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Preface

Motto: Entish - say nothing that isn’t worth saying.

Introduction and motivation of the work

Sometimes there is a tendency to oppose technology to theory and vice versa.
As a matter of fact they are complementary. Technology needs theory to justify
its solutions and provide sound and solid foundations, and sometimes to explain
reasons for its failure. On the other hand theory needs technology to verify its
ideas, theorems, and claims; if it does not, then the following citation1 is in the
right place.

As [theory] travels far from its empirical source, or still more, if it is a second
and third generation only indirectly inspired by ideas coming from ”reality,” it is
beset with very grave dangers. It becomes more and more purely anesthetizing,
more and more purely l’art pour l’art. .... In other words, at a great distance
from its empirical source, or after much ”abstract” inbreeding, a [theory] subject
is in danger of degeneration. At the inception the style is usually classical; when
it shows signs of becoming baroque, then the danger signal is up.

We start with one of the greatest technology challenges: How to integrate
heterogeneous software applications in an open and distributed environment. It
will turn out that the crucial aspect of this challenge is, in fact, one of the most
fundamental problems in the theory: How to construct a generic open language
describing data processing with precise machine understandable semantics.

So that our primary goal is extremely ambitious, it is automatic integration
of heterogeneous applications in open and distributed environment. The key re-
quirement for a technology that could realize this goal is to make it possible to
automatically discover and use an application in order to perform some given
task, and automatically compose multiple applications in order to perform more
complex tasks.

One may say that such technologies already exist, e.g., RPC, CORBA, and Web
services to mention only the most important ones. However, none of them realizes
the requirement. Although these technologies are well established as CORBA,
or backed by big vendors like Web services, the dream of integrating business
processes in an automatic way is still far from reality. What is the reason for
that? Perhaps it is our lack of understanding of the nature of distributed systems.

It seems that this very nature is interoperability at several levels. It is not only
interoperability at wire and transport levels; actually this was already realized as a
working technology (e.g., Internet) quite successfully. It is also interoperability at
semantic level, that is, heterogeneous applications must ”understand” each other.

1J. von Neuman. The Mathematician. In In the Works of the Mind. Chicago, IL: University
of Chicago, (1943)
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iv Chapter 0. Preface

For this very purpose a language with precise semantics that can be processed
(i.e., understood) by applications is needed. This very language is the place where
technology and theory meet each other.

The conclusion may be as follows. A great fundamental research is to be done
both by the technology as well as by the theory. The research should be done in
cooperation, that is, solution proposed by theory should be verified by technology,
whereas system proposed by technology should be grounded in theory.

The work presented in the book may be seen as a small contribution to this
research. A new approach to distributed systems consisting of heterogeneous com-
ponents is presented. On the basis of this theoretical approach, an experimental
technology for service composition is proposed. The technology is based on the
new service description language with machine processable semantics. The work
may be summarized in the following way.

There are two general approaches to integration of heterogeneous applications.
The first one corresponds to business-to-business point of view, whereas the second
one to the client’s point of view. The first one is based on the assumption that
applications are composed, orchestrated, or choreographed in order to create so-
phisticated business processes, whereas the second one assumes that applications
are composed (typically on the fly) in order to realize clients’ requests.

In our work the client’s point of view is taken and a new experimental technol-
ogy for service description and composition in open and distributed environment is
proposed. The technology consists of description language called Entish, and com-
position protocol called entish 1.0. They are based on software agent paradigm.

The description language is the contents language of the messages that are
exchanged between heterogeneous applications according to the composition pro-
tocol. The language Entish is fully declarative and has clear machine processable
semantics.

A task (expressed in Entish) describes the desired static situation to be real-
ized by the composition protocol entish 1.0. Note that a transactional semantics
(similar to 3PC) is realized in the protocol.

The syntax of the description language as well as the message format are ex-
pressed in XML Schema. The language and the protocol are mere specifications.
To prove that the technology does work, the prototype implementation was real-
ized. A demo of the prototype is available as applets via web interfaces starting
with http://www.ipipan.waw.pl/mas/.

The work was preceded by several papers (see (2; 3; 4; 5; 6; 7)) published
in the last four years. Related work was done by SOAP + WSDL + BPEL4WS
+ (WS-Coordination) + (WS-Transactions), WSCI, BPML, WS-CAF, Semantic
Web, DAML-S, Grid services, and Self-Serv. The references to these technologies
as well as a short overview is presented in Chapter 1. The reader is cordially
invited to the next chapters for details.

The work is structured in seven chapters and an Appendix where the XML
sources of the enTish technology are presented.

In the first chapter, an introduction to distributed systems is presented, as well
as a short overview of the most important technologies such as RPC, CORBA,
software agents and multi-agent systems, Web services, and Grid services.

Chapter 2 is devoted to presentation of a new theoretical approach to dis-
tributed systems; the classical model of Client-Server is revised, and two simple
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running examples are introduced.
In Chapter 3, the enTish technology is presented. The description language

Entish is presented formally whereas the composition protocol is introduced in an
intuitive way. Two sections of this chapter are devoted to the semantics of Entish,
and to the comparison of Entish to the Semantic Web.

Chapter 4 and Chapter 5 are devoted to formal and detailed presentation of
implementation of the two running examples introduced in Chapter 2. These two
chapters are essential to understand properly the composition protocol as well as
the whole technology that is proposed.

In Chapter 6, the complete specification of the service composition protocol
entish 1.0 is presented.

Chapter 7 summarizes the work by presenting an abstract architecture that
may be used to implement enTish technology, as well as some details of already
realized implementations.
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2 Chapter 1. Developing open distributed systems

1.1 Introduction to Open Distributed Systems

We focus our attention on development of open distributed systems consisting of
heterogeneous components that can interoperate.

Therefore we must answer the following four basic questions:

1. What is openness (extensibility) of a distributed system?

2. What is a heterogeneous component?

3. What is interoperability between the heterogeneous components?

4. What is the goal of the distributed system to be developed?

These are some basic questions to be answered not only for our purposes but
also in general in the domain of distributed systems. However, we want to constrain
the analysis to the systems consisting of heterogeneous software components that
communicate using a fixed transport protocol (based on TCP/IP) for sending data
to each other. So that the components are networked and may be run on remote
hosts on different operation systems. Since the interoperability at the level of
transporting data is granted, we may focus our attention on the interoperability
at higher levels that concerns automatic integration of components into a coherent
system whose functionality satisfies a certain goal assumed by the system designer.
The goal will be specified in the subsequent sections.

1.1.1 Openness (extensibility) of a distributed system

Openness or extensibility of the system is meant as the ability to join new com-
ponents to the already running system without the need to change the existing
components, so that the basic functionality of the system remains the same. The
new components are supposed to interoperate with the rest of the components
enriching the capability of the system.

We are interested in a system that is fault tolerant as a whole, in the sense
that any component of the system may fail or be removed without causing any
significant change in the basic functionality of the system. Hence, there is no
single point of failure in the system. Internet and WWW are the prominent
examples of such systems. It is clear that technologies for realizing such systems
should be developed rather at the level of specification than as applications. It
is a lesson learned from Computer Networking where interoperability is achieved
by specifying standard protocols which are then implemented independently in
various operation systems and interfaces.

1.1.2 Component of a distributed system

Now, it is the turn for the component of a distributed system we have in mind.
Generally by component we mean a software component, e.g., object, client /
server part in socket programming, software agent, and so on. Hence, we define
distributed system as a collection of software components that process and ex-
change data. Actually, it is a very general definition. Sometimes, in the context
of Internet, such distributed system is called the Cyberspace.
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Let’s introduce the concept of raw application. It is just an application (typ-
ically an object) we want to join to a distributed system as a component. A raw
application (as an object) has several public methods that can be called. In a
programming environment, the way to do it is precisely defined, and is realized
by a corresponding operation system. It is clear that a raw application must be
augmented with an appropriate interface (stub), if we want it to become a com-
ponent of a distributed system. Hence, a distributed system is a collection of
software components (i.e., raw applications augmented with appropriate stubs)
that process and exchange data.

Hence, the interactions between the components are constrained to passing
data. To make it possible, a communication infrastructure must be provided.
For the purpose of simplicity, we abstract from protocols for transporting data
(like HTTP, IIOP) and from the protocols that are in the lower layers of the
network model, i.e., TCP/UDP/IP/LAN protocols, etc., We focus our attention
on the interoperability problem at a higher level of abstraction. However, it is
convenient to fix a data transport protocol, e.g., HTTP protocol because it is
simple, ubiquitous (due to www servers) and supports most of the important data
formats (i.e., data of these formats can be transported using HTTP). It is also
comprehensive, that is, there are several transport methods like POST, GET, and
PUT. Although our analysis will be independent of any transport protocol, it is
reasonable to think in terms of these transport methods.

Since we consider components of our system as software components, we must
relate our work to the Component-Oriented Programming paradigm.

1.2 Component-Oriented Programming

The idea of composing distributed systems from components, which are created
and marketed independently of each other is appealing, see (21), and (22). Compo-
nents are standalone objects that can plug and play across network applications,
languages, tools and operating systems. The component-oriented programming
(COP) paradigm defines capabilities that support a runtime environment where
software components can be installed and assembled into applications in a declar-
ative way. The COP paradigm is a natural evolution of Object-Oriented Pro-
gramming (OOP) paradigm. Object-oriented programming provides only partial
basis for extensibility of distributive system. Objects can be viewed as compo-
nents, however some additional infrastructure is needed to enable communication
between such heterogeneous remote objects.

1.3 Software agents and multi-agent systems

Software agents and multi-agent systems (MAS for short) paradigms have emerged
concurrently to COP paradigm as another branch of evolution of OOP paradigm.
Agent is a software object equipped with internal state consisting of several mental
attitudes like Belief for expressing its knowledge, Desire for its goal, and Intentions,
see the concept of BDI agent (19). Agent is proactive, i.e., depending on its state
the agent is able to interact with its environment as well as with other agents.
Agent’s knowledge is updated after every interaction.
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Multi-agent system is a system consisting of agents and environment that in-
teract with each other. There is a special kind of interaction for realizing agent
communication. The communication is in a fixed language called Agent Com-
munication Language (ACL). Two languages are of particular interest; they are
KQML (26) and FIPA ACL (27). They have incorporated several concepts from
the speech acts theory (8; 20), e.g., performatives that specify message types hav-
ing some intentional meaning, like request, obligation, promise, etc..

FIPA (27) is a consortium that aims at standardization of technologies related
to BDI agent and MAS paradigm. The standards concern agent communication
language, agent and multiagent system architecture, and agent interactions.

Usually, in a multi-agent system, the main point of interest is not agent in-
teractions themselves but rather global system behavior emerging from long run
agent interactions.

1.4 What are distributed systems for?

The natural question that must be posed is the following: What is the goal of such
data processing and exchanging in a distributed system?

There are two natural answers to this question: The first one is to realize
some tasks or requests, whereas the second one is to create sophisticated business
processes out of the existing components that may belong to different enterprises.

