MATHEMATICS (COMPUTING MACHINES)

Some Remarks on the Bracket Free Notations

by

A. EHRENFEUCHT and Z. PAWLAK

Presented by A. MOSTOWSKI on October 27, 1966

In this paper we discuss some general properties of bracket free notations, first introduced by Łukasiewicz [1].

§ 1. We introduce a preliminary notion of the formula in the tree form. (A finite sequence of the formulae is called also a formula). Let T be the set of all finite non-void sequences of natural numbers. The one-term sequences are identified with their values, and α , β denotes the concatenation of α and β .

Let R be the partial ordering of T defined as follows:

 $a_1 a_2 \dots a_k Rb_1 b_2 \dots b_n$ iff k < n and for $i \le k a_i = b_i$, where $(a_1 a_2 \dots a_k)$ and $(b_1 b_2 \dots b_n)$ are in T.

The relational system $\langle T,R\rangle$ is called the basic tree. Now let the sequence of symbols F_t and the sequence of numbers k_t and a symbol Λ be given. F_t is called a functor of k_t arguments and Λ —the empty symbol. The symbols with zero arguments are called individual variables. A formula in the tree form is a function Φ defined on T with values F_t or Λ satisfying the following conditions:

- For almost all a∈T Φ (a) = A.
- 2. If $\Phi(a) \neq \Lambda$ and βRa then $\Phi(\beta) \neq \Lambda$.
- 3. If $\Phi(\alpha) = F_i$ then $\Phi(\alpha \cdot n) \neq \Lambda$ if and only if $n < k_i$.
- 4. If $\Phi(n) \neq \Lambda$ and m < n, then $\Phi(m) \neq \Lambda$.

The set of formulae in the tree form is called the language L in the tree form.

Let R_1 be an extension of partial ordering R to the linear ordering. The relation N_{R_1} (bracket free notation for the language in the tree form) is a function, defined on the language whose values are finite sequences of symbols $F_{\rm f}$ defined as follows:

If Φ is in L and $\alpha_1, \alpha_2, ..., \alpha_k$ is a sequence of all $a \in T$ such that $\Phi(a) \neq A_k$ and $\alpha_l R_1 \alpha_l$ for l < l then

$$N_{R_1}(\Phi) = \Phi(a_1), \Phi(a_2), ..., \Phi(a_k).$$

§ 2. A. If R_1 is the lexicographic ordering of T, then N_{R_1} is the Łukasiewicz notation. For example, let Φ be

All vertices for which $\Phi(a) = A$ are omitted in the diagram and, of course, the corresponding part of the basic tree looks as follows

Then $N_{R_1}(\Phi) = AAxyzAxx$, because R_1 gives the following ordering of vertices shown in the diagram

B. Let R2 be the ordering defined as follows:

 $a_1 a_2 \dots a_k R_2 b_1 b_2 \dots b_k$ if k < n or k = n and $a_1 \dots a_k Rb_1 \dots b_k$. (This means that $a_1 \dots a_k$ precedes $b_1 \dots b_k$ in the lexicographic ordering).

For the formula Φ given in the example A

$$N_{R_0}(\Phi) = AAAzxxxy$$

because R2 gives the following ordering of vertices

§ 3. Let R_0 be an extension of the partial ordering T to a linear ordering. Let us denote by L_{R_0} the range of N_{R_0} (This is the set of well formed formulae in the notation N_{R_0}).

Theorem 1. $L_{g_0} = L_{g_1}$ (the set of wff does not depend on chosen notation and is the same as in Eukasiewicz notation*)).

THEOREM 2. The function N_{R_0} maps in a one-to-one way the set L onto L_{R_0} (Each formula in the tree form T has a unique representation in L_{R_0} and each formula in L_{R_0} corresponds to exactly one formula in L).

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES (INSTYTUT MATEMATYCZNY, PAN)

REFERENCES

 J. Łukasiewicz, Elementy logiki matematycznej [in Polish], [Elements of mathematical logic], Warszawa, 1958.

[&]quot;) Speaking informally different "languages" L_{Rg} has the same correct sentences but different grammars.