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Choosing one of these classes, say (301, 149, 697), we can duplicate it by com-
pounding (301, 149, 697) with (697, — 149, 301).
This is done most simply by a method devised by the writer:

Let the classes be (a, b, ---) and (a’, ', ---) where a and a’ are prime to
each other, and take p and ¢ such that either ap and a'q, or a’p and aq differ by
unity. This can nearly always be done mentally, but when a and a’ are not small,
the values of p and ¢ are more quickly found as the constituents of the penultimate
convergent of the continued fraction representing a/a’ or a’/a. The required com-
pound class is then given by (aa’, a’bp + ab'q, - - -) or by (ad’, a’bg + ab’p, - - -),
care being taken that the signs of p and ¢ are so chosen that the smaller of the
two products, e.g., ag and a’p, say, shall be negative. Applying this to the case
in hand, we get:

(697.301, 697.149(—19) + 301(—149)44, - - -),
or (209797, —1973207 —1973356, - - -),

(209797, — 3946563, - - -),

(209797, +39580, 7468),

(7468, 2240, 697),

(697, 149, 301),

(301, —149, 697),

which shows that (301, 149, 697) is a critical class, and each of the twelve other
classes when similarly tested is found to be a critical class.

R. J. PorTER
266 Pickering Road
Hull, England

1. G. B. MATHEWS, Theory of Numbers, Part I, 1892,

2. A. ScHOLZ & O. Taussky, ‘“Die Hauptideale der kubischen Klassenkdrper imaginir-
quadratischer Zahlkérper: ihre rechnerische Bestimmung und ihr Einfluss auf den Klassen-
korperturm,”’ Jahrbuch tiber die Fortschritte der Mathematik, 60, 1934, p. 126, J. reine angew. Math.
171, 1934, p. 19-41.

3. T. PerPIN, Atti. Acad. Pont. Nuovi Linces, 33, 1881, p. 354-391.

4. C. F. Gauss, Disquisitiones Arithmeticae, Art. 306, VIII, 1801; in Werke 1, 1863, p. 371;
German transl. by H. MASER, 1889, p. 653-654.

5. The 11th member of the second series, 7.e. —297675, has exponent 27, with 40 critical classes.
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Selected References on Use of High-Speed Computers
for Scientific Computation

The author is often asked to recommend reading to orient mathematicians in
the impact of high-speed computers on numerical analysis. The following list was
prepared in answer to one such request, but does not pretend to be definitive.
The author is indebted to C. B. ToMPKINS for several suggestions.

For a list of books not necessarily influenced by high-speed computers, but
highly pertinent to their use, see G. E. FORSYTHE, ‘A numerical analyst’s fifteen-
foot shelf,” MTAC, v. 7, 1953, p. 221-228.
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I. BOOKS

A. D. Booru & K. H. V. BoorH, Automatic Digital Calculators, Butterworths
Scientific Publications, London, 1953, 231 p.

B. V. BowDEN, Faster than T hought. A Symposium on Digital Computing
Machines, Isaac Pitman, London, 1953, 416 p.

ENGINEERING RESEARCH ASSOCIATES, INC., High-Speed Computing Devices,
McGraw-Hill, New York, 1950, 451 p.

D. R. HARTREE, Numerical Amalysis, Clarendon Press, Oxford, 1952, 287 p.

CeciL HasTINGs, JRr., J. T. Haywarp, & J. P. Wong, JR., Approximations for
Digital Computers, University Press, Princeton, 1955, 201 p.

A. S. HOUSEHOLDER, Principles of Numerical Analysis, McGraw-Hill, New
York, 1953 (extensive bibliography), 274 p.

NATIONAL BUREAU OF STANDARDS, Monte Carlo M ethod, Applied Mathematics
Series 12, U. S. Gov. Printing Office, 1951, 42 p.

H. RUTISHAUSER, Automatische Rechenplanfertigung bei programmgesteuerten
Rechenmaschinen, Birkhiuser, Basel, 1952, 45 p.

M. V. WiLkEs, D. J. WHEELER, & S. GILL, The Preparation of Programs for
an Electronic Digital Computer, Addison-Wesley, Cambridge, Mass., 1951, 170 p.