Let us focus our attention on the first answer, and constrain the analysis to
the systems designed to realize requests. Therefore the next question is: What
or who issues such requests? Obviously, the answer is a client, that is, there
must be a client application that (on behalf of a human user) wants to realize a
request; it may be called client component. Requests are supposed to be realized
by some other components; sometimes several components must be used. These
components provide services for clients, so it is natural for them to be called service
components. Hence, we are within the framework of the classic paradigm of Client
Server model of distributed computing.

Let’s recall that according to our definition, a distributed system is a collection
of components that are raw applications augmented with appropriate stubs corre-
sponding to a communication infrastructure. Each of such stubs represents (in the
system) a raw heterogeneous applications associated with this component. That
is, from the point of view of the whole distributed system, a component is visible
as its stub. Let the stub of a client component be called client-agent, whereas the
stub of a service component be called service-agent.

Hence, there is a client side of distributed systems as well as an opposite side,
i.e., the service provider side. These two sides may influence the real world, i.e.,
a client by sending a request that causes data processing by the services. This
very data processing may, in turn, have some effects on the real world, like money
transfer, purchasing of commodities, etc..

The Client Server model is the most popular paradigm for developing dis-
tributed systems. Recently a new paradigm has emerged; it is called peer-to-peer
model (P2P), see (17). It seems that it does not offer any new solution except the
one that client application is integrated with server application. It means that in
the same time the application may be a client to a remote server, and take the role
of a server to a remote client. Although it may seem that there are no clients and
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no servers, i.e., there are only peers in P2P model, in fact each peer must have
two different stubs, one for its client side, and one for its server side.

The most important issue of the Client Server model is the method used for
client - server communication. The most common methods are based on the shared
memory, message passing, and remote procedure call model.

Some distributed systems provide communication between components by
modeling shared memory. Then, a global naming scheme is usually used for all
shared objects in the distributed system. Read or write access to shared objects
appear identical whether the object is local or remote, and takes to form of as-
signment. Often special hardware is used to trap assignments to or from remote
objects (usually by enhancing a memory management subsystem). The shared
memory paradigm is difficult for developing typical applications. Message passing
or remote procedure call are more familiar and more often used.

Components may send messages to each other according to a fixed protocol.
Message passing is often asynchronous. This means that one component may
continue execution immediately after it has sent a message to another. It is also
sometimes synchronous. Synchronous message passing involves no buffering, but
it does require strong synchronization between the sender and receiver.

Remote procedure call is exactly what it sounds like. A procedure implemented
in one component is made available to another component in some way, and may
be called (invoked) exactly as if it were local to the caller. Remote procedure
call systems follow the Client Server model very closely. A server implements the
procedure. A client calls it.

Realization of communication infrastructure between heterogeneous compo-
nents is called middleware. Middleware is systems software that resides between
the components and the underlying operating systems, network protocol stacks,
and hardware. Its primary role is to bridge the gap between heterogeneous com-
ponents so that they can interoperate and may be integrated into one system.

In the past few years, several component-oriented programming middleware
technologies, such as RPC, CORBA, COM/DCOM, JavaBeans/EJB, Tuple-
spaces, and .NET, Web services, and Grid services have emerged.

In the following sections we present short overview of RPC, CORBA, Tuple-
spaces, Web services, and Grid services.

1.5 The RPC Model

The RPC model describes how applications on different network nodes can com-
municate and coordinate activities. The paradigm of RPC is based on the concept
of procedure call in a programming language. The semantics of RPC is almost
identical to the semantics of the traditional procedure call. The major difference
is that while a normal procedure call takes place between procedures of a single
process in the same memory space on a single system, RPC takes place between a
client process on one system and a server process on another system where both
the client system and the server system are connected to a network.

There are several representations of the original RPC model (16). Each of the
references (28), (29), (30) and (31) presents a variation on the original suitable for
the exposition of their RPCs.

The basic operation of RPC may be described as follows:
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1. A client application issues a normal procedure call to a client stub. The client
stub receives arguments from the calling procedure and returns arguments
to the calling procedure. An argument may instantiate an input parameter,
an output parameter, or an input/output parameter. In this presentation
of RPC model, the term input argument refers to a parameter which may
be either an input parameter or an input/output parameter, and the term
output argument refers to either an output parameter or an input/output
parameter.

2. The client stub converts the input arguments from the local data represen-
tation to a common data representation, creates a message containing the
input arguments in their common data representation, and calls the client
runtime, usually an object library of routines that supports the functioning
of the client stub. The client runtime transmits the message with the input
arguments to the server runtime which is usually an object library that sup-
ports the functioning of the server stub. The server runtime issues a call to
the server stub which takes the input arguments from the message, converts
them from the common data representation to the local data representation
of the server, and calls the server application which does the processing.

3. When the server application has completed the local procedure call, it returns
to the server stub the results of the processing in the output arguments.
The server stub converts the output arguments from the data representation
of the server to the common data representation for transmission on the
network and encapsulates the output arguments into a message which is
passed to the server runtime. The server runtime transmits the message to
the client runtime which passes the message to the client stub. Finally, the
client stub extracts the arguments from the message and returns them to
the calling procedure in the required local data representation.

The RPC protocol is independent of transport protocols. How a message is
passed from one process to another makes no difference in RPC operations. The
protocol deals only with the specification and interpretation of messages.

Time has verified this technology. Although, it was an important step in the
technology development, it did not provide a flexible and ubiquitous technology
for integrating heterogeneous applications in open environment.

The communication style proposed by RPC model is used also in CORBA and
Web services.

1.6 CORBA

The Common Object Request Broker Architecture (CORBA), see (32), is an open
distributed object computing infrastructure being standardized by the Object
Management Group (OMG). CORBA automates many common network program-
ming tasks such as object registration, location, and activation; request demulti-
plexing; framing and error-handling; parameter marshalling and demarshalling;
and operation dispatching. CORBA ORB Architecture is composed of the follow-
ing items:
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• Object – This is a CORBA programming entity that consists of an identity,
an interface, and an implementation, which is known as a Servant.

• Servant – This is an implementation programming language entity that de-
fines the operations that support a CORBA IDL interface. Servants can be
written in a variety of languages, including C, C++, Java, Smalltalk, and
Ada.

• Client – This is the program entity that invokes an operation on an object
implementation. Accessing the services of a remote object should be trans-
parent to the caller. Ideally, it should be as simple as calling a method on
an object.

• Object Request Broker (ORB) – The ORB provides a mechanism for trans-
parently communicating client requests to target object implementations.
The ORB simplifies distributed programming by decoupling the client from
the details of the method invocations. This makes client’s requests appear
to be local procedure calls. When a client invokes an operation, the ORB is
responsible for finding the object implementation, transparently activating it
if necessary, delivering the request to the object, and returning any response
to the caller.

• ORB Interface – An ORB is a logical entity that may be implemented in
various ways (such as one or more processes or a set of libraries). To decouple
applications from implementation details, the CORBA specification defines
an abstract interface for an ORB. This interface provides various helper
functions such as converting object references to strings and vice versa, and
creating argument lists for requests made through the dynamic invocation
interface described below.

• CORBA IDL stubs and skeletons – CORBA IDL stubs and skeletons serve as
the ”glue” between the client and server applications, respectively, and the
ORB. The transformation between CORBA IDL definitions and the target
programming language is automated by a CORBA IDL compiler. The use
of a compiler reduces the potential for inconsistencies between client stubs
and server skeletons and increases opportunities for automated compiler op-
timizations.

• Dynamic Invocation Interface (DII) – This interface allows a client to directly
access the underlying request mechanisms provided by an ORB. Applications
use the DII to dynamically issue requests to objects without requiring IDL
interface-specific stubs to be linked in. Unlike IDL stubs (which only al-
low RPC-style requests), the DII also allows clients to make non-blocking
deferred synchronous (separate send and receive operations) and one-way
(send-only) calls.

• Dynamic Skeleton Interface (DSI) – This is the server side’s analogue to the
client side’s DII. The DSI allows an ORB to deliver requests to an object
implementation that does not have compile-time knowledge of the type of
the object it is implementing. The client making the request has no idea
whether the implementation is using the type-specific IDL skeletons or is
using the dynamic skeletons.
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• Object Adapter – This assists the ORB with delivering requests to the ob-
ject and with activating the object. More importantly, an object adapter
associates object implementations with the ORB.

CORBA is a sophisticated technology providing rich functionality that includes
object registry, transactions, and security to mention only a few. It is a great and
verified technology for developing distributed applications within a single corpo-
ration. However, there is a problem with interoperability between CORBA com-
ponents implemented by different vendors. It seems that the lesson learned from
CORBA is that it is too sophisticated to become an ubiquitous technology for
automatic integration of heterogeneous application in open environment.

1.7 Tuple Space

Tuple space, see (11), is a mathematical abstraction of shared memory. It can
be thought of as a huge repository of data items called tuples. A tuple is a list
of typed fields which can be either actual (containing a value) or formal (empty
but prepared for storing a value). Together with a pool of algorithms, the tuple
space makes up a so-called generative communication system. Algorithms have
patterns to look for tuples they can process. If an algorithm finds a matching data
item, it processes that item and puts the resulting data back into the pool as a
new tuple. Since fetching and processing tuples can happen at any time, such a
system is inherently parallel. ToolTalk is a communication system of Tuple space
that allows to send messages into tuple space while other processes can wait for
messages that fit some pattern.

It is difficult to implement a Tuple space for large systems, so it seems to be
well-suited rather for specific classes of problems only. The Linda system (33),
developed at Yale university, is a complete parallel programming system that is
built on the tuple space paradigm. Its principles are now being used in technologies
such as Jini/Javaspaces language by Sun Microsystems (34), which was modeled
after the Linda concept. IBM has a similar project, called TSpaces (35).

1.8 Service Oriented Computing

Service Oriented Computing (SOC) is a quite new emerging paradigm for dis-
tributed computing that has evolved from object-oriented and component com-
puting to enable building agile networks of collaborating business applications
distributed within and across organizational boundaries. Services are autonomous
platform-independent computational elements that can be described, published,
discovered, orchestrated and programmed using XML artifacts for the purpose of
developing distributed interoperable applications.

Service-Oriented Architecture (SOA) provides a standard programming model
that allows software components, residing on any network, to be published, discov-
ered, and invoked by each other as services. There are essentially three components
of SOA: Service Provider, Service Requester (or Client), and Service Registry. The
provider hosts the service and controls access to it, and is responsible for publish-
ing a description of its service to a service registry. The requester (client) is a
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software component in search of a component to invoke in order to realize a re-
quest. The service registry is a central repository that facilitates service discovery
by the requesters.

Web services are supposed to realize the Service-Oriented Architecture in a
global networked environment. Perhaps the most popular definition of Web ser-
vices can be found in IBM’s tutorial (36):

Web services are self-contained, self - describing, modular applications that can
be published, located, and invoked across the Web. Web services perform functions
that can be anything from simple requests to complicated business processes ...
Once a Web service is deployed, other applications (and other Web services) can
discover and invoke the deployed service.

