BULLETIN DE L'ACADEMIE
POLONAISE DES SCIENCES
Série des sciences techniques
Volume IX, No. 9 — 1961

AUTOMATIC COMPUTERS

On the Utility of Arithmetical Formalisms in Digital Computers

by
Z. PAWLAK

Presented by P. SZULKIN on June 17, 1961

It is necessary to distinguish two essential, alternately recurring, steps in the
process of multiple computation of the values of the function F(xy, ..., X»), name-
ly: computation of its values for a prescribed set of arguments, and substitution of
the new values of the variables and parameters. The present paper contains certain
elementary remarks relating to the rendering of either process by mathematical
formalisms. These considerations can be of use in the construction of an external
language for digital computers and for that of machines operating directly in a lan-
guage resembling the one generally prevailing in mathematical symbolics.

Computation of the values of a function

The language describing the process of computing the values of a function
should convey more or less precise information on the order of the operations,
on finding the arguments of the latter, and on localization the partial results. In
the usual parenthesis notation, this information is not presented in sufficiently
precise form; such notation, if applied to digital computers, requires more pre-
cise formulation by means of additional algorithms. E.g., the distribution of
parentheses in a formula is in itself insufficient even for prescribing the order,
in which the operations should be carried out. In fixing the latter, we can prescribe
an algorithm for presenting the partial results; quite generally, for each order-
ing of the operations, a different algorithm will be required (see, e.g., [I].
However, independently of the order in which the operations are carried out, the
final result is the same, i.e. the meaning of a formula in parenthesis notation
does not depend on how we read it. It is noteworthy that, once we have univo-
cally fixed the positions of the arguments corresponding to a given operation, the
variables are no longer required to be written in the formula. Thus, e.g., the
formula (((a+0)-c)/(d-€)) can be rewritten in brief as follows: (((+)-)/(+)). The
latter simplified formula is sufficient for prescribing the order of the operations,
that of presenting the partial results, and that of finding the arguments of an opera-
tion. Omission of the left or right parenthesis in simplified parenthesis notation
also yields a description of the computation process. (Semi-parenthesis notation

(5271




528

oz pawiax

LN
was proposed independently by Ehrenfeucht and Kalmar. The respective results
have as yet not been published). Thus, the foregoing example can be written in
abbreviated form as follows: (((<-+/(- or +))/).

The process of computation applying parenthesis-free notation is described
stmilarly. This notation is not univocal, i.e. the meaning of a formula depends
on the way in which it is read [2]. Omission of the variables, as in parenthesis
notation, is here impossible. E.g. the foregoing formula in parenthesis-free nota-
tion is /++abc-de; if read according to a different algorithm [2], this could mean
((@+b)/(c+(d-e))) in parenthesis notation.

It would seem that modified parenthesis-free notation presents the greatest
interest for application to computers. This notation is defined as.follows:

Let 4 denote an arbitrary dyadic operator.

i. If @ and § are variables, 4af is a formula.

1. If a is a variable and 8 is a formula, Azaf and Adaxp are formulae.
iti. If @ and B are formulae, Axzaf is a formula.

This language, too, is non-unique as the meaning of a formula depends on
how we read it or, more exactly, on the way in which the partial results are set.
This language would seem to be the simplest for technical realizations. The above
example, in this language, assumes the form of either [##%sxc+ab-de or else —
with a different algorithm for setting the partial results — /#x.de+= c+ab. Neither
are the variables required here for describing the process of computation; it is
sufficient to know whether a given figure is a partial result or initial data. Thus,
in order to describe the process of computation in this language, any single symbol,
such as 1, can be used to replace the different variables. The foregoing examples
now become /#:: 1--11+11 or [xx+11+% 1411,

Substitution of values of the variables

. On substituting in, e.g., the expression x+y of 7 for x and 3 for y, we have
the expression 7+3. An attempt to effect a second substitution, e.g., of 4 for x
and of 5 for y would lead us into difficulties, as by the first substitution the initial
expression x+y is destroyed and we no longer know where new values should be
substituted. Hence, a formalism admitting multiple substitution of values of the
variables should present a form, which allows to preserve the symbols of variables,
for which we substitute the given values. Such substitution, from the point of view of
the computer, does not consist in replacing a variable by a figure but rather in inscrib-
ing a figure at the position whose name is the given variable. Thus, from the point of
view of the computer, the variable constitutes the name of a position wherein different
symbols can be inscribed; moreover, on substitution of the symbol, this name
cannot undergo “destruction”. In the construction of digital computers, two in-
terpretations of the variables seem to be of practical significance. In order to ex-
plain them we assume the formulae to be written on a paper tape divided into




On the Utility of Arithmetical Formalisms in Digital Computers 529

“squares”. To each square is related its name, i.e. the variable. If the variable x
has the value n, we inscribe the figure n in the square denoted by the variable x*).

If the formula is written down on the paper tape in such a manner that each
variable appearing therein is inscribed in the square whose name it constitutes,
the system of notation is said to be addressless. If, on the other hand, the formula
is written down so that each of its variables is inscribed into a square whose name
it does not constitute, we have address notation. Thus, in addressless notation,
the value of the variable is inscribed into the same square as the variable. In address
notation, the variable and its value are written down in different squares. If one
and the same variatle occurs » times in a formula, there are n squares in the ad-
dressless system denoted by it, whereas in address notation only one square bears
ts mark. ‘ :

In the case of a simple digital computer, the addressless system would seem
to present considerable advantages over address notation because of the simpli-
city of its technical realization. In more highly developed computers, the addressless
system can be used for constructing the arithmometer, i.e., the latter would not-
serve for the computation of separate arithmetical operations but rather of en-
tire arithmetical formulae, so that with such a computer the order could be of the
form: Compute the value of the function F.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
(INSTYTUT MATEMATYCZNY, PAN)

REFERENCES

{11 Z. Pawlak, Organization of address-free computer with separate memory of partial results,
Bull. Acad. Polon. Sci., Sér. sci. techn., 9 (1961), 123.

2] —_ , New method of parenthesis-free notation of formulae, ibid., 8 (1960), 197.

*) Substitution thus defined excludes substitution of a function for a variable, e.g., in the
expression x+y we cannot substitute z+u for y since, from the point of view of the computer,
this would mean an operation consisting in the addition of the figure substituted for x and the

expression z-x, which obviously makes no sense as addition is here understood to be an opera-
tion on figures.