II. JOURNALS

Computers and Automation (New York)

Journal of the Association for Computing Machinery

Journal of Research of the U. S. National Bureau of Standards
Journal of the Society for Industrial and Applied Mathematics
Mathematical Reviews (Numerical and Graphical Methods section)
Mathematical Tables and Other Aids to Computation

Naval Research Logistics Quarterly

Proceedings of the Association for Computing Machinery (terminated)
Proceedings of the Cambridge Philosophical Society

Quarterly of Applied Mathematics

Quarterly Journal of Mechanics and Applied Mathematics
Vychislitel'naia Matematika i VychisliteI’naia Tekhnika (Moscow)
Zeitschrift fiir angewandte Mathematik und Mechanik

Zeitschrift fiir angewandte Mathematik und Physik

III. SOME ARTICLES NOT IN ABOVE JOURNALS

AMERICAN MATHEMATICAL SOCIETY, “Proceedings of symposia in applied
mathematics,” vol. 6, to appear. .

V. BARGMANN, D. MONTGOMERY, & J. voN NEUMANN, “Solution of linear
systems of high order,” Institute for Advanced Study, Princeton, 1946.

WALLACE GIVENS, “Numerical computation of the characteristic values of a
real symmetric matrix,” ORNL 1574, Oak Ridge National Laboratory, 1954,
107 p.

H. H. GOLDSTINE & J. voN NEUMANN, “Planning and coding of problems for
an electronic computing instrument,” issued in three parts as part II, vols. 1-3,
Institute for Advanced Study, Princeton, 1947-1948.
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HArvARD UNIVERSITY, ‘‘Proceedings of a symposium on large-scale digital
calculating machinery,” Cambridge, Mass., 1948.

HArvARD UNIVERSITY, ‘‘Proceedings of a second symposium on large-scale
digital calculating machinery,” Cambridge, Mass., 1951.

M. A. HvMaN, “On the numerical solution of partial differential equations,”
thesis, Delft, 1953, 108 p.

N. MEeTroproLIs & S. UraM, “The Monte Carlo method,” Am. Stat. Assn.,
Jn., v. 44, 1949, p. 335-341.

J. von NEuMaNN & H. H. GoLDSTINE, ‘‘Numerical inverting of matrices of
high order,”” Am. Math. Soc., Bull., v. 53, 1947, p. 1021-1099, and Am. Math.
Soc., Proc., v. 2, 1951, p. 188-202.

F. W. J. OLVER, “The evaluation of zeros of high-degree polynomials,” R.
Soc. London, Phil. Trans., v. 244, 1952, p. 385-415.

E. StieErEL, “Relaxationsmethoden bester Strategie zur Lésung linearer
Gleichungssysteme,”” Commentaric Mathematict Helvetict, v. 29, 1955, p. 157-179.

Joun Topp, “Motivation for working in numerical analysis,” Comm. on Pure
and Applied Math., v. 8, 1955, p. 97-116.

DaviDp YouUNG, ‘‘Iterative methods for solving partial difference equations of
elliptic type,” Am. Math. Soc., Trans., v. 76, 1954, p. 92-111.

GEORGE E. FORSYTHE

University of California
Los Angeles, California

This note was sponsored jointly by the Office of Naval Research and the Office of Ordnance
Research.

Modified Quotients of Cylinder Functions

The name in the title of this note is applied to the function, €,(z), defined by
the following equation,

) 6, () = 2@

Ci(2)

where C,(z) is a cylinder function [1] which satisfies the pair of recurrence
formulae,

2
) =6 = 6 + Con@)
2C/(2) = Coi(2) — Coyai(2)
G, (2) has not repeated zeros and pales with possible exception of the origin and
satisfies the following RICCATI’s equation,
d 1
3) 2y ) 20
dz 2z
Its derivative,

6 () =

(4) 9z Ci(2)

{Co-1(2)Crya(2) — C2(2)}
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has a close relation to the famous integral due to LoMMEL,

(5) f 2C2(3)dz = [%2 {C2(z) — C,_l(z)C,“(z)}] .

Introducing each of the three kinds of Bessel functions, J,(3), ¥,(2), H,® (z)
and H,® (z), into the equation (1) in place of C,(z), we obtain corresponding kinds
of modified quotients, J,(2), 9,(2), $,?(2) and H,® (2), respectively. In various
boundary value problems of mathematical physics, we encounter quite often the
Bessel functions in quotient forms [2]. It is obvious that the modified quotients
defined here give a convenient approach to mathematical analysis and numerical
estimates of these problems. Moreover there is a remarkable parallelism between
the modified quotients and the trigonometric cotangent and tangent, as there is
between the Bessel functions and the sine and cosine. Therefore the modified
quotients should have the same raison d’étre in cylinder functions as the cotangent
and tangent in trigonometric functions.