In order to realize this vision simple and ubiquitous protocols are needed. From
the service providers’ point of view, if they can setup a web site they could join
global community. From the client’s point of view, if you can click, you could
access services.

The following stack of protocols: SOAP (37), WSDL (38), and UDDI (39)
is positioned to become Web services standards for invocation, description, and
discovery. SOAP (in the previous versions it was the acronym for Simple Ob-
ject Access Protocol) is a standard for applications to exchange XML - formatted
messages over HTTP. WSDL (Web Service Description Language) describes the
interface, protocol bindings and the deployment details of the service. UDDI (Uni-
versal Description, Discovery and Integration) provides a registry of businesses and
web services. A UDDI service description consists of physical attributes such as
name and address augmented by a collection of tModels, which describe additional
features such as, for example, reference to WSDL document describing the service
interface, and the classification of the service according to some taxonomies.

Since Web services are popular now, there are a lot of papers and books pro-
viding excellent introduction to the Web services; see for example (1).

Note that the Web services technology realizes service invocation in the RPC-
style as well as in the document passing style.

RPC-style of Web service invocation is realized by stateless asynchronous
request-response message exchange pattern. It means that a client application
sends a request (as a SOAP message with WSDL document inside) to a service to
invoke an operation and waits for response. The service receives the request, in-
vokes one of its operations, and the result is returned to the client as the response.
It is important that contrary to CORBA, neither the client nor the service keeps
the state of the invocation session. Web services technology does not provide ad-
ditional functionality as it is done in the case of CORBA. The simplicity of Web
services may be seen as an advantage, however it turned out (after tree years of
experience) that even that way to realize RPC is too complex to achieve interop-
erability. So that in the latest version of SOAP, i.e., version 1.2, the RPC-style
of service invocation is considered optional. It means that there is no obligation
for the vendors to implement this method; this is equivalent to the statement that
the RPC-style is useless for realizing interoperability.

Hence, there is exactly one working method of service invocation in Web ser-
vices technology. It is document-style method that is, in fact, extremely simple.
The message exchange pattern that corresponds to this method is the following.
A client sends a SOAP message to a service asynchronously, i.e., without waiting
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for a response. If the service wants to response, then it acts in the very similar
way as the client, i.e., by sending a message to the client in the asynchronous way.
Since it is one way message passing, the client as well as the service do not keep
the state of the conversation session.

Let us summarize the current state of the Web service technology.

• SOAP provides a universal message format and document style service in-
vocation method.

• WSDL is an interface definition language without possibility to describe what
a service does, i.e., there are no means in WSDL to express (in a generic way)
the type of operation the service performs.

• Since operation types cannot be expressed in a generic way, UDDI (as service
registry) provides only partial description and classification of Web services.

The conclusion is that service discovery must be done by a user. Once the user
discovers an appropriate service, the service can be invoked automatically just
by sending a message, however coordination, transaction, and exception handling
must be realized by the client application associated to the user.

From the Web services technology point of view, the functioning of a service
is extremely simple: Wait for messages; once you get a message you may send
a response asynchronously. The client is obliged to implement additional func-
tionality, or there must be special service interfaces (acting as clients towards
services) that implement such functionality. This was realized by the following
technologies: BPEL4WS, WS-Coordination, WS-Transaction, WSCI, BPML, and
WS-CAF that will be discussed in the next Section.

The main drawback of the Web services technology is that the discovery pro-
cess can not be realized automatically. Whereas the key requirement for service
integration is to make it possible to automatically discover and use services in
order to perform some given task, and automatically compose multiple services in
order to perform more complex tasks. The basic stack of Web services does not
realize this requirement.

1.9 Web service composition

A brief overview of the most important technologies for service composition, based
on SOAP+WSDL+UDDI stack, are presented below.

1.9.1 BPEL4WS

BPEL4WS (BPEL for short), see (40), is a process modeling language designed to
enable a service composer (a programmer) to aggregate Web services into an exe-
cution. There are abstract and executable processes. Abstract processes are useful
for describing business protocols, while executable processes may be compiled into
invokeable services. Aggregated services are modeled as directed graphs where the
nodes are services and the edges represent a dependency link from one service to
another. Canonical programmatic constructs like SWITCH, WHILE and PICK
allow to direct an execution path through the graph. BPEL was released along
with two other specs: WS-Coordination and WS-Transaction. WS-Coordination
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describes how services can make use of predefined coordination contexts to sub-
scribe to a particular role in a collaborative activity. WS-Transaction provides a
framework for incorporating transactional semantics into coordinated activities.
WS-Transaction uses WS-Coordination to extend BPEL to provide a context for
transactional agreements between services. A composite service realized in BPEL
can itself be exposed as a service, i.e., has its own WSDL interface. Now, BPEL
is revised by OASIS as WSBPEL (43).

1.9.2 DAML-S

DARPA project DAML-S, see (44), is a DAML+OIL ontology for describing Web
services. It aims at making Web services computer-interpretable, i.e., described
with sufficient information to enable automated Web service discovery, invocation,
composition and execution monitoring. The DAML-S Ontology comprises Servi-
ceProfile, ServiceModel, and ServiceGrounding. ServiceProfile is like the yellow
page entry for a service. It relates and builds upon the type of content in UDDI,
describing properties of a service necessary for automatic discovery, such as what
the services offers, and its inputs, outputs, and its side-effects (preconditions and
effects). ServiceModel describes the service’s process model, i.e., the control flow
and data-flow involved in using the service. It relates to BPEL and is designed to
enable automated composition and execution of services. ServiceGrounding con-
nects the process model description to communication- level protocols and message
descriptions in WSDL.

1.9.3 Web Services Choreography Interface (WSCI)

Web Services Choreography Interface (WSCI), see (45), is an XML-based language
for Web services collaboration. It defines the overall choreography describing the
messages between Web services that participate in a collaborative exchange. WSCI
describes only the observable interactions between Web services. A single WSCI
document only describes one partner’s participation in a message exchange. Usu-
ally, a WSCI choreography includes a collection of WSCI documents, one for each
partner in the interaction. It is interesting that there is no single controlling pro-
cess managing the interaction. WSCI could be viewed as a layer on the top of
WSDL. Each action represents a unit of work, which typically would map to a
specific WSDL operation. Hence, WSCI would describe the interactions among
these WSDL operations. The W3C has recently announced a Web service chore-
ography working group that considers WSCI. Currently, WSCI is under revision
by Web Services Choreography Working Group of W3C, see (46).

1.9.4 Business Process Management Language (BPML)

The Business Process Management Language (BPML), see (47), is a meta-
language for describing business processes. The BPML specification can be loosely
compared to BPEL, providing similar process flow constructs and activities. Ba-
sic activities for sending, receiving, and invoking services are available, along with
structured activities that handle conditional choices, sequential and parallel ac-
tivities, joins, and looping. BPML incorporated the WSCI protocol. WSCI could
be used to describe the public interactions whereas the private implementations
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could be developed with BPML. Both BPML and WSCI share the same underlying
process execution model and similar syntaxes.

1.9.5 Self-Serv

Self-Serv, see (9), is an academic based framework for declarative Web service
composition using statecharts, where resulting composite services can be executed
in a decentralized way. The concept of service communities is used to form alliances
among a potentially large number of services performing the same operation types.
The underlying execution model allows services participating in a composition,
to collaborate in a peer-to-peer fashion in order to assure that the control and
data flow dependencies of the composition schema (expressed by a statechart) are
respected.

1.9.6 XSRL

XSRL - Web Services Request Language, see (49), is a formal language for ex-
pressing requests against e-marketplace registered Web services. The language
is an amalgamation of the Internet XML query language and AI planning con-
structs. XSRL includes constructs such as alternative activities, vital vs. optional
activities, preconditions, postconditions, invariants, and expression operators over
quantitative values that can be employed at the user-level when formulating a
goal. This approach realizes the automatic generation, verification and execution
of plans in order to achieve the goals. It is built on the top of BPEL. It is also an
academic based approach.

1.9.7 WS-CAF

Web Services Composite Application Framework (WS-CAF), see (48), is a col-
lection of three specifications – Web Service Context (WS-CTX), Web Service
Coordination Framework (WS-CF), and Web Service Transaction Management
(WS-TXM) designed to solve problems that arise when multiple Web services are
used in combination(composite applications) to support information sharing and
transaction processing.

Web Service Context (WS-CTX) provides an open, common, interoperable run-
time mechanism to manage, share, and access context information among related
Web services.

Web Service Coordination Framework (WS-CF) defines a software agent to
handle context management. Web services in a composite application register
with a coordinator to ensure messages and results are correctly communicated
and allow, e.g. the success or failure of an individual service to be tied to the
success or failure of the larger unit of work comprising multiple Web services.

Web Service Transaction Management (WS-TXM) defines three distinct
transaction protocols that can be plugged into the coordination framework for in-
teroperability across existing transaction managers, long running compensations,
and asynchronous business process flows. It also includes an innovative solution
to bridge different transaction models (e.g. MQ Series, JMS).
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Summing up this Section, the key requirement for service integration is to make
it possible to automatically discover and use services in order to perform some
given task, and automatically compose multiple services in order to perform more
complex tasks. None of the technologies presented above realizes this reqiurement.

There is another quite new attempt to realize this requirement; it is Open Grid
Service Architecture presented briefly below. Although it is also based on the basic
protocol stack of Web services, the original roots of this technology are in Grid
computing, i.e., in integrating distributed and heterogeneous computing resources.
This new initiative is considered as an alternative to the composition technologies
presented in the previous section as well as an enhancement of the basic protocol
stack of the Web services. Since the Grid services are relatively new, it it worth
to devote some space an time to present some details of this new technology.

1.10 Open Grid Service Architecture

Open Grid Service Architecture (OGSA) is an open standard managed by the
GGF - The Global Grid Forum standards body, see (50).

The objective of OGSA, see (52) is to provide a common infrastructure for
managing resources across distributed and heterogeneous platform by defining
open published standard interfaces and protocols. The foundation of OGSA is
Web services. OGSA is build on the model of service-oriented architecture (SOA).

The overview of OGSA/OGSI is based on an article (51) from IBM developer-
Works.

1.10.1 The OGSA architecture

Four main layers comprise the OGSA architecture. Starting from the bottom:

• Resources – physical resources and logical resources

• Web services, plus the OGSI extensions that define grid services

• OGSA architected services

• Grid applications

Physical and logical resources layer. The concept of resources is central
to OGSA and to grid computing in general. Resources comprise the capabilities
of the grid, and are not limited to processors. Physical resources include servers,
storage, and network. Above the physical resources are logical resources. They
provide additional function by virtualizing and aggregating the resources in the
physical layer. General purpose middleware such as file systems, database man-
agers, directories, and workflow managers provide these abstract services on top
of the physical grid.

