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Introduction

Universal digital computers are constructed, in principle, for the pur-
pose of numerical computation of the values of the functions f (xy, ..., x,,
ty, oy t), m =0, n>> 0 defined on rational numbers for different values
of the parameters t;, ..., t,,. The aim of the present paper is the application
of certain elementary notions of the theory of computable functions to
the organization of digital computers.

Computable functions may also be used for automatic programming of
digital computers. This subject is, however, not discussed here.

General remarks on computable functions

We shall now define a few elementary notions concerning computable
functions used in the following.

Computable functions may be defined as functions, the values of which
can be calculated, for given arguments, by means of a finite number of
operations such as, e.g. addition, subtraction, multiplication and raising
to power.

The class K of computable functions is usually determined by giving:

i) the initial functions fi, fy, ..., f;

i) the operations O, ..,0,, enabling, from the functions belonging
already to class K, the construction of new functions belonging to the
same class. '

Depending on the choice of the initial functions and the choice of
operations, we obtain various classes of computable functions.

The notion of computable functions has been introduced by Godel.
Definitions of computable functions were given by S. C. Kleene, R. Peter,
J. Robinson, A. M. Turing and others. All these definitions are equivalent,
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The definition of Turing is based on the notion of a computer. He has
shown that every computable function is also computable in the sense
of his definition, that is we may build a machine for c‘omputing its values.
Every Turing machine is composed of a paper tape divided into squares
and a device for shifting the tape through any number of squares towards
the right or the left; it also writes or cancels a finite number of symbols.
Turing’s machines are of great importance in mathematics, but seem to
be rather useless for practical application.

Another example of a machine for computing the values of computable
functions was given by A. Grzegorczyk [2]. The Grzegorezyk machine is,
according to the present author’s opinion, more closely connected with
the computers now in use than Turing’s machines. According to Grzegor-
czyk, a machine for computing values of functions belonging tq a class K,
determined by the initial functions fy, ..., f, and the operations Oy, ..., Om,
must contain a device enabling the computation of the values of the initial
functions fy, ..., f», and the operations O, ..., O, must also be realized in
some way. The conception of Grzegorczyk is the starting point of the
present paper.

Operations

We shall give a few of the simplest operations *) leading from compu-
table functions to new computable functions.

a) Operation of substitution.

If f (X1, «eos Tiy -os L) @and h (yy, ..., Ym) are computable functions, then the
function f (1, cves B (Y15 e1s Ym)s -y Ln), Obtained by substituting for the va-
riable z; in the function f, the function his also a computable function.

b) Operation of simple recursion.

If ¢ and h are computable functions, then the function f satisfying
the conditions:

" 2)£(0,5) =g @,

is also compﬁtable. The variable x, in relation to which the recurrence
oceurs will be called the recurrence variable; all the remaining variables
Y =1y, .., Y Will be called parameters. Thus, for instance, by means of
the functions x-.y, x+1 and the operation of simple recursion we can
define the operation of raising to power y*, as follows

L
@) { a)y’ =1, ’
b)y**l=y"y.
Similarly, we can define the factorial function, x!
| — 1
(3) { a) 0! 041,
b) (x+1!=2ax!(x+1)

*) For accurate definitions see [1}.
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c) Conditional operation.

If q and h are computable functions, the function f determined by the
expressions: )
@ fla)= { g (x), if the condition R (x) is satisfied,

h (x), if the condition R (x) is not satisfied,
is also computable. For instance,
0 if a<<0,

5 Sgax=
) I {1 if x>0

In the general case the function f may be defined by means of more than
two functions and an appropriate number of relations.

Computable relations

An n-term relation R (xy,..,%,) will be called computable relation
of a class K, if there is a function f called here the characteristic function
of the relation R, such that for every xi, .., T, (i is non-negative integer),
we have the identity: '

(6) R(x,, o, Xa) =F (X, o, Ta) = 0.