From the above consideration it seems highly desirable to give permanent
symbols to these modified quotients, to collect their formulae and to construct
their tables. To this end an attempt was made [3], but further cooperation and
criticism of interested workers are necessary.

Morio ONOE

Institute of Industrial Science
University of Tokyo
Chiba City, Japan

1. G. N. WATsON, Theory of Bessel Functions, Cambridge Univ. Press, 1922, p. 82 ff.
2. For example:
s 4DENN25808N Bancrorr, “The velocity of longitudinal waves in cylindrical bars,” Phys. Rev.,
9, 1941, p. .
0 G.éi. HupsoN, “Dispersion of elastic waves in solid circular cylinders,” Phys. Rev., 63,
1943, p. 46.
H. SusnL & L. R. WALKER, ‘‘Topics in guided-wave propagation through gyromagnetic
media,”’ Bell System Tech. J., 33, 1954, p. S79.
3. M. OnoE, “Formulae and tables, modified quotients of cylinder functions,” Report of the
Institute of Industrial Science, University of Tokyo, No. 32, 1955.

Flip-flop as Generator of Random Binary Digits

The aim of the present note is to show that a well known electronic element
of digital computers, the flip-flop, may be used for generating a series of random
binary digits with equal probabilities.

Let us consider a flip-flop as shown on fig. 1 and let A and B denote two
possible stable states of the flip-flop. If we switch on the contact S, the flip-flop
will be randomly set in one of its states A or B. We may obtain by the aid of the
flip-flop a sequence of 2% random elements X, X, - - -, X, (abbreviated {Xux}),
where

X, = A, if j-th switching on the contact S, set flip-flop in state A
77 | B, if j-th switching on the contact S, set flip-flop in state B

and 1 £ j < 2k
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) Vp=200v
S

{

Vg=—50v

Rp=10 K{)
R, =160 K{)
Rp=50 KS)

C =50 pufd
V =), 6SN7

Fic. 1.

In this way we may obtain a finite random series of A and B which are sta-
tistically independent. One series produced by the aid of a flip-flop is given below :

AABAABBABBABBBABBAABABABBABAABABABBAA
BABABBBBBBBBBABBBABAABBB.

Let { Y%} be the sequence of & pairs of elements of { X} such that ¥V; = Xos 1, Xos,
where 1 < 4 < k. Omitting in {Y,} all elements of the form AA and BB we
obtain a third sequence whose elements are the pairs AB and BA only, denoted
in the following by 0 and 1 respectively.

Let p;(A) and p;(B) denote probabilities that j-th switching on of contact .S
set flip-flop in state A or B respectively and suppose that p,;(A) and p,(B) are
asymmetric, say p;j(A) > p;(B). Supposing that the flip-flop does not change its
properties during two successive switchings, we may write

69) p2i-1(A) = pai(A)

(2) p2i-1(B) = p2:(B).

From 1 and 2 we have

3) p2i-1(A) - p2i(B) = p2i1(B) - p2:(A).
Because

4) p2i-1(A) - p2:(B) = p:(0)
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and

(5) p2i-1(B) - p2i(A) = pi(1),
therefore

(6) p:(0) = pi(1)

where p;(0) and p,(1) are probabilities of zeros and ones in the z-th place of the
sequence { Y3}.

The procedure above described may be used for production of binary random
numbers by automatic digital computers. In this case the manual switch .S must
be replaced by an electronic switch, of course.

Z. PAWLAK
Warszawa, Poland

Numerical Solution of the Schroedinger Equation for Central Fields

A fast program has been written for the ILLIAC to integrate the radial
SCHROEDINGER equation

(1) w'(r) — [0+ 1)/ +2V(r) — EJu=0
boundary conditions: #%(0) = 0 #%(r) bounded

for any well-behaved potential V(7). More generally the program can integrate
any linear second-order differential equation which can be put in the form

(2) u"(r) — g(ru(r) = q(r)

with ¢(7) vanishing at zero and infinity, r?g(r) bounded at zero, and g(r) bounded
for large  [1].

A distinctive feature of the program is the use of the Noumerov [27], [3]
method for the integration. This is faster than techniques (such as the RUNGE-
KuTrta) which depend on making an estimate of one or more forward points and
improving this by an iteration scheme. Here there is no iteration, but the error
in the “estimate’” of each forward point is of eighth order in the step-size %, so
that the truncation error may still be kept small. The essence of the method is
the elimination of all odd powers of % from the TAYLOR expansion about any
point by working with three points instead of two, followed by a change of
dependent variable which removes the 4*-term. The calculation of a forward point
to order k® thus requires the value of the dependent variable at the six pre-
ceding points.