Web services layer. The second layer in the OGSA architecture is Web ser-
vices. Here’s an important feature of OGSA: All grid resources – both logical and
physical – are modeled as services. The Open Grid Services Infrastructure (OGSI)
specification defines grid services and builds on top of standard Web services tech-
nology. OGSI exploits the mechanisms of Web services like XML and WSDL to
specify standard interfaces, behaviors, and interaction for all grid resources. OGSI
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extends the definition of Web services to provide capabilities for dynamic, stateful,
and manageable Web services that are required to model the resources of the grid.

OGSA architected grid services layer. The Web services layer, with
its OGSI extensions, provide a base infrastructure for the next layer – architected
grid services. The Global Grid Forum is currently working to define many of these
architected grid services in areas like program execution, data services, and core
services.

Grid applications layer. Over time, as a rich set of grid-architected ser-
vices continues to be developed, new grid applications that use one or more grid
architected services will appear. These applications comprise the fourth main layer
of the OGSA architecture.

1.10.2 Extending Web services for grid

Let’s look more closely at the two main logical components of OGSA – the Web
services-plus-OGSI layer, and the OGSA architected services layer. Why are they
separated like this? The GGF OGSA working group believed it was necessary
to augment core Web services functionality to address grid services requirements.
OGSI extends Web services by introducing interfaces and conventions in two main
areas.

• First, there’s the dynamic and potentially transient nature of services in a
grid. In a grid, particular service instances may come and go as work is
dispatched, as resources are configured and provisioned, and as system state
changes. Therefore, grid services need interfaces to manage their creation,
destruction, and life cycle management.

• Second, there’s state. Grid services can have attributes and data associated
with them. This is similar in concept to the traditional structure of objects
in object-oriented programming. Objects have behavior and data. Likewise,
Web services needed to be extended to support state data associated with
grid services.

1.10.3 OGSI components

Open Grid Services Infrastructure (OGSI) introduces an interaction model for grid
services, and provides a uniform way for software developers to model and interact
with grid services by providing interfaces for discovery, life cycle, state manage-
ment, creation and destruction, event notification, and reference management.
Whether a software developer is developing a grid service or an application, the
OGSI programming model provides a consistent way for grid software to interact.

Let’s take a closer look at the interfaces and conventions OGSI introduces.
Grid services that implement this interface provide a way to create new grid

services. Factories may create temporary instances of limited function, such as a
scheduler creating a service to represent the execution of a particular job, or they
may create longer-lived services such as a local replica of a frequently used data
set. Not all grid services are created dynamically. For example, some might be
created as the result of an instance of a physical resource in the grid such as a
processor, storage, or network device.
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Because grid services may be transient, grid service instances are created with
a specified lifetime. The lifetime of any particular service instance can be negoti-
ated and extended as required by components that are dependent on or manage
that service. The life cycle mechanism was architected to prevent grid services
from consuming resources indefinitely without requiring a large scale distributed
”garbage collection” scavenger.

Grid services can have state. OGSI specifies a framework for representing this
state called Service Data and a mechanism for inspecting or modifying that state
named Find/SetServiceData. Further, OGSI requires a minimal amount of state
in Service Data Elements that every grid service must support, and requires that
all services implement the Find/SetServiceData portType.

Service groups are collections of grid services that are indexed, using Service
Data, for some particular purpose. For example, they might be used to collect all
the services that represent the resources in a particular cluster-node within the
grid.

The state information (Service Data) that is modeled for grid services changes
as the system runs. Many interactions between grid services require dynamic
monitoring of changing state. Notification applies a traditional publish/subscribe
paradigm to this monitoring. Grid services support an interface (Notification-
Source) to permit other grid services (NotificationSink) to subscribe to changes.

When factories are used to create a new instance of a grid service, the factory
returns the identity of the newly instantiated service. This identity is composed
of two parts, a Grid Service Handle (GSH) and a Grid Service Reference (GSR).
A GSH is guaranteed to reference the grid service indefinitely, while a GSR can
change within the grid services lifetime. The HandleMap interface provides a way
to obtain a GSR given a GSH.

To summarize this section, the OGSA architecture enhances Web services to
accommodate requirements of the grid. It would be interesting to compare Grid
services to CORBA. Although Grid services is not a complete technology, it seems
to be more complex than CORBA, i.e., it provides much richer functionality than
CORBA. It may be seen as an advantage, however the main reason for CORBA
failure to be a ubiquitous technology for integrating heterogeneous applications
was its very rich functionality.

The key requirement for service integration is still to make it possible to au-
tomatically discover and use services in order to perform some given task, and
automatically compose multiple services in order to perform more complex tasks.
Although the OGSA/OGSI augments the basic Web services stack with a lot of
useful functionality, the requirement is still not satisfied.

1.11 Chapter summary

This completes a short survey of the most important paradigms and technologies
concerning distributed systems. As we have seen above there are many paradigms
and technologies for developing open distributed systems. However, none of them
is the right technology for integrating heterogeneous applications in open environ-
ment. It seems that in order to find the reason for that and analyze these existing
solutions, a common methodological framework is needed. A proposal of such
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framework is introduced in the next Chapter.
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One may ask why yet another approach is needed? Although, it is too early to
sentence the Web services to failure, some conclusions may be drawn from more
than three years of the history of Web services.

• The RPC-style of service invocation turned out to be an obstacle to achieve
interoperability.

• WSDL does not describe generic types of operations performed by services.
Although this is a truism, it must be explicitly stated. Therefore an auto-
matic service discovery is not possible.

• Since the proposed service architecture is extremely simple, all the hard
work of realizing service integration is put either on the client’s back (by
using BPEL), and / or on additional interfaces (WS-Coordination, WS-
Transactions, WSCI, WS-CAF) managed by a third party.

Perhaps these are sufficient reasons for revising the existing methodology starting
with its very roots, that is, with the Client Server model of distributed computing.

2.1 Client Server model revised

We are going to revise the general model of Client Server in the spirit of Service-
Oriented Architecture. The revision is done by specifing the basic parts of the
Client Server model in a generic way.

Like all models of distributed systems, the Client Server model consists of
software components and infrastructure (middleware) for providing communica-
tion and interoperability between the components. However, in the case of Client
Server model, there are two basic kinds of components, namely, client compo-
nents, and service components. A client sends a request to a sever hosting some
services. The request is passed to one of the services, which may realize the client’s
request by invoking its operation. Generally, there are two basic methods for ser-
vice invocation. The first one is the RPC-style method based on synchronous
request-response, whereas the second one is just one-way asynchronous document
passing.

The essence of these two methods is that data and some control instruction are
sent as a single request to a service via server. The problem arises if the service
cannot or do not want to invoke its operation. In CORBA this problem was
solved by providing additional functionality, whereas in Web services (especially
in the document passing style) there is no standard mechanism to cope with such
problems. It would be polite and obviously much more efficient for the client to
ask a service if it can realize the client’s request before sending data and control
instructions.

2.1.1 Request revised

Hence, it seems reasonable to revise the notion of request as well as service invo-
cation method. This may be done in the following manner.

1. A client sends a query to a service asking the service if it can produce output
data satisfying some conditions.
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2. If the service is able and agrees (that is, it commits) to do so, it sends to
the client a response specifying the input data needed to produce the output
specified in the query.

3. Then, if the client’s data do satisfy the input specification, the data may be
sent to the service by the client.

4. Finally, the service may realize its commitment, i.e., process the data ac-
cording to the client’s intention expressed in the query.

It is important to note that there are two phases of this method of service invoca-
tion. The first phase (item 1 and 2) consists in arranging an invocation of service
operation, whereas the second phase (item 3 and 4) is the execution of the service
operation according to the arrangement done in the first phase.

The problem is how to realize that, i.e., What are the key requirements? It
seems that it is a generic language for expressing queries (i.e., clients’ intentions),
and services’ commitments as responses to the clients’ queries.

2.1.2 Client and service revised

Once we have revised the notion of request, let us also revise the notion of service
and client. There is an asymmetry between client and service. Service processes
data whereas client realizes requests by arranging data processing done by services.

Usually, a service component consists of two parts:

• A raw application that processes data.

• A generic stub that represents the application in the infrastructure.

The raw applications may be heterogeneous and remote, that is, created by dif-
ferent programmers on different programming platforms and operation systems.
These applications may have been running on remote hosts. The generic stubs
must be standardized and be common, i.e., implemented according to one stan-
dard, so that they must be considered as a part of the infrastructure. The task of
a raw application is simple; it takes the input data and produces output data. The
task of the stub is to arrange the input data to be delivered to the raw application,
as well as to deliver the output data to its destination. This arrangement (called
control flow) needs not be integrated with data passing (called data flow) as it is
done in Web services.

A client component consists also of two parts:

• A raw application that may represent a user, or be just another application
that wants to realize a request.

• A generic stub that represents the raw application in the infrastructure.

The task of the client’s raw application is to issue the request and prepare the
initial data needed (if there are any) to realize the request. The task of the stub is
to find out an appropriate service (or services) and arrange its (or their) invocation
in order to realize the request.

A service is represented in the infrastructure by its stub that is called service-
agent, whereas a client is represented in the infrastructure by its stub that is
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called client-agent. A client application may send a request to its agent. The
client-agent is responsible for realizing the request by communicating with the
service-agents. In this way, services are used, and requests are realized. This is
the very functionality that the infrastructure is supposed to perform. Since the
agents must communicate and understand each other, this is the very reason for
them to be standardized.

Note that one and the same raw application may be represented by a service-
agent and a client-agent, i.e., it may have two stubs of different kinds, so that from
one stub point of view it may be visible as a service whereas from the second one
as a client.

2.1.3 Middleware

Middleware is a term used sometimes to denote the infrastructure needed to pro-
vide interoperability between heterogeneous applications. We adopt this term. In
our case the middleware consists of client-agents, service-agents, communication
infrastructure, and broker. Having such rough model in mind let’s go into details,
i.e., to the generic components of the infrastructure.

Two kinds of components have already been mentioned, namely, client-agents,
and service-agents. The next components are communication infrastructure and a
mechanism for realizing clients requests. The mechanism may be called a broker.
Broker is a conversation protocol between agents. It is a specification of message
/ data exchange between parties that participate in conversation as well as spec-
ification of state change of the message sender and recipient. Hence, client-agent
as well as service-agent may have its internal state of the conversation session.
Since this state is a part of the conversation protocol, its format must be defined
explicitly, standardized, and implemented in the agents.

It is important to notice that control flow (realized by message exchange) may
be separated from data flow. These two flows may be implemented by using
different methods, e.g., control flow by the method POST, whereas the data flow
by the method GET of the HTTP protocol.

The message format, the message contents language, the message transport,
and the data transport together constitute the communication infrastructure.

Usually, the broker (as a conversation protocol) consists of the following generic
phases:

1. Publication phase - service-agent publishes the type of the operation per-
formed by the associated raw application.

2. Discovery phase - client-agent discovers a service performing operation of a
given type.

3. Coordination phase - client-agent arranges service-agents to coordinate in-
vocations of their associated applications.

4. Execution phase - the coordinated invocations are realized. This phase may
implement transactional semantics.

In order to perform the publication and discovery phase, an auxiliary component is
needed, i.e., a service registry where a service-agent can publish its operation type,
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and a client-agent can discover services needed to realize its request. This compo-
nent should perform matching between client-agent queries and service operation
types. Let this component be called matching-agent.