If R(x,..,x,) and S (yi, ..., Ym) are computable relations of class K,
there exist functions f and g such that:

(N Ry, ooy Tn) = (X, oy Xn) = 0,
and
8) Sy e Ym) =g Y1y 00, Yym) = 0.
From the elementary laws of arithmetics of non-negative integers:
{9) {a=0n({b=0)=a+tb=0,
(10) ~@=0=1=-a=0%,

where N, ~ denote the logical product and negation, respectively, we
can derive the relations:

(11) Rz, ) =1=f(x),..,xa) =0,
{12) R(xyy o0 Tn) O S (Y, ooy You) == F (X4, 0oy Tad T G 1Yy ooy Ym) = 0.

If K is a class closed under the operations of substitution and includes
the functions = + 1, x + y, x —y, then the set of computable relations
of the class K is closed under the operation of propositional calculus.

For instance, to the relation x <y corresponds the characteristic
function x= (y -~ 1), and to the relation <Xy — the function (x—=1v).

*) The function x—y is defined thus:
. { 0 if <y,
xT -y = .
x—y if x>y
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Universal functions

If K is a class of functions, then K, is the class of n-argument functions
belonging to K.

The function f (xy, ..., ,, t) of n + 1 arguments is a universal function
of the class K, if for every function g (xy,...,x,) of n arguments, func-
tion g belongs to K, if and only if there exists a number t. such that for
E€VErY Xy, ..., Lp,

(13) g (@xyy ey Ta) = f (g, ..., Tn, 1),

Organization of a computer for calculating the functions of a class §

Adresses and addressing function

The memory of the computer may be considered to be a lined sheet
of paper. All the squares thus obtained are numbered with successive in-
tegers. The numbers of the squares will be called addresses. In the
computation process all the initial data have definite adresses (are located
in given squares). All the partial results are also located in given squares.

In the present section we shall define functions F and G determining
the addresses of partial results depending on the addresses of the
arguments; these functions will be called addressing functions.

Formulae and programs

The class S is defined by = initial funetions fi, ..., f, of two arguments
and the operation of substitution. To make the subject more concrete, let
us assume four initial functions x + y, x —y, x -y, x/y.

Thus, -for instance (p-q) — (s-7)/(t —u) is a function of the S class.

Let F be a class of formulae with three kinds of elementary symbols

i) variables p,q,7rs,t,u, v, w, x, ¥, 2,

ii) symbols of dyadic operators,

iil) parentheses “(”,“)”.

The arbitrary variable will be denoted by X, and the arbitrary operation
by 4. The notion of formula will be defined by recursion scheme:

a) the variable is a formula,

b) a,BeF D(adp)eF.

Thus, for instance (((p-q) — (s-7))/(t — w)) is a formula.

A formula containing at least one pair of parentheses will be called
a program. .

Components

A component o(®) of the formula @ will be defined as follows:

a) a formula is a component,

b) if (adp) is a component of a formula @, ¢ and f are also com-
ponents of the formula @.
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Thus, for instance, the expressions p,t, (p-q), ((p:q) — (s:7))/(t — u)) are
components of the formula (((p-q) — (s-7))/(t —u)).
It is obvious that if a formula has n variables, it has 2n — 1 components.

The order of a component

A number < ¢(®)), called the order of the component, is associated
with every component o (@). The order is defined thus

a) if o(®) has a form identical with @, then {a(P))> =1,

b) if {o(®)>=1 and if o(®) has the form (adpf), then
(ay={(pr=i+1. .

For instance, the component (p-q) of the formula
{((p+q) — (r-8))/(t —u)) is of the order <(p-q)> =4, and the component
((p-q)— (s-7)) is of the order {((p-q)—(s-7)>=

Adressing of the components

Let {o(®)} be the number of a component ¢(®). - The number {o(P)}
will be called the address of the component ¢(®). In the following
we shall consider the two simplest addressing functions, which we shall
use further in this paper.

We shall assume that the addresses have the following properties:

| a) {a} =1 and (adB)D{f}=1i+1,
l b) 1et 0. (®) and ¢, (@) be components of the formula @
(14) <o1 (@) ) =<0y (D) > {07 (®)} > {0, ()];
l w@ D {e(@))=1;
d) o, (D) # Uz( ) D {0y (D)} # [0, (@)

Binary addressing
ja) {a(@>=1D{c(@)}=1,
| b) {(adf))=1iD{a}=2i and (B} =2i+1.
(This way of addressing may very easily be realized in the binary

(15)

system) *).