For an equation in the form (2), the required new dependent variable is

3 y=u— (K/12)(gu + ¢).

The prescription for calculating forward points is

y &Ynt g 1 5oy,

atl = 2Yn — Yn— 5
4 Ynt1 = 2¥n = Y1 + 1 = &g, 240
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where the sixth central difference in the last term is given, to order k8, by
5) 5%, = 35%,_s — 20%-s.

This prescription can be used as soon as y is known at the first six points.

To get this far, i.e., to start the integration, an iteration method is used: The
difference equation (4) without the last term is solved by successive approxima-
tions at the first six points, guessing a value of y, and improving this guess by
applying the condition (seventh order approximation)

(6) 8%y, = 8%;.

For the inhomogeneous equation (g # 0), where the normalization is not
arbitrary, the starting value u; = % (k) is found by another iteration scheme:
With an estimated #;, the equation is integrated out to some large 7, where the
inhomogeneity ¢ has become negligible. Application of the condition that » be
small and monotonically decreasing leads to an improved estimate of u;. This
scheme, which seldom requires more than three iterations, is practical because of
the speed of integration. (ILLIAC takes less than 40 milliseconds per k-step.)

In its present form, the program can—

—find eigenvalues E (permitted negative energies)

—print out values of the wave functions » = uz™ at desired values of 7,
and find the nodes and extrema

—evaluate matrix elements [ugug; (with ILLIAC’s electrostatic memory
of 21° words, at 40 bits per word, there is enough space to integrate
several wave-functions simultaneously)

—solve self-consistent field problems (Schroedinger equation and PoissoN
equation solved simultaneously).

A “guide” to the program has been prepared, containing a detailed description
of the mathematical method and instructions for use of the existing tapes, and
is available in mimeographed form at the University of Illinois Digital Com-
puter Laboratory.

The authors are indebted to Professors JoHN BLATT and J. N. SNYDER for
helpful suggestions.

R. A. RUBENSTEIN
MaARrjoriE HUSE
STEFAN MACHLUP

Dept. of Physics
University of Illinois
Urbana, Illinois

1. If ¢(r) is not identically zero, i.e., for the inhomogeneous equation, there is the additional
restriction that 72g(r) be bounded everywhere.

2. G. W. PRATT, JR., “Wave functions and energy levels for Cu* as found by the Slater approxi-
mations to the Hartree-Fock equations,” Phys. Rev., 88, 1952, p. 1217.

3. B. NouMEROV, Monthly Notices Roy. Astron. Soc., 84, 1924, p. 592.
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Note on Using the Reciprocal Function for a Linear Inverse Interpolation

Let it be required to find the argument, x, by linear interpolation from a table

1
of values of y(x). If there is also a table of values of the reciprocal function —

y(x)’
then a better linear interpolation may result by using the reciprocal function.

Frequently, in applications such as in triangle or compound interest problems,

=§f0rxby

. 4 . 1
y(x) is given as equal to a quotient —. Hence the solution of —
B y(x) A

linear interpolation can be made with equal facility. For example, if tan x = — is

given for determination of x, we might just as easily determine x from the relation
B . . . .

cotx = 1 using the cot x table. It is the purpose of this note to determine the

conditions for which interpolation will be improved by using the reciprocal
function.

Suppose that y(x) and z(x) are two monotonic functions such that yz = 1.
Since the slopes of ¥ and 2 have the relation, 2’y 4+ y’z = 0, and hence are always
opposite in sign, we choose y as the increasing function.

Now the value, x,, given by linear interpolation for the argument, x, in a
table of values of y(x) is given by

X1 < X < X2
1<y <Y

xa=xl+y_y1
y —

(x2 — x1) where {
y

Y1

(We assume that the function y(x) is positive. Roundoff errors are not con-
sidered.) The error, E,, due to the interpolation is given by E, = x, — x. See [1]
for the maximum error inherent in determining a function by linear interpolation
from tables. It is given by

(x2 — x1)

M,
8

|error| <

where M denotes the maximum absolute value of f/(x) in the interval (xi, x2).
However, the problem presented in this paper is one of inverse interpolation.
Hence this error formula can be applied only after the function is inverted. For
compound interest functions, see [2].