2.1.4 Description language

It seems that the crucial component of the middleware is the message contents
language. This very language constrains and sometimes determines the format of
the message and agent’s state as well as the conversation protocol. It is the very
language in which clients’ requests are to be expressed, and service operation types
(i.e., what a service does perform) are described. In this very language the states of
agents should also be described. Although request definition language, and service
description language may be considered as separate languages, it is clear that
there must be a strong semantic interrelation between them, i.e., between requests
and operation types, because requests are supposed to be realized by performing
appropriate operations. This very semantic interrelation must be implemented
in some way as a translation. In order to avoid this, it is natural to have one
description language (DL for short).

It is important what the scope of the description is, i.e., what is described
and how it is described in DL. It is clear that DL should describe the so called
Cyberspace, i.e., the world where data are processed and exchanged by raw appli-
cations represented by the agents. Client’s request describes a class of situations
of that world, that is, the client’s desire is to be in one of these situations. Since
client-agents and service-agents are parts of the world, their states may also be
described in DL. Therefore it seems that middleware technology is determined by
DL, i.e., by how detailed description of the world can be expressed in DL. To grasp
this claim, consider the following simple examples of requests. Since we have not
introduced any syntax of DL these examples are presented informally.

• The first example: The distributed system in question is the WWW. A client
component (a browser) sends a request message to a www server:
GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

...

In fact, the HTTP protocol specifies the language for expressing requests
as well as for describing services. These very services are www servers that
provide files upon request. The description language is extremely simple and
is based on the concept of URL. Roughly speaking, an URL consists of the
name of a host and a path to a file.

• The second example: ”Call the method x of an object of class Y with parame-
ters Z”. This kind of requests may be realized by RPC-style technology, e.g.,
CORBA, RMI, or the basic web services stack, i.e., SOAP+WSDL+UDDI.
In the case of Web services, the description language is WSDL. The lan-
guage describes service interfaces (methods and its parameters) and binding
details, i.e., how to communicate with a service.

• The third example: ”Book a flight from Warsaw to San Francisco; the de-
parture date is to be between December 26 and December 31, 2003”. Usually,
to realize this kind of requests, the RPC model is not sufficient. The client’s
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request specifies a large set of possible situations, so that there is a large
number of possible computations (in RPC-style, or document passing style)
that lead to these situations. However, to perform one of such computation,
the client must create an order (as the input parameter) so that he must
know and specify, in advance, the airline name, the flight number, the price,
the exact departure date, etc., . What is even more interesting here is the
fact that this kind of request can not be expressed by a language that de-
scribes only service interfaces (signatures), like IDL of CORBA, and WSDL
of Web services.

2.1.5 Some conclusions

In Web services technology, a protocol for invoking services consists of two kinds
of messages, that is, request and response. However, in general case, service invo-
cation protocol may consist of much more message kinds.

There are two crucial aspects of the invocation protocol: Data flow and control
flow. In the case of Web services these two flows are integrated in one message
exchange pattern realized synchronously in RPC-style, i.e., client sends a request
to a service and waits synchronously for a response. Data and corresponding
control are included in one request/response message. Since the request/response
pattern is simple and synchronous, the client as well as the service are stateless,
i.e., they do not store the current state of the message exchange session.

However, this pattern is not obligatory. It is possible to have a message ori-
ented asynchronous invocation, where data flow and control flow are separated as
well as two different transport protocols are used; one for transporting messages
containing control data (processed by agents), and the second transport protocol
for passing data that are processed by raw applications. Client Server model is
general so that it does not impose any constrains on the service invocation protocol
and the underling communication infrastructure except the very one that services
are used and clients’ requests are realized.

The revision of the Client Server model presented above may be seen as abstrac-
tions of the most popular RPC-style of service invocation. The first abstraction
concerns control flow, i.e., the scope of the language for expressing control can
be much more rich, i.e., it needs not be so narrow as it is in the case of IDL of
CORBA, and WSDL of Web services.

The second abstraction is that there may be a separation between control flow
and data flow as well as asynchronous message and data passing.

The third abstraction concerns the concept of request and the fixed message
exchange pattern of the RPC-style and document passing style. It needs
not be the simple request-response pattern where the parties that exchange
messages are stateless. According to this abstraction the message exchange
pattern may be called a conversation protocol. So that agents participating in
a conversation may have states that are relevant to the conversation, i.e., pass-
ing data or a message of a certain kind causes state change of the sender/recipient.

The final conclusion of this section is that the key aspect of the middleware is
a description language that determines the conversation protocol.
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2.2 Agents and implementation of the middle-

ware

We have introduced three kinds of agents that participate in the conversation
protocol of the middleware, namely, service-agent, client-agent, and matching-
agent. The goal of the protocol is to realize requests issued by clients. The agents
are stubs of (client, service, and registry) applications that communicate with
each other by sending messages according to the conversation protocol using the
underlining communication infrastructure. So that an agent represents its raw
application in the middleware, and must implement its part of the conversation
protocol. Hence, the whole conversation protocol is implemented in the agents.
If specification of a conversation protocol and a communication infrastructure
is complete and agents implementations fully satisfy the specifications, then the
agents can interoperate, i.e., they talk to each other according to the protocol so
that services are used and clients’ requests are realized.

Since the middleware consists of agents that can be implemented independently,
it seems that the revised Client Server model proposes a general methodology for
developing open, heterogeneous and distributed systems with no single point of
failure like Internet and WWW.

We are going to introduce an experimental technology for realizing such mid-
dleware, i.e., description language, message and state format, and a conversation
protocol. In the next section, simple working examples are presented to explain
the idea of the middleware.

2.3 Running examples

Although the running examples are simple and natural, it is not easy to develop
open and extensible systems that could realize such kinds of examples. After
presenting the examples we will discuss how existing technologies like BPML4WS,
WSCI, DAML-S, as well as many others, could be applied in this case.

The first example presents a scenario of booking a flight by a client.

2.3.1 Example 1

There was a client called C1. Its intention was to book a flight from Warsaw to
San Francisco; the departure was scheduled on Dec. 31, 2003. The client wanted
to arrange its request by Dec. 15, 2003. The client expressed the request in a
description language. Since we have not introduced any syntax of DL, let the
request be presented informally as the following formula:
phi =
”invoice for ticket (flight from Warsaw to San Francisco, departure is Dec. 31,
2003) is delivered to C1 by Dec. 15, 2003”

Then, the request formula (i.e., phi) was delegated to a the client-agent, say
C1-agent. The request became the goal of the C1-agent. The C1-agent set the
request formula as its first intention, and was looking for a service that could
realize it. First of all, the C1-agent sent the query: ”C1-agent’s intention is phi”
to a matching-agent called infoService. Suppose that infoService replied that there
was a travel office called FirstClass that could realize C1-agent’s intention. Then,



24 Chapter 2. A New Approach to Developing Open Distributed Systems

the agent sent again the formula ”C1-agent’s intention is phi” however, this time
to the agent representing the FirstClass; let the agent be called FC-agent. Suppose
that FC-agent replied with the following commitment:
”FC-agent commits to realize phi,
if (order is delivered to FC-agent by Dec. 15, 2003 and
the order specifies the flight (i.e., from Warsaw to San Francisco, departure Dec.
31, 2003) and
one of the following additional specification of the order is satisfied:
( airline is Lufthansa and the price is 300 euro)
or
( airline is Swissair and the price is 330 euro)
or
( airline is LOT and the price is 280 euro) )”

Let psi denote, the formula after ”if” inside (...) parentheses. The formula psi
is the precondition of the commitment. Once the C1-agent had received the info
about the commitment, the C1-agent considered the intention phi as arranged to
be realized by FC-agent, and then the C1-agent put the formula psi as its current
intention, and looked for a service that could realize it. Let us notice that the
order specified in the formula psi could be created only by the client via its C1,
that is, the client had to decide which airline and price should be chosen, and
the complete order was supposed to include details of a credit card of the client.
Hence, the C1-agent sent the following message to C1: ”C1-agent’s intention is
psi”.

Suppose that C1 replied to the agent: ”C1 commits to realize psi, if true ”
Note that now the client C1 acted as a service, that produces data of the form
of orders. The C1-agent considered the intention psi as arranged to be realized
by C1. Since the precondition of the C1 commitment was the formula ”true”, a
workflow for realizing C1-agent’s request was already constructed. Once C1 had
created the order and sent it to FC-agent, the FC-agent passed the order to its
raw application, i.e., to the FirstClass office. FirstClass produced an appropriate
invoice and returned it to the FC-agent. The FC-agent sent it to C1.

It was supposed (in the protocol) that once a service-agent had realized a com-
mitment, it sent the confirmation to the C1-agent. Once the C1-agent had received
all confirmations (i.e., from C1 and FC-agent), it got to know that the workflow
was executed successfully. In order to complete this distributed transaction, the
C1-agent sent synchronously the final confirmation to all the services engaged in
the workflow. This completes the first example.

A complete description of the implementation of this example is presented in
Chapter 4.

2.3.2 Example 2

For the purpose of presentation the example is a bit simplified. A description of
the implementation of this example is presented in Chapter 5.

The main difference between the first and the second example is that in Exam-
ple 1 there is only one service (called FirstClass), whereas in this example there
are two services (called AnyBook, and BigBank) that are composed into workflow.
So that the purpose of this example is to show how services can be composed (on
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the fly) into a workflow in order to realize a request.
Client C1 was going to purchase a book entitled ”The Lord of the Rings”. It

wanted to arrange the request by Dec. 15, 2003. Client C1 expressed the request
in a formal description language; suppose that it was the following formula:
phi =
”invoice for the book ”The Lord of the Rings” is delivered to C1 by Dec. 15, 2003”

Then, the request formula (i.e., phi) was delegated to C1-agent. The request
became the goal of the C1-agent. The C1-agent set the request formula as its first
intention, and was looking for a service that could realize it. The C1-agent sent
the following query to an matching-agent called infoService:
”C1-agent’s intention is phi”

Suppose that infoService replied that there was a bookstore called AnyBook
that could realize C1-agent’s intention. Then, the agent sent again he formula:
”C1-agent’s intention is phi” however, this time to the service-agent representing
AnyBook that was called AB-agent. Suppose that AB-agent replied with the
following commitment:
”AB-agent commits to realize phi,
if (
(order is delivered to AB-agent by Dec. 14, 2003
and
the order specifies the title as ”The Lord of the Rings” and the price as 70 euro)
and
(payment confirmation of 70 euro for the book is delivered to AB-agent by Dec.
14, 2003)
)”

Let psi denote, the formula after ”if” inside (...) parentheses. The formula
psi is the precondition of the commitment. Once the C1-agent had received the
info about the commitment, the C1-agent considered the intention phi as already
arranged to be realized by AnyBook. Then, the C1-agent decomposed the formula
psi into the following two subformulas:
psi1 =
”(order is delivered to AB-agent by Dec. 14, 2003
and the order specifies the title as ’The Lord of the Rings’ and the price as 70
euro)”

psi2 =
”(payment confirmation of 70 euro for the book is delivered to AB-agent by Dec.
14, 2003)”

These subformulas were set as the current intentions of the C1-agent. Then,
the C1-agent was looking for services that could realize them. The order specified
in the formula psi1 could be created only by the client via its service-agent C1,
that is, the client had to specify the destination address for the book delivery.
Hence, the C1-agent sent the following message to the service-agent C1:
”C1-agent’s intention is psi1”

Suppose that the service-agent C1 replied to the agent:
”C1 commits to realize psi1, if true”

The C1-agent considered the intention psi1 as already arranged to be realized
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by the service-agent C1. There was no precondition of the commitment.
Then, the C1-agent was looking for a service that can realize the second in-

tention, i.e., psi2. Suppose that C1-agent got to know from the infoService that
the BB-agent (representing service BigBank) can realize its intention. So that the
C1-agent sent to the BB-agent the following message:
”C1-agent’s intention is psi2”

Suppose that the BB-agent replied:
”(BB-agent commits to realize psi2,
if
(payment order for 70 euro for the book is delivered to BB-agent by Dec. 14, 2003)
)”
Then, the formula:
psi21 =
(payment order for 70 euro for the book is delivered to BB-agent by Dec. 14, 2003)
became the next intention of C1-agent.

