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DECODING NETS AND THE THEORY OF GRAPHS*
ZDZISLAW PAWLAK

Decoding nets are basiec components of digital computers and other
similar devices. The definition and the general” theory of decoding nets
are given in [3]. It is shown in this paper that the problem of minimizing
decoding nets may be expressed in the language of the theory of graphs.
(A decoding net may be assumed to be a graph; diodes are interpreted as
branches, and wire connections between diodes as nodes of a graph). The
necessary condition that a decoding net has the least number of diodes is
given. In this paper, “decoding’ has a little wider significance than in [3]
and it will be defined exactly in what follows.

A graph G is a set N(G) of nodes together with a set B(G) of branches
(the two sets having no common elements) such that:

a. With each branch A € B(G), the ordered pair of nodes (a, b) € N(G)

is associated. (We say that A is directed from a to b, and a, b are
called, respectively, the beginning and the end of the branch 4.)
b. There is at most one branch between every pair of nodes
(a, b) € N(G).
c. For all nodes a € N(G), there is a branch A € B(G) such that a is
the end or the beginning of 4.
In this paper, we restrict ourselves to finite graphs, i.e., graphs for which
N(G) and B(G) are both finite.

We denote by ¢n(G@) and ¢z(G) the number of elements of N(G) and
B(@) respectively. In the following, ¢(4) denotes the number of elements
of the set A. A sequence ap, Ay, a1, A2, -+, An, 0., (n = 1,a; € N(G),
A; € B(@)), will be called a way from a, to a, in G, if forall7 (1 £ 7 £ n),
a;_; and a; are the beginning and the end of A4; respectively.

If (a, b)) € N(G), and there is exactly one way from a to b in GG, we say
that a is connected to b in G. (The case where there is more than one way
from a to b in G will not be considered in this paper.)

If a is connected to b in G, we will write a Con b. Of course, the relation
Con is not an equivalence relation.

A way which contains only two nodes is called simple.

We now introduce definitions of the relation Con between a set of nodes
and a single node. These will be useful later. Let M(G) c N(G) and
b € N(@G) — M(G). Then we define M(G) Con b to mean that a € M(G)
implies a Con b. Similarly, b Con M(G) means that a € M(G) implies
b Con a.

* Received by the editors February 13, 1957 and in revised form October 2, 1958.
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A graph G is a tree if for all ordered pairs (a, b)) € N(G) there is at most
one way from a to b in G.

A graph G is stmple if all ways in it are simple.

CoROLLARY 1. Each simple graph is a tree.

If a € N(G), and there is no b € N(G) such that a Con b, then a is an
output of G.

If a € N(G) and there is no b € N(G) such that b Con a, then a is an
input of G. .

Let I(G) (or O(G)) be the set of all inputs (or outputs) of a graph G,

partitioned into = classes Ki(G), Ko(G), - - -, K.(@) (e, I(G) = U K@)
=1

and an Ki(G) = 0). The set R/ (G) of n elements ry, r»,---, r, such
that r; € Ki(G) (¢ = 1, 2, ---, n) will be called a representation of a set
I(@). If K, K,, ---, K, are nonempty classes, then the set I(G) has
I, «(K«(@)) different representations. For example, if o(K;) = 2,
o(K2) = 2, o(K3) = 4, ¢(Ky) = 8, then I(G) has 2-2-4-8 (= 126) dif-
ferent representations.

A graph G is a decoding net (d.n.) if

(a) the set O(G) of outputs is not empty,

(b) the set I(G) can be partitioned into classes Ki(G), K:(G), -- -,

K, (G), n = 2 such that ¢(K;(G)) = 2, and such that
(c¢) for all representations R;(G) there exists at most one a € O(G)
such that R/ (@) Con a.
It is easy to prove the following.

TaeoreM 1. Let the directions of all branches in the d.n. G be reversed.
Call the resulting graph G*. Then the set of outputs O(G*) can be partitioned
into classes Ki(G*), K:(G*), - - - , K.(G*), and for all representations Ro(G),
there exists at most one a € I(G*) such that a Con R,(G*).

Such a graph G* will be called a reverse decoding net, with respect to the
d.n. G. In the following we will consider d.n.’s only; however all results
concerning d.n.’s hold also for reverse decoding nets.

From the definition of a d.n. follows

CoRroLLARY 2. Each d.n. is a tree.

A d.n. is complete if for all R,(G) there exists exactly one a € O(G) such
that R;(G@) Con a and for all a € O(G) there exists exactly one R;(G) such
that R;(@) Con a. A complete d.n. is abbreviated c.d.n.

TueoreM 2. For an arbitrary c.d.n. G,

#(0@) = TLo(K.(@)).

Let G and H be c.d.n.’s. Then the d.n. G U H formed so that O(G) =
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K(H) will be called a superposition of the d.n. @ into a d.n. H and will be
denoted by Sup K.(H)/G. We remark that a superposition of @ into H
does not always exist.

From the definition of a superposition, we have

CoroLLARY 3. If G and H are c.d.n.’s, then Sup K.(H)/G s also a c.d.n.

