr [1967],

SN THE MOTION OF A COMPUTER 263

set of addresses and the same alphabet as the computers from the class %7,
e A=0,1,2,... and I=0, 1, 2.... The input and output functions for the
computer W we assume as follows

o x 2"« MM and OV: M- M x I,

where M denotes the set of memoty states of the computer IN.

Derintrion 9. The computer Wt is a universal computer for the class of
computers # il and only if for all ¥,e2*, .# ¥ there exist me M such that

0; %Cﬂﬂh [15@ ("fv *‘?m m,)! q(}]} :f..f.’ ({.n)!
where q,, is the initial control state of .

2.3, Synthesis of universal computer

Let #={P R, W,5 be any computer which belongs to ¥, We shall
now define computer W= (P, R, W, S} in terms of computers of the class
A" and then we show that Wi is universal computer for the class of computers
A7, In order 1o define W we have to give P, R, W, S. Let us start with the
construction of P

2.3.1. Memory of the computer Y1

We recall that as the set of addresses for P we assumed the sct of natural
numbers N=0, 1, 2,.... Let € be the set of content functions of P, and let Q
be the set of controf states of #. By C,=C|(N— Q) we denote the set of
partial content functions with domain restricted to the set N~ Q. We shall
call functions from C, the reduced content functions. The set of markers U in
P consists of one element w. In order to define the input and output functions
for P we have to introduce some additional notions.

Let M be the st of memory states of ., and let S=<G, w, ¢, > be
the control of .#, where G={0., @', hy, b,). We introduce 1-1 mappings
kM- C, pi R—Rowhere R—={r, ry,.... #,> is the set of instructions of the
computer. and R={ry, ry, ..., 1), r;: 4" x C,— C, - such that for all me M,
d,ed" and re R

i, m)) = [p(r)| (4, «{m)).

By ¢, is to meun the function ¢, : Q-+R such that @, (g)= p{e(g)). for all

gsQ.
Let us denote by W= {W,.... W,] the set of conditions of .#. By w is 1o

264 2, PAWLAK
mean |-1 mapping w: W-W, where

W={W, W, Wl Wc(
such that for all me M

k{myeo(W,) ifandonlyif meW,.

¥, denotes the function ,: Q->W such that ¥, (q)=w(¥{g)), for all geQ.
The sct of functions {¢,, ¥, fy. 1y > we shall denote by 6. Let 8 be -1
mapping

5:60 Y,

where L' X and T is finite. & will be called the encoding function. Thus we
arc able now to represent @ =<{@,, ¥,,. ho, 1) in the alphabet of 9N,
‘The input function I* of P we define as follows

(A, 5.m)=m"= (. 1), where
{O(z il 0<:zx<)0l,
C’{Z)t:fj‘(*(?) . ’) \iQi
lx(l (Yend,. m)y of z = Q]
(0} = gq.
and /* is the input function of .#, |Q} denotes the number of ¢lements of Q.
The output function O*;M—M x 2* of Y satisly the condition:

for all me M there exists such 1L, that O3 (m)—=0%(x{m), 1).
Thus we defined the memory of V1. '

2.3.2. Instructions of the computer R
Now we have to define the instructions of DY The set of instructions of Y}
will consist of two instructions #,, #. #, is the identity instruction and #
is defincd in the following way:
#m)=m" = e, I'>. where m= {c,. 1> and
¢ = [p,(1()}(c,),
' (w) {ko(i(u)) if e ey, (1{u)
u) = o
hy (M) iF e ¢y, (1{u)).
2.3.3. Conditions of the computer 9

In the computer 9% we shall consider only one condition %

=im:meM and lu)eQ' and @ l{u)=rq},

ON THE NOTION OF A COMPUTER 265

where O is the set of end states of M and r, is the identity instruction of
M. The condition ¥ will be written STOP,

2.3.4. Control of the computer I

The control of TN we shall simply give in the form of a table

] v ho | fﬁ
e e Dosor e e
) ¥ Ay STOP | Qs i L
- ;qu,{ w ki B Tt l,-u - M — i_ﬂ :MIND
03 %1 E ; STOP i 0 | 9 .

In the table the control states arc q, q,. 43, 95 and g, being the end state.
@, w, hy, i, are the curresponding functions of the computer 1.