The C1-agent sent the following message to the service-agent C1:
”C1-agent’s intention is psi21”
Suppose that the service-agent C1 replied with the following commitment:
”C1 commits to realize psi21, if true”
Hence, a workflow for realizing C1-agent’s request had already been constructed
and was ready to be executed.

Then, C1 (as service-agent) created the order and sent it to AB-agent, and
created the payment order and sent it to BB-agent. BigBank produced the appro-
priate payment confirmation and sent it via BB-agent and AB-agent to the service
AnyBook. AnyBook produced the invoice and sent it via AB-agent to C1.

C1-agent received confirmation from the service-agent of C1, from BB-agent,
from AB-agent, and once again from the service-agent C1, and then sent syn-
chronously the final confirmation to these service-agents to complete the dis-
tributed transaction. This completes the second example.

2.4 How to implement the examples?

It seems that the scenarios presented in the examples are quite natural and ubiq-
uitous, that is, they may be considered as an attempt to automate the usual way
a human user would follow in order to realize such kinds of requests. So that it
seems reasonable to develop a technology for realization of such requests. In order
to do so several problems must be solved.

The first problem is the request form. Actually, a client’s request (from our
examples) consists of two parts. The first part is the initial query, like Book a
flight ... or Purchase a book by ... . A query, to be expressed in description
language DL, specifies only the result (the final data) to be received by the client.
This part corresponds to the first phase of the conversation protocol consisting of
discovery appropriate service-agents and sending queries to them.

Usually, specification of the query is only partial, and does not determine the
final data. The query must be sent (as a client’s intention) to a service-agent
associated with a raw application that may produce a data specified in the query.
The application must be intelligent (i.e., to understand the query) to be able to
answer the query. If the application can produce the desired output data, then
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the application returns a commitment, i.e., the constrains on the input data that
must be delivered to the application in order to produce the output data specified
in the query. The constrains on the input data are decomposed into next client’s
intentions in the form of queries, so the client-agent is looking for another services
that can answer these queries; and so on. This query process is propagated back
until all new queries reach the client. Then, the client obtains the specifications
of the initial data that must be created in order to realize its request. Again the
specifications are expressed in description language.

Note that simultaneously to the query back propagation process, the service-
agents (that participate in this process) form a workflow for realizing the client’s
request. It means that service-agents coordinate data flow and processing that
will happen if the client creates the initial data satisfying the specifications, and
sends them to the next service-agents in the workflow.

These very initial data constitute the second part of the client’s request and
correspond to the second phase of the conversation protocol where the workflow
(arranged in the previous phase) is executed.

We propose the following requirements for a technology realizing such simple
scenarios as well as more sophisticated ones:

• Since the queries and answers are passed between applications, the descrip-
tion language for expressing queries and answers must be generic and inde-
pendent of data types and types of operations performed by applications.

• Since any raw application must answer a query concerning the output it can
produce, it must be augmented with additional functionality for processing
such queries and producing answers to them. Hence, the description language
must have precise, machine processable semantics.

It is clear that according to the requirements, service invocation must consist of
two phases: In the first phase a service processes a query, produces an answer,
and gets ready to process input data specified in the answer to the query. In the
second phase the input data are sent to the service, are processed, and the output
data are passed to the place specified in the query. Although the order of the
phases is fixed, they may be performed asynchronously as well as the steps of each
phase may be performed asynchronously.

The service invocation described above is consistent with the revised Client
Server model. However, it seems that it is completely different from the invocation
method proposed by the RPC model and document passing style. Does it mean
that the technologies that are based on RPC-style and document passing style
cannot realize the scenarios presented in the examples? Of course, they can,
however the possible realizations are enormously complex. The reason is the lack
of generic description language capable of expressing queries and answers. This
means that in order to implement the conversation protocol, the types of data and
types of operations that are specific for these very examples must be hardcoded in
the implementation. Hence, it is impossible to implement the protocol in a generic
way, if there is no generic description language.

Let us explain how the examples can be implemented using technologies, e.g.,
BPEL4WS and WSCI, that are based on the Web services. The service archi-
tecture corresponding to the standards SOAP+WSDL consists of a collection of
operations (methods) that can be called. Although there may be semantic and
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functional interrelations between these operations, it cannot be expressed in WSDL
where only operation signatures can be specified. Usually, an operation, that for
example, processes orders and produces appropriate invoices, is accompanied by
an operation that processes the queries concerning the capabilities of the original
operation. Although, these two operations belong to the same service there is no
way to express their semantic interrelation. Moreover, the query / answer format
is hard-coded in implementation of the associated operation. Hence, there is no
generic way to describe data types as well as the operation types. It is not possible
to specify (in WSDL) the abstract functions implemented by the operations, i.e.,
what the operations do. (Note, there was an attempt to introduce it to WSDL
see (53).) Service provider itself must classify these operations according to the
taxonomies available in UDDI.

An alternative approach is to enrich service architecture and service descrip-
tion, and go beyond the traditional RPC-style and simple document passing, i.e.,
to allow more sophisticated protocols for service invocation. However, to do so a
generic service description language is needed.

The conclusion is that the running examples can be implemented by tech-
nologies that are based on the SOAP+WSDL+UDDI protocol stack, however the
implementation can not be universal, i.e., it must be dedicated to specific data and
operation types occurring in the examples. The reason is that in order to do so in
a generic way there must be a universal language for data and operation descrip-
tion. WSDL describes only signatures of operations performed by services. Client
must express a query in a language that must be understood by heterogeneous
services whereas a service must express an answer that must be understood by a
heterogeneous client. Hence, there must be a common universal agent conversation
language describing data processing.

If the running examples are regarded as simple and natural so that it is expected
that more sophisticated scenarios should be realized in an universal and automatic
way, then it is clear that something more is needed than the basic Web services
protocol stack. It is not a critique of SOAP+WSDL as a technology realizing
RPC-style and document passing style of service invocation. In fact, it is a perfect
standard for this kind of service invocation. However, in order to realize the idea
of Web services in its full dimension, that is, especially the aspect of automatic
service integration, a more sophisticated service invocation protocol is necessary.

2.5 Chapter summary

The final conclusion of this section is that there is a need to go beyond the classic
RPC-style and simple document passing. The Web services protocol stack and
the integration technologies that are based on this stack are insufficient to real-
ize automatic integration of heterogeneous applications in open and distributed
environment.

The purpose of the revision of the Client Server model was to abstract from
the existing service invocation methods in order to obtain a methodological basis
to propose new methods.

The final conclusion of this chapter may be as follows. A generic language is
needed for describing data processing and exchange by heterogeneous applications
in open and distributed environment. The language must have precise semantics
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that can be processed automatically.
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3.1 Beyond the RPC-style and simple document

passing

It would be useless to revise the Client Server model without proposing a tech-
nology different from technologies based on the RPC-style and simple document
passing. So that we are going to propose a new service invocation protocol that
was roughly described in the running examples presented in Chapter 2, Section
2.3.1 and 2.3.2.

Sometimes service invocation protocol is called Message Exchange Pattern,
see (54). In the technologies that follow the RPC-style of service invocation, the
invocation protocol is based on the synchronous request-response pattern, and in
the case of Web services the protocol is stateless.

We propose a service invocation protocol that is much more sophisticated. The
protocol consists of two phases: The first one is called query phase whereas the
second one is called execution phase. The query phase consists of the following
two steps:

1. The client sends a query to the service specifying the desired output.

2. Then, the service answers with the specification of the input required to
produce the desired output.

The execution phase consists of the following three steps:

1. The client creates input data according to the specification in the service’s
answer and sends to the service the pointer to this input data, e.g., the URL
where the input data are stored.

2. The service downloads the input data and produces output data.

3. Then, the service sends to a client (or another service) the pointer where the
output data are stored.

Note that service invocation method is a part of the conversation protocol that is
described in detail in Chapter 6.

There are four basic parts of a technology implementing the revised Client
Server model: Description language DL, agent’s state format, message format,
and conversation protocol. The fifth part is transport protocol. Although the
technology should be independent of the transport protocol, it is convenient to fix
one as an example. Of course, HTTP is the protocol of the first choice.

Before we specify formally these four parts, let us fix our attention on the raw
application of the service component for a while. First of all it is convenient to
consider service component that performs exactly one operation. In our running
examples a raw application is intelligent in a sense. That is, it can answer queries
concerning the operation it performs. This functionality must be implemented
in this very component. Since the service-agent is supposed to be a generic stub
independent of the raw application, this functionality must be implemented as a
part of the raw application of the service. This is the crucial requirement of our
technology. The requirement is natural because the provider of this very service
must know what his/her service does, and must be able to answer queries about the
current capabilities of his/her service. Usually, this functionality is implemented
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in some way on the side of the service provider, so that it may be also exposed
as a part of the service. However, the problem is that this functionality must
understand queries and answer them. Since these queries come from heterogeneous
applications, and answers are sent also to a heterogeneous application, there must
be a common language for expressing queries and answers. This very language is
our description language DL.

The language is supposed to describes data, their types, attributes, locations,
and processing by abstract functions, so that clients’ requests can be expressed
in this language. The language should also describe types of operation performed
by services in terms of abstract functions they implement, as well as agents repre-
senting clients and services in terms of their goals, intentions, and commitments.
These mental attitudes are essential for arranging services into workflow in order
to realize the clients’ requests. Hence, the language should also describes workflow
formation and execution process, however, the language must be fully declarative,
i.e., no explicit actions should be used.

Hence, there are three kinds of objects to be described in the language: Data
(to be called resources in our framework), service-agents, and client-agents. For
simplicity, from now on service-agent is called service, whereas client-agent is called
agent. Since the language is supposed to be open and of distributed use, all names
must be URIs (64). Therefore we must provide namespaces for resources, services,
and agents.