The above way of addressing may be made dependent on the structure
of the formula (D

*) The problem of addressing the components, in general form, is as follows:
there are given the addresses of the variables of the formulae &, to find the addresses
of all the components ¢(@). The most general form of the component addressing
function are pairing functions. A function F(x,y) is a pairing function, if there exist
functions G and H such that G(F(x,y)) ==, and H(F (x,y)) = y. The problem of
addressing components by means of pairing functions will not be considered in this
paper.
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Let o:(®) dencte the i-th symbol of the formula @ (counting from
left to right), and let F (¢.{@)) denote a function, such that to every symbol
0i(®) corresponds a natural number n.

The function F will be defined by recursion scheme
a) Flo.(®))=1;
[ Floi (@), if gi+1 (D)= 4;
E(F(Qt(@)
b) Foi1(Q) = 2
2F (0 (D)), if eit1(@)=2Xor( and 0;(D) = (;
Flo: (@) +1,if i1 (@) =X or ( and p; (D) = A.
E (x) denotes the integer part of wx.
The values for the function F{g;(®)) for the corresponding parentheses

or variables are the addresses of the components of the formula, according
to the binary addressing method.

(16)
), i gri1(®) = (;

Natural addressing
Let H(p:(®)) be a function defined by recursion scheme
a) H(e, (9)=1,
an 1 [ Hio: (@), if giv1(@)=X or ( and g (®) = 4,
or gi1(@)=24 and g;(®)=X or);
H(p: (@) +1, if gix1 ()= (or X and p;(®)=(;
| H{o:(®)—1 if 0:(D)=).

The values of the function H will be called the order of the symbol g;.
Let ¢} (@) denote the k-th symbol of the p-th order of the formula and
let G(¢? @) be the addressing function defined by recursion

(a) Gl (@) =1;

b) H{pir1 (D)=

G g} (D)), if ¢f (@)==) or 4
Glp2 (D) +1, if (p§+1(<1))=( or X;
¢) G (@[ (@) =G (¢ 2 (D) +1.

@b denotes the symbol of the p—1 order for which H (¢~ (@)
is maximum. Examples of addressing are given in Tables I and II.

{18) | b) Glgp,,(®) =

TABLE 1

BEDnnnEnnE

617’8‘9 ‘10‘11‘12[13 l4r15 16’17‘18 18 20i21

qal) —Elir

REES
al@ |12 3[4|5
2]

P o0 ’ 1 ‘ 2|4
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TABLE II

oo s e NI

o (@ ‘1“2!‘3*1-4;*5]6|7 l\ 8i9i1oj11 12|13\14\15 16| 17

) Hlg; (@) ‘1!2'3]3[31“*’75;]3“3 4;4}4 3| 2] 1

] Glgf (@) }‘L;‘Hfﬂs;z 2!3{616‘7 8’8'9 71’3{1

Addressing of the components of the formula and
numeration of the branches of trees

It may be shown that to every formula corresponds an oriented tree.
Then the problem of numeration of the formula corresponds to that of
numeration of the branches of that tree,

Thus, for instance, to the formula {((p-q@) — (r-s)H/(t — u)) corresponds
the tree: ‘

Fig. 2

Binary and natural add ressing is, in the given example, identical. To
the formula (((p-q) 7 #aBEELNY) corresponds a tree with branches num-
bered in the binary :‘f ¥:4 Rwn if Fig. 2a. In natural numeration the
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branches have numbers as shown in Fig. 2b. The introduction of the trees
brings nothing new and is only an additional illustration of the principles
of numeration of components.

Ordering of arguments

From the principles of addressing discussed it follows that all the pairs
of arguments, on which the operations are performed, may be addressed,
and the address of the result is a function of the address of the argume.nt's.
(This fact enables us to organize the computer in another way than it is
actually done).

Thus, for instance for the formula (((p-q) — (r-s)/(t—u)) we have

TABLE III

10 P I SO I b T

8 T B s 9

6 t u ki —

4 (p-q) ir-s) 5 | —

2 | ilp-g —trs) (t—u) 3 | /
o (p-a—m-s/(t—u | 1

E.g., for the formula ((p— q) — (r-(s+1t))) we have Table IV.