The corresponding interpolated value, x3, and the error, Es, may be deter-
mined for the reciprocal function, 2. (See [3]. It should be noted that this paper
is not considering reciprocal differences. We consider only the differences of the
reciprocal function.) The condition that the interpolation is improved by using
the reciprocal function is given by |E;| <|E,|. We note that E, < 0 (>0) if
" > 0(<0) and E; > 0 (<0) if 2”7 > 0 (<0) and thus we have the follow-
ing cases:
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Case I. y"" < 0 and 2’ > 0, then E, and E; are both positive. In this case the
result is poorer since always

z2—3z -
(1) Ev=x —x+ 1(xg—xl)>x1—x+y yl(xz—xl)EE.,.
22— 21 Yo — 1
The difference in the errors is given by
@ By — E, = @ =30 =)0 — )

(y2 — y1)y

Case II.y" > 0 and 2"’ < 0, then E, and E, are both negative. Inequality (1)
remains true, but now | E;| < | E,| and hence the interpolation is always improved.

Case III. " < 0 and 2" < 0. This case is impossible. The reason for this is
as follows: From yz = 1, one obtains 2’y + y'z = 0 and 2"y + 22'y’ 4 29"’ = 0.
Hence 2" + z%y'" = 2(2')%y, and since y > 0, ¥’ and 2’ cannot both be negative.
In fact, if 9"’ (or 2'’) is negative, then 2’’ (or y’’) is positive.

Case IV. 9" > 0 and 2" > 0, then E, is negative and E, is positive. The
inequality is Ey < |E,|, giving the condition,

(3) Eb_|Ea|”‘:y_—y1 (x2_x1)(1+22)_2(x_x1)<0
Y2 — )1 Yy

or

4) Eb_IEa|=ZI_z(xz—xl)(1+ﬁ)_2(x—x1)<0-
21 — 22 2

Some examples follow:

y=secx(02x<g) y'" >0 Casell

I
3 = COs ¥ 2'" < 0 Result is always improved.
I y=sinx(0<x21—2r) y'" <0 Casel
Z = CsCXx z’" > 0 Result is always poorer.
y =+x (x> 0) 9" <0 Casel
I11 1 " )
z = ‘/—} z’” > 0 Result is always poorer.
(y = ¢ (x > 0) ¥ >0 CaselV
By —|Eal = 0if x = 2%
v J _ " .. .
z=¢7* z’” > 0 Result is improved if
x1 + x
"1‘—_21-—2 < x < %o
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[y = (1 4+ 9) for n y"” >0 CaselV
Ey—|E,|=0ifn =3’%'1?
<
v z2=(1412)""(n>0) 2" > 0 Result is improved if
m < n < n;.
L 2
y = sa(d) for n Case IV
VI 1 . .
x = - @n>0 Result is same as for (1 + 7).
wl
y = aa(z) for n ¥’ <0 Casel
VII 1 . , .
g=— @) (n>0) z” > 0 Result is always poorer.
nl
VIII y=tan0for(0 <6 <3_2r) ¥’ >0 CaselV
z = coté 2’ > 0.

The error in this example is given by

tan § — tan 6,
E,| =10 —_— (0, — 6,) — 6|.
| Bl ll-l_tand.‘lz—tan@l(2 Y

. . . ™
In this case | E,| increases as 8 increases from 0 to 3 for constant values of §; — 6,

and 6 — 6,. That this is true is seen by the relation

tanf — tan 6, _ sin (§ — 6,) cos 0,
tanf, — tan 6, sin (§; — 6,) cos @

Now

'Ea(ov 019 02)] = Eb(lzr - 0,7_2|' - 01,1—2r - 02).

Hence E, <|E,| only if 6 > 774{’ and in this case the interpolation is improved;

but if 6 < ,Zr the interpolation is poorer.

HucH E. STELSON.

Michigan State University
East Lansing, Michigan

L. J. B. SCARBOROUGH, Numerical Mathematical Analysis, Johns Hopkins Press, 1930, p. 107.

2. HugH E. STELSON, “The accuracy of linear interpolation in tables of the mathematics of
finance,” MTAC, v. 3, 1949, p. 408-412.

\(3)4_ L. 3M MILNE-THOMSON, The Calculus of Finite Differences, Macmillan and Co., 1933,
p. 104123,

4. W. E. MILNE, Numerical Calculus, Princeton Univ. Press, 1949, p. 219-236.
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