3.2 Namespaces for Description Language

We assume that for any object, its name contains (as its inherent part) the com-
munication address of this very object. Since communication address is dependent
on transport protocol, an object can communicate using only one fixed transport
protocol. This means, in turn, that all objects in our technology can use only one
fixed transport protocol. This may be viewed as a drawback unless the protocol
is simple and ubiquitous as it is in case of HTTP.

Resources are supposed to be passed from one service to another. Hence, the
address of a resource is an URL pointing to the place on a www server where the
resource is stored. The transport for resources is realized by the GET method of
HTTP protocol.

Services and agents communicate by exchanging messages. The message format
is defined at a high level of abstraction, i.e., at the level of logical communication
between agents and services, so that the transport protocol is not essential and is
not specified in the message format. Since the method POST of HTTP is chosen
as the message transport protocol, the address format for agents’ and services’
addresses is the following:

http://host.name/path/party_id

Where party id is the local identifier of the corresponding agent or service. How-
ever, in the case of agent, the string party id is of the form agentname/date-time

where date-time is a string of the type xsd:dateTime, and denotes the timeout
set for the task delegated to the agent for realization.

Now, we are going to introduce a XLM-syntax of a simple version of first
order predicate logic with types and without quantifiers. Although the syntax
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is typical for the first order logic, the evaluation of formulas will be done in the
spatio-temporal manner. We will show that this language is sufficient to describe
open and distributed environments consisting of heterogeneous components where
clients’ requests are realized and service components are used.

3.3 XLM-syntax of Description Language: up-
perEntish

Since the XML notation is long and cumbersome, a more convenient human read-
able notation of DL, that corresponds to the XLM syntax of DL, will also be
introduced. Actually the notation resembles the standard notation of first order
logic. For the complete XML syntax of DL we refer to the documents formula.xsd
and definitions.xsd listed in the Appendix.

First of all we must introduce the XML format for names in our language DL.
The following XML code defines the XML-type called Concept.

<xsd:complexType name="Concept">

<xsd:sequence>

<xsd:element name="shortName" type="xsd:string"/>

<xsd:element name="longName" type="xsd:anyURI" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

It consists of two elements; the first one is called shortName and is of type
xsd:string, and the second one is called longName and is of type xsd:anyURI.
Hence, any concept has its own name that consists of a short name and a long
name. The short name is just a string, whereas the long name is the pointer (URI)
to the place where the concept was formally defined.

3.3.1 Type names

Now, let us go to the definitions.xsd, and see how the names for resource types,
functions, and relations are introduced to DL. The general schema for defining type
names in DL is the following.

<xsd:element name="typeDefinition">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="definiens">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="typeName"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="definiendum">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="documentation"/>
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</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

As usually, formal definition consists of two basic elements: definiens and
definiendum. The definiens contains the element typeName that is defined (in
formula.xsd) as follows:

<xsd:element name="typeName" type="Concept"/>

That is, it is an instance of the XML-type Concept. The element shortName of
the typeName contains a string, say "Typ1". (Note that it is our convention that
the first letter of the string is in upper case like in Java.) The element longName

of the typeName contains a URL, e.g.,

http://ii5.ap.siedlce.pl/Entish/my_type_def.xml#Typ1

This URL can not be arbitrary, i.e., my type def.xml is the very file name (being
an instance of definitions.xsd) where this type name was defined, and the whole
URL is the unique path (and pointer) to this very definition. This uniqueness is
global, i.e., there cannot be any other place where this type was defined, because
this very URL is an inherent part of the name of this type.

In our informal notation, the short name of this type is used, i.e., the name
Typ1.

The second element of typeDefinition is definiendum. Since there are
no type constructors in our language, this element contains only element
documentation that may contain formal or informal description of this type.

Examples of type definitions can be found in properEntish.xml listed in the
Appendix.

3.3.2 Relation names

Relation names are introduced to DL according to the following schema:

<xsd:element name="relationDefinition">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="definiens">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="relationName"/>

<xsd:element ref="variable" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="definiendum">

<xsd:complexType>
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<xsd:sequence>

<xsd:element ref="formula" minOccurs="0"/>

<xsd:element ref="documentation"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

The relationDefinition consists of two elements: definiens and definiendum.
The first element, i.e., definiens, specifies the name (i.e., relationName) and
the signature of the relation (i.e., the arguments of the relation) by means of the
elements variable to be defined in Section 3.3.6. The element relationName is
defined (in formula.xsd) as

<xsd:element name="relationName" type="Concept"/>

So that the element shortName of relationName contains the short name of the
relation (say rel1), whereas the longName contains URL that is the unique pointer
to the very XML file (being an instance of definitions.xsd) where this very
relation was defined.

The definiendum of relationDefinition may consist only of the element
documentation containing a more or less formal description of the relation. In
this case the relation is primitive, and the precise way of evaluation of this relation
MUST be described in the documentation.

If, however, the definiendum contains the element formula (defined in
formula.xsd and explained in Section 3.3.7), then this element formula contains
a formula that defines the relation. So that this relation is complex and is defined
by primitive or less complex relations and functions that occur in the formula.

In our informal notation, the short name of this relation is used, i.e., the name
rel1 in the following way: rel1( ?x, ?y ), where ?x, ?y are variables denoting
the arguments of the relation.

Note that in any instance of relationDefinition described above as well as
in any instance of functionDefinition described below, the variables (if there
are any) occurring in the element formula (resp. element term) of the element
definiendum, must be exactly the same as all variables occurring in the element
definiens.

3.3.3 Function names

Function names are introduced to DL according to the following schema:

<xsd:element name="functionDefinition">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="definiens">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="functionName"/>
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<xsd:element ref="typeName"/>

<xsd:element ref="variable" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="definiendum">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="term" minOccurs="0"/>

<xsd:element ref="documentation"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

The functionDefinition consists of two elements: definiens and definiendum.
The first element specifies the name (i.e., functionName) and the signature of the
function (i.e., the arguments of the function, and type of the value returned by
this function). The element functionName is defined (in formula.xsd) as

<xsd:element name="functionName" type="Concept"/>

So that the element shortName of the functionName contains the short name of
the function (say fun1), whereas the longName contains URL that is the unique
pointer to the very XML file (being an instance of definitions.xsd) where this
very function was defined.

The definiendum of functionDefinition may consist only of the element
documentation containing a more or less formal description of the function. In
this case the function is primitive.

If, however, the definiendum contains the element term (defined in
formula.xsd and explained in Section 3.3.4), then this term contains a term that
defines this function. So that this function is complex and is defined by primitive
or less complex functions and constants occurring in the term.

In our informal notation, the short name of this function is used, i.e., the name
fun1 in the following way: fun1( ?x, ?y ), where ?x, ?y are variables denoting
the arguments of the function.

Note that if a function has no arguments, then it is a functional constant,
like the famous π number. It is important to grasp that functional constants are
different from the element constant (defined in formula.xsd and described in
Section 3.3.5) that contains the pointer to the specific data, and specifies the type
of the data.

3.3.4 Terms

Terms are defined in the schema formula.xsd in the usual way, i.e.,

<xsd:element name="term" type="Term"/>
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<xsd:complexType name="Term">

<xsd:sequence>

<xsd:choice>

<xsd:sequence>

<xsd:choice>

<xsd:element ref="variable"/>

<xsd:element ref="constant"/>

</xsd:choice>

</xsd:sequence>

<xsd:sequence>

<xsd:element ref="functionName"/>

<xsd:element ref="typeName"/>

<xsd:element ref="term" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

So that every constant is a term, every variable is a term. Every expression,
consisting of functionName, typeName denoting the type returned by this function,
and several terms (as arguments of the function) of the types consistent with the
function signature, is a term. So that the definition is recursive. The element
functionName can not be arbitrary; it MUST already be defined in an instance of
definitions.xsd available on www.

In our informal notation, fun1( g( ?x ), cons1 ) is an example of a complex
term.

3.3.5 Constants

A constant denotes specific data in our language. Constants are defined in the
schema formula.xsd in the following way:

<xsd:element name="constant" type="Constant"/>

<xsd:complexType name="Constant">

<xsd:sequence>

<xsd:element name="constantName" type="Concept"/>

<xsd:element ref="typeName"/>

</xsd:sequence>

</xsd:complexType>

The element constant consists of constantName that specifies the name of the
constant and typeName that specifies the type of the constant. The name consists
of two elements: Obligatory shortName and optional longName. If there is no
longName, then this very shortName contains the data that are denoted by this
constant; in this case the data must be a literal or a string. Otherwise, the
longName is a pointer (a URL) to a file where the data are stored.

In our informal notation, the contents of shortName is used to denote this
constant.
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It is important to notice that functional constants (i.e., function names with
no arguments) and constants defined above are different notions.

3.3.6 Variables

Variables are defined in the schema formula.xsd in the following way:

<xsd:element name="variable" type="Variable"/>

<xsd:complexType name="Variable">

<xsd:sequence>

<xsd:element name="variableName" type="xsd:string"/>

<xsd:element ref="typeName" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

A variable consists of variableName and optional typeName describing its type.
If there is no typeName, then the type of the variable may be arbitrary. Otherwise
the possible types are specified by one or several typeName elements.

3.3.7 Formulas

Formulas are defined in the schema formula.xsd in the usual way, i.e.,

<xsd:element name="formula" type="Formula"/>

<xsd:complexType name="Formula">

<xsd:sequence>

<xsd:choice>

<xsd:sequence>

<xsd:element ref="relationName"/>

<xsd:element ref="term" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:sequence>

<xsd:element name="operator">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="or"/>

<xsd:enumeration value="and"/>

<xsd:enumeration value="implies"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element ref="formula" minOccurs="2"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>
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So that a formula of our language is either an atomic formula or a complex for-
mula. Complex formula is a disjunction, or conjunction or implication of formulas.
Atomic formula consists of the element relationName (that MUST be already de-
fined in an instance of definitions.xsd available on www), and several terms.
The number of terms as well as their types MUST conform to the signature of the
relation.

In our informal notation,

( psi1( ?x ) and psi2( ?y )) implies phi( ?x, ?y ) )

is an example of a formula.
It is important to note that a disjunction, conjunction, and implication operator

may have more than two arguments. In the case of disjunction and conjunction
it is natural because these operators are commutative. However, an implication
consisting of more than two arguments, e.g.,

( phi1 implies phi2 implies phi3 ... )

is understood in the following way:

( phi1 implies ( phi2 implies ( phi3 ... )))

3.3.8 Evaluation of formulas

The crucial point of the logic we introduce is evaluation of formulas. It was already
mentioned that introduction of new primitive relation name must be accompanied
by the method of its evaluation specified in the documentation element of the
relation definition. We introduce a special format for expressing a statement that
a formula was true in a place and at a time. Since the formula evaluation is
spatio-temporal, it means that the logic we introduce is also spatio-temporal.