TABLE IV
8 s t 9 +
(T T s+t L 7 .
4| _a EN RN
2| pa fre(s<1) 3 | —
(lp-q)—(r-{s +1)) 1

On the both sides of the Tables III and IV the addresses of the cor-
responding components and the symbols of operations are given.

Addressless organization

Let Ms denote a machine for calculating functions of class S. The
machine Ms is composed of a memory, which may be imagined as a paper
tape divided into numbered *) rows. Every row consists of four squares
numbered 1, 2, 3, 4. In the squares 1, 2 arguments are located, in 3 —
the symbol of operation, in 4 — the number of the row.

If i is the row number, then 2i is the number of the first square,
92i + 1 is the number of the second square. The squares 3 and 4 are not
numbered.

*) The number of the row will be called its address.
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In addition, the machine has an arithmometer, constituting a realiza~
tion of the universal function of the initial functions of class S.

The machine has also a device for computing the values of the address-
ing function F (or G), which computes the address of the result, ‘depending
on the row number.

The machine shifts the rows, beginning with the row with the greatest
address, address 1 being the last. After shifting the entire tape the compu-
tation is finished.

A simplified scheme of such a machine is presented in Fig. 3.

_ F
e
v
Va
Result
470 i1 2 S
3 —
2 s
1 —
Fig. 3

The organization is called addressless because the order has no
address. The order is composed of the symbol of operation and arguments,
“on which operation is carried out:

- y
operation argument a argument b i

This organization allows also, in a simple way, an automatic pogramm-
ng.

This organization applied to a series machine permits besides automatic

" programming an- increase of the speed of computing by several tens of
- times and eliminates completely the waiting time. By applying this
-+ organization in the digital computer, constructed at the Warsaw Technical
- University, we should obtain about 9000 operations per second (as compa-

red to 100 operations per second at present). The cost of construction

'«v-would inerease 2—3 times (see, e.g. [4]).

Two-argument organization

If we give up automatic programming, we can omit the device‘comput—

B _ ing the functions F (or G) (the remainder of the machine being unchanged),
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and introduce into the order the address of the result. The order will
then have the form:

address - of result operation argument a argument b

This conception was accepted as starting point in the doctoral thesis

i

Organization of a machine for calculating functions of class R

Class R

The class R will be defined by the following initial functions:

a) xty x—y, Y, x/y, x —y two-argument arithmetic functions;
b) N (x), P (x), E (x), Sg (x) one-argument arithmetic functions, which
will be read: successor x, preceder x, integer part of x (or over-
flow x) signum x;
¢) The characteristic functions of the relations x <<y, x =y, x=y,
x=£y. The characteristic functions will be denoted by (x <),
(x =), (x=1y), (x#), respectively,
as well as by the operations of substitution, simple recursion and the con-
ditional operation.

Formalized language

The construction of a formalized language in which we could wﬂté
down functions of class R presents no difficulty. However, bearing in
mind technical reasons, the realization of a formalized language requires
a more detailed investigation. Tt will be the subject of a subsequent paper.

Conclusion

It would be interesting to investigate the usefullness — from the tech-
‘nical point of view — of the extension of class R by the introduction of
.the operation of effective minimum. However, this problem has not been
‘dealt with by the author. '

In a simple way we can give also addressing functions for the parenthe-
seless notation of Lukasiewicz, however, this system of notation seems to
be less convenient in routine use. By introducing the known rules ‘of
omitting superfluous parentheses, the notation of the function might be
simplified considerably.

We should then incorporate in the computer a device (or a programy)
computing addressing functions from a formula not containing all the
.parentheses. , e
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The problem of independence of the program of the location in the
memory has not been considered in the present paper. It seems that in
the system of addressing just presented it should involve no difficulties.

The results of the present paper were communicated at a meeting

of ’1che group of Mathematic Apparatus at the Institute of Mathematics
in 1954.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
(INSTYTUT MATEMATYCZNY, PAN)

DEPARTMENT OF TELE- AND RADIOPHONIC CONSTRUCTIO
o s NS, WARSAW TECHNICAL

(ZAKLAD KONSTRUKCJI TELE- I RADIOFONII, POLITECHNIKA WARSZAWSKA)
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