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In paper [1] a certain realization of the rule of substitution was given and here
another realization is presented. This realization seems to be more suitable for
an addressless digital computer destined for calculation of various problems, it
means that the formulae which are to be computed are often changed. Owing
to this a more flexible system of substitution is required.

The problem of substitution

' Suppose that two functions z = F(xy, ... Xi—[, Xi, Xitl, ..., Xu) and x; =
= G (¥, .--, ¥x) are given and the values of the function z = sub (F/x;) G for
different values of arguments xi, ..., X, ¥1, ..., V& are to be computed. Function
z = sub (F/x;) G will be written in the form

Xi = G(yb ceny yk)a
2 = F(X1y over Xie1, Xiy Xit1s --or Xn)s

and it will be called composite function.

The variable x; will be called substitutional variable, the function F— the
main function with respect to function G, and function G will be called the sub-
-function with respect to function F. If F is the main function with respect to G,
we will write F &> G.

Generally the sequence of functions

Xi, = Gl (yb “ees yk)’

Xiy, = Gp (21, -.os 21),

V= F (X1, .0, Xty oo Xigs -os Xn)

denotes the function v = sub (F/xs, ..,,xip) Gy, ..., Gp, the value of which is
obtained by computing first the values of functions G, ..., Gp and then — the

value of function F with xq, ..., Xi, as values of Gy, ..., Gp, respectively. Of
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course, F & Gy, ..., F & Gp. In the general cast G; may, on the other hand, be
a main function with respect to other functions, say K, ..., ;.
The sequence

x = Fy,
Xy = Fz, -
Xn = Fn

is a composite function if and only if for all i(1 </ < n) there exists at least
one such j(i >j = n) that F; & Fy.

Example:
Z = u-vfy,
x=a-(b-—c).
w = (2 — x)p.

Language of the addressless computer

We shall define formal language in which the presented substitution proce-
dure may be expressed, with the precision necessary to study the organization of
the computer. As starting point any notation of formulae may be assumed, e.g.
ordinary algebraic language, however, for technical reasons we shall accept special
parenthesis-free notation which seems to be very valuable in digital computer
applications, [2].

Elementary formulae. As primitive symbols of our language we assume:
a) variables — lower case italic letters, eventually with subscripts and upper in-
dices ,”’, ’"/, etc. Variables without indices are interpreted as numbers — with
one index ‘— as addresses of numbers, with two indices '’ — as addresses of |
addresses of numbers and so on.

b) * — asterisk denoting the partial result,
c) symbols of dyadic arithmetical operations +, —,-,/,
dj symbol of a transfer of the result of computation =.
i. If @ and p are variables, then daf is a term.
A4 denotes one of the symbols +, —, +, /.
ii. If @ is variable and B is a term, then dxaf and Aaxﬁ are terms.
iit. If @ and B are terms, then Axxaf is a term.
iiil. If a is an address and f is a term, then a == f is an elementary formula.
If a formula @ contains n symbols of arithmetical operations, we shall say
that formula @ is of the length n. We assume that simple formulae are at the most
of the length n, where n is a constant number for a given computer, not greater |
than 30.
The advantage of this limitation lies in avoiding excessively long formulae
not readable at one glance.
Example :

r

v

x'= Huzfax-bc— pq
or

¥ = .axfcd.
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As stated in the previous papers this notation has not a unique meaning. Of
course, for a given computer the language must have exactly one fixed meaning,
by choosing the proper rule of reading the formulae of our language. However,
in this paper the interpretation of formulae is not important and may be assumed
arbitrary.

Standard formulae. If some elementary formulae are very often used in
calculations, we introduce usually abbreviations such as sin, ‘cos, In, etc. These
formulae will be called standard formulae. In order to simplify the problem, we
adopt only one letter abbreviations, what limits the total number of standard
formulae to about 30. Further, for the sake of simplicity we shall consider only
standard functions of one argument, the rest of independent variables being treated
as parameters. Of course, the list of standard formulae for a given computer is
fixed. In all standard formulae the one argument will be denoted by the same letter
u’’, with two upper indices. However, in the abbreviation any letter with one upper
index may be used as an argument.

Thus, the standard formula may have the form

x'=/u"+—u"a,
or in the abbreviated form

x'=2zy’,
where y’ denotes the argument %'’ and z’ is the name of the formula. Since the
abbreviation has the nature of an address, as it will be shown in the next para-
graph, an index is used by z. Since there is no danger of misunderstanding, whether
the given expression presents an elementary or standard formula, we shall omit
all upper indices in standard formulae abbreviation, so the above example will be

x=zy.

Also in the elementary formulae the address of the final result will be written
without indices.

Composite formulae. Let x =@ and y =¥ be an elementary formula
or abbreviation of a standard formula. If ¥ contains the variable x’, we will
write x = @ < y = ¥. The sequence ay, a, ..., ay — where a; is an elementary
formula or abbreviation of standard formula—will be a composite formula if and
only if for all i, 1 <7 <C n there exists at least one such j, i < j < n that a; < a;.

Example:
X = /ze+ab.cd.
y = “+c¢wex'a,
I = hu,
w= /*y'—Faz"

Organization of the computer

A simplified scheme of computer realizing the above described language is
shown in the Figure. The computer consists of composite formulae memory M,,
standard formula memory Ms, elementary formula memory M, (working memory),
partial results memory My, and elementary functions value memory My, arithmo-
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meter A, arguments control circuits A, formuale control circuits F, and three
address registers, namely : standard function name register R;, function value address
register Ry, and standard function argument address register R,. Suppose that
in the M, memory there is the composite formula «a;, as, ..., @y, Formulae control
unit F. selects consecutive expressions a;, and puts the address of function value
to the register Ry. If the selected expression is an elementary formula, then the
rest of the formula is transferred to the working memory M,; in the case when
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Simplified diagram of the computer

the selected expression is an abbreviation of the standard formula, the name of
the formula is transferred to the register Ry, and the address of the independent
variable to the register R,. The contents of the R, register cause that the proper
standard function is sent from the standard functions memory M, — to the working
memoryM,. Argument control circuit A, scanes subsequent operations in the
working memory M., sets the arithmometer to proper operation and selects both
arguments from the memory M., My, or My, in dependence whether, the arguments.
are data, partial results or the value of a previously computed function. The result
of each operation is memorized in the memory M. The final result of the compu-
tation of the formula is in the memory M, under the address previously set in
the function value address register R,.
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