We now give a recursive definition of decomposable ¢.d.n.’s.

a. Simple c.d.n.’s are decomposable (into themselves). :

b. If G and H are decomposable c.d.n.’s, then the c.d.n.’s Sup K.(H)/G

are also decomposable (if Sup K (H)/G exists).

In the remainder of this paper, by c.d.n. we will understand a decom-
posable c.d.n. only.

Let 4, (n = 2) denote a sequence of K integers a; separated by “periods”
such that a; = 2,7 = 1, 2, --- | n. A, is a formula if it contains paren-
theses “(”, “)””. For example 2.8.(5.)3) is a formula. A formula is well-
formed if it contains properly pairedt parentheses. The recursive definition
of well-formed formulas (w.f.f.’s) is given below.

a. (4,) is a w.ff. (for example—(2.2), (2.2.2), (3.8.4)).

b. If @ and B are w.f.f.’s, then replacing a; in 8 by a or in symbols

Sup (g) « is also a w.f.f. For example, we have

Sup ((2 ‘”)(2 2) = (2.(2.2)).

A w.f.f. with k pairs of parentheses will be denoted by 4, . In particular,
= (4.).

From the definitions of a decomposable c.d.n. and a w.f.f. we have

LemmaA 1. The set of all decomposable c.d.n.’s and the set of all w.f.f.’s are
isomorphic.

Thus w.f.f.’s may be assumed to be the names of ¢.d.n.’s. The w.f.f.’s are
associated with c.d.n.’s in the following way.

a. If G is a simple ¢.d.n., with inputs partitioned into classes Ki(@®),

K.(G), -- -, K.(@), then the w.f.f. associated with it has the form

(P(Ki(@) .0(Ka@)). - - - -o(Ka(@))).

b Let F(G) and F(H) denote w.f.f.’s associated with c.d.n.’s G and H
respectively. With the e.d.n. Sup K;(H)/G we associate the w.f.f.

Sup(F(H))F (G) where a, = ¢(Ki(G)). cdn’s A and B are

equivalent if and only if the w.f.f.’s A and B differ at most in
(1) the order of factors,

t Parentheses occurring in a formula are said to be properly paired if there are as
many left-hand parentheses as there are right-hand parentheses.
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(2) the number of parentheses, and
(3) the location of parentheses.
Thus each set of integers a1, az, - -+, a,,n 2 2, a; = 2 defines a class of
equivalent c.d.n.’s.
From the definition of a simple c¢.d.n. we have

LeMMA 2. ¢5(4,") = n [] a:.
i=1

Lemma 3. on(4,) = [l a: + 2 a..
i=1 =1

LemMA 4. A c.d.n. A.* is decomposable into k simple ¢.d.n.’s.
From Lemmas 2 and 4 follows

THEOREM 3. ¢5(4.%) = D p, [ 1.a: where] ] .a: denotes the product of factors
=1

joined by the rth pair of parentheses, and p, the number of factors in the rth
pair of parentheses.

We assume that each pair of parentheses in the w.f.f. 4,° is numbered
with the numbers 1, 2, , k; however the manner of numeration is in our
case not important. From Lemmas 3 and 4 we have

THEOREM 4. oy(4,") = ZH a1+Za1.

THEOREM 5. A necessary and suﬁment condm'on for ox(A.") to be minimal

foragvena,, - - ,a,isthatk = 1.

THEOREM 6. A necessary condition for ¢s(A,") to be minimal for a given
@1, -, G, %8 that k = n — 1, t.e., each pair of parentheses encloses two
factors.

Proof. This theorem is equivalent to the inequality
1 ea(44") Z ea(47)
fork =1,2,---,n — 2. Let A, have the form
(2 (@1, 22, -++ , x0) (t < ),

where each z; is either a single term a; or a product with u; terms. We may
assume that each z; has u; — 1 parentheses (and the whole formula has k
parentheses). Thus from (1), by Lemma 2 and Theorem 3, we obtain

L3 13 &t 13
3 §¢B(xi) + t;I_le." = glm(&) +@t—-p+1) g:v; + p [Ten =,

where p is the number of factors contained in the (k 4+ 1)th pair of par-
entheses.
From (3), we have

4 <1--,
4 o »
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where p = 1/][#2: and J]izi2: denotes the product of all factors in (2),
with the exception of those contained in the (k¢ + 1)th pair of paren-
theses. Because | [iziz: = 2 and p = 2, the theorem is proved.

The condition is not necessary when ] [#iz: = 2 and p = 2; for example,
if A3 = (2.2.2), and 45" = (2.(2.2)), thenps(4s') = 3-8 = 24, pp(A5’) =
2.4 + 2-8 = 24; or if By' = (2.3.4), By = (2.(3.4)), then ¢s(B;") =
3.2-3-4 = 72, ¢s(By)) = 2:3-4 + 2:2:3-4 = 72. But we can say that
the minimum case can always be attained with & — 1 parentheses.

It would be interesting to give a necessary condition that ¢s(A ") be
minimal. However, in the general case it seems to be rather difficult.

I am indebted to Professor W. T. Tutte of the University of Toronto and
Mr. A. Wakulicz of the Institute of Mathematics in Warsaw for their
helpful suggestions.
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