Thus we completed the definition of the computer . Now we are able
to prove the following theorem

TuroreM 2. The computer U7 is universal computer for the class of com-
puter ¥,

PrOOF. In order to prove this theorem we have to show that for every
function /, and for all £ there is 4 computation in 9% such that

1) O3 [Com, [1* (4. %, m), q, 1} = f 4 (5,)

for some meM. Because /, is computable by therefore there is in . # the
computation such that

2) Oi* {C")ml [P‘ (fks é,nv m’)* f]o}} ﬁfa(jk)

for some 4, and m. From the definition of I* it follows that to the initial state
of the computer .# corresponds exactly one initial computer state of A,
which is

t, = (1% (A, £, m), god> .

From the definition of the control of I results that to each step of the com-
putation in.# correspends exactly one step in the computation in R - such
that t,. , — ¥(t;) if and only if £, , =v(1;), where ¥ is the transition function
of M. Further from thedefinition of the control of M it follows that M is in
final state il and only if .# is in its final state, By the delinition of p we have

(H {Cgmg [!*(}k? dm n!}, qﬂ}},]> = (:ﬂml [[*(ué/, .{"*, m), qQ] v

266 Z.PAWLAX

By the definition of the output function O* and by 2) we obtain 1} which com-
pletes the proof.

In this manner one can deline various universal computers, for example
onc address universal computer, two addresses universal computer ete. und
prove some properties of this computers.

3. Programs

Let (7= ClQ be the set of the partial content functions of the universal
computer N with domain restricted to the set @, such that for all geg,
MHeX,

#g)=o(0(q), pe?.

DeriNiTioN 10, Each function e is called a program in Wi, @ (q) is
called a program instruction (which is to be distinguished from machine in-
structions considered in the first section of this paper); ¢ is called Jabel or an
address of the program instruction &{q); 3(68(q)) is called a code of O(g).

With every program e % in Wt we can associate a function f, computable
by the progrum /4 on the machine IR. Two programs s and 2’ are said to be
equivalent if and only if £, =/ ..

It seems very important to study in detail the question of cquivalence of
programs but this is not the aim of this paper. We arc going now to state
without proof theorem concerning the form of program instructions in
universal computers,

TaroreM 3. For every universal computer Y0 there exists an equivaleat uni-
versal computer Y17 such that for each program instruction

O(q) = Lo, (@) ¥, (a), ho(a), by (q))

of M’, any of below given properties may hold
a) hy(q)=q+1forallge@,
a’) h(q)=q+1forallgeQ,
b) if @,(g)F T, then ho(g)=h(g)=¢+1 forall g Q,
¢} if ¢, (g)=r, then hy(g)=q + 1 for all ge Q,
¢') if @, (q)=r, then hy(g)=q for all ge Q.
Much attention has been recently paid to the semantics of programming
languages. It scems thut the presented formalization of computers and pro-
grams contribute to this problem. The meaning of the program 4 can be

ON THE NOTION OF A COMPUTER 267

defined as the computation carried out on the universal computer 9% ac-
cording to the program 4. Thus we can define the valuation of programs in
the computer states in such a manner that the computation associated with
the program yields the value of the computed functions, Thus we have the
method for solving the following problem: let £ be program of a universal
computer Y, and let & be 4 computable function. We ask whether A=/,
This seems to be of some interest not only for the theory of programming
but also for practical computation.

Acknowledgement

The author gratefully acknowledges many helpful suggestions of Dr, A.
Mazurkiewicz and Dr. A. Wakulicz.

Refercnces

Davis, M., Computability and unsolvability (New York, McGraw Hill, 1958).

Ergor, C,C, and A, Romnsoy, Ramdom-access stored-program machines, an approach
to programming anguages, I ACM 11 (1964) 363399,

Hermes, H., Aofziblbarkest, Emscheidbarkeit, Berechenbarkeit (Berlin, Springer, 1961)

Kawmar, L., On an algebraic theory of antomaltic digitat computers, Collog. Foundations
of Mathematics, Mathematizal Machines and their Applications, Tibany, Sept. 1962,
. 129,

Pawrak, Z,, Organization of digital computers (in polish), Manuscript of lectures held ac
Warsaw University in 1966:67,

Scorr, D, Some definitions] suggestions for automata theory (Stanford University, 1967).