The statement format (introduced in the schema info.xsd, see the Appendix)
is the following:

<xsd:element name="signedInfo">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="info"/>

<xsd:element name="signature" type="xsd:anyURI"

minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="info">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="formula"/>

<xsd:element name="place" type="xsd:anyURI"/>

<xsd:element name="time" type="xsd:dateTime"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>
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The element signedInfo consists of the element info and an optional element
signature that is a URL pointer to a file containing a signature of the element
info. In the current version of the composition protocol (entish 1.0), the element
signature is not used. The element info consists of three obligatory elements:
formula, place, and time. The intended meaning of an info is that the formula
was evaluated as true in this very place and at this very time. The element
place contains URL pointer to the place, whereas time contains a string of type
xsd:dateTime specifying the time of the evaluation.

This completes the introduction of upperEntish, that is, the syntax of DL. Now,
we are going to introduce a collection of primitive types, relations and functions
that may be seen as a proposal of upper ontology for service description.

Agents and services are represented by their states. Since the description lan-
guage (we are going to introduce) is supposed to describe agents and services, it
is reasonable to introduce the common format for agent and service state. This
format is defined in the document state.xsd, see the Appendix.

3.4 State of agent and service

The element state is defined in the following way:

<xsd:element name="state">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="owner" type="xsd:anyURI"/>

<xsd:element ref="goal"/>

<xsd:element ref="intentions"/>

<xsd:element ref="listOfCommitments"/>

<xsd:element name="knowledge" type="listOfInfos"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

So that it consists of the following elements:

• owner that contains the address of the owner (i.e., an agent or a service) of
the state.

• goal that contains the formula expressing agent’s task (or the type of oper-
ation performed by a service if the state belongs to the service).

• intentions contains lists of agent’s intentions.

• listOfCommitments contains a set of service’s commitments.

• knowledge is the container for agent’s/service’s knowledge; it is a collection
of elements signedInfo (i.e., evaluated formulas of the description language
that were defined in the previous Section).

In the current version of the composition protocol if the state belongs to an agent,
then the element listOfCommitments is not used, and if the state belongs to a
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service, then the element intentions is not used. However, it is also reasonable to
consider agents that make commitments, as well as services that have intentions.

The element goal is defined as

<xsd:element name="goal">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="formIn" type="Formula" minOccurs="0"/>

<xsd:element name="formOut" type="Formula"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

It consists of two elements: formIn and formOut. Each of them contains a formula
of our description language. If the state belongs to a service, then the goal

expresses the type of operation performed by the service, so that formIn contains
a formula that describes the precondition of service invocation, whereas formOut
contains a formula that describes the post condition (effect) of performing the
operation by the service.

If the state belongs to an agent, then formIn is either empty or contains
a formula that describes the precondition for realizing the agent’s task, whereas
formOut contains a formula that describes the agent’s task.

The element listOfCommitments is defined as

<xsd:element name="listOfCommitments">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="commitment" maxOccurs="unbounded"

minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="commitment">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="formIn" type="Formula"/>

<xsd:element name="formOut" type="Formula"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

It consists of elements each of which is called commitment and consists of two
elements: formIn and formOut. Each of these elements contains a formula of our
description language. formIn contains a formula that describes the precondition
of the commitment, whereas formOut contains a formula that describes the post
condition, i.e., the effect the service has committed to realize. Once a commitment
is realized, it is removed from listOfCommitments, however the information about
the realization is stored in knowledge. It is important to note that the format of
service’s commitment corresponds to the format of goal that is used to express
the type of operation performed by the service.
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The element intentions is defined as

<xsd:element name="intentions">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="plan" type="listOfFormulas"/>

<xsd:element name="workflow" type="listOfFormulas"/>

<xsd:element name="realized" type="listOfFormulas"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="listOfFormulas">

<xsd:sequence>

<xsd:element ref="formula" maxOccurs="unbounded"

minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

So that it is composed of the following sub elements:

• plan is a sequence (list) of formulas (called intentions) describing agent’s
plan.

• workflow is a set of intentions (moved from plan) for which agent has already
arranged commitments with services. They are supposed to form a workflow
for realizing agent’s task.

• realized is a set of intentions (moved from workflow) that have already
been satisfied by realizing of the associated commitments.

An algorithm of agent functioning can be sketched as follows.

1. Agent’s task is set as its first intention and put into plan.

2. Agent is looking for a service that can realize the first intention from its
plan.

3. Once the agent finds out a service that has committed to realize its current
intention, the intention is moved from plan to workflow whereas the pre-
condition of the service’s commitment is set as its new intention, and is put
as the last element of the agent’s plan.

4. If plan is an empty sequence, then the workflow for task realization is com-
pleted and may be executed.

5. Once the agent gets confirmation that an intention from workflow has been
realized, it is moved to realized.

6. If workflow is empty, then the workflow has been already executed success-
fully, so that the task is realized, and the agent can send the final confirma-
tion approving the transaction performed by the workflow.
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The algorithm of service functioning is extremely simple. A service waits for
agents. If an agent sends to the service a message with its intentions, and the
intention can be realized by the service, then the service commits to realize this
intention, so that appropriate formulas are put into the new element commitment
of the service’s state. Once the intention is realized, a confirmation is sent to the
agent by the service, and the commitment is removed from the service’s state.

3.5 properEntish as Description Language

The primitive types, relations, and functions that constitute together the descrip-
tion language are defined in the document properEntish.xml (see Appendix) as
an instance of the schema definitions.xsd. Below, we describe them using our
informal notation.

Primitive types:

• Agent is a primitive type; agent (i.e., element of type Agent) denotes a
process equipped with its own state i.e., element state defined in state.xsd

and explained in the previous Section. It is supposed that all essential data
of an agent are stored in its state. Agent is dedicated for a single task
realization. It is created when there is a task to be realized, and is terminated
after the task realization or if the task cannot be realized.

• Service is a primitive type; service (i.e., element of type Service) denotes a
process having its own state (i.e., element state defined in state.xsd). The
main service’s component is an application that processes data. Processing
data may result in influencing the real world, e.g., purchasing a commodity or
withdrawing some amount of money from a bank account, or just performing
some physical actions like switching off/on a washing machine.

• Time; element of this type is a string written according to xsd:dateTime

format.

• Token; element of this type is an arbitrary string. It is used as value of
function token( ?resource ). Tokens serve to identify resources at the
language level. Note that in our language, resources are only described so
that their format may be arbitrary, e.g., XML, MS Word, txt, binary, and
so on.

• Index; element of this type is a string of the form of decimal numbers
separated by dots in the very same way as IP addresses, e.g., 0.12.3 or
34.0.11.45.1 or 5.34 It is used as value of function index( ?resource ).
The value (an index) is associated with an option during workflow formation.
Indexes serve to determine interdependencies between options that describe
resources in a workflow.

Primitive relations:

• timeout( ?t ) can be evaluated at any host. It is true if the time ?t is
later (bigger) than the current GMT time at the host.

• ( ?x=?y ) is a polymorphic equality relation. It can be evaluated if ?x and
?y are of the same type.
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• isIn( ?resource, ?service ) states that ?resource is in ?service. It
can be evaluated locally only by ?service.

• intentions( ?agent ) is an atomic formula. It is evaluated only locally
by ?agent. During an evaluation it is replaced with the disjunction of all
formulas from the element plan of the state of the ?agent.

• formInOperationType( ?service ) is an atomic formula to be evaluated
only by ?service. During an evaluation it is replaced with the formula from
the element formIn of goal of the state of ?service. The formula describes
the precondition necessary for ?service invocation.

• formOutOperationType( ?service ) is an atomic formula to be evaluated
only by ?service. During an evaluation it is replaced with the formula
from the element formOut of goal of the state of ?service. The formula
describes the post condition of ?service invocation, i.e., the result of per-
forming the operation by ?service.

• formInCommitment( ?service ) is an atomic formula evaluated only by
?service. During an evaluation it is replaced with the disjunction
of formulas from the formIn elements of all commitment elements of
listofCommitments of the state of ?service. It describes the precon-
ditions of the commitments made by ?service.

• formOutCommitment( ?service ) is an atomic formula evaluated only by
?service. During an evaluation it is replaced with the conjunction of
formulas from the formOut elements of all commitment elements of the
listOfCommitments of the state of ?service. It describes the post condi-
tions of the commitments made by the ?service.

• false is the atomic formula that is always false.

• true is the atomic formula that is always true.

It is worth to note, that the primitive relations: intentions,

formInOperationType, formOutOperationType, formInCommitment and
formOutCommitment of the description language correspond to some elements of
state.

There are only two predefined functions that serve to identify resources
described during workflow formation.

Primitive functions:

• token( ?resource ) is the function that returns a token (an element of
type Token) determined for ?resource by the service that expects it to be
delivered as its input.

• index( ?resource ) is the function that returns an index (element of type
Index) that is associated with an option. Options describe the resources in a
workflow. Indexes serve to determine interdependencies between the options
in the workflow.
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A formula of our description language is syntactically valid (well formed)
if it is constructed according to the syntax specified in formula.xsd and
properEntish.xml, and if all the names of types, relations, and functions oc-
curring in the formula have already been defined in XML documents that are
instances of definitions.xsd, and the documents are available by HTTP.

The language specified above is called Entish.

3.6 Entish and the meaning

Entish is supposed to have precise and machine processable semantics. In order
to explain this semantics, let us fix our attention on the concept of meaning (i.e.,
semantics) for a while.

3.6.1 Meaning

This section is based on the discussion concerning the meaning, that
took place at ws-www@w3.org mailing list (subject: Meaning, URL
http://lists.w3.org/Archives/Public/www-ws/) in May and June 2003.

Language alone is merely a syntax, so that formal inference and axioms ( i.e.,
a naming convention and some rules how to transform one string onto another)
have nothing (or rather little) to do with the meaning of a language.

According to the Wittgenstein’s thesis (25), the meaning of language is in
its use. Hence, the meaning is realized through a consensus on how to use the
primitive concepts of the language. The consensus is a never ending process; some
new useful concepts are being introduced (according to some fixed conventions)
whereas some useless or old ones disappear. New complex notions are created as
abstractions of the existing ones. The crucial point is to start the process from
the very roots, i.e., from the really primitive concepts and to specify explicitly the
abstraction rules.

Let us present here some prominent examples of abstract notions.

• Turing machine representing computable functions; it is an abstraction from
the number of steps needed to halt and from the length of the tape.

• Continuity; it is an abstraction from the resolution, i.e., number of pixels
per square unit.

• infinite sets, e.g., the set of natural numbers is an abstraction from counting
process.

• most of the relations are abstractions from situations resulting from perform-
ing some operations.

Usually, the meaning of such abstract notions can be characterized by axioms in
terms of other notions. However, it seems that this very meaning of an abstract
notion can be reconstructed by decomposing it into more and more primitive
ones so that finally it may be reduced to really primitive concepts connected by
abstraction rules.

Since it is not the right place to discuss the fundamental problems of seman-
tics, let us only mention that important theoretical contribution to the problem
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of semantics was done by the great philosophers and logicians to mention only
Immanuel Kant (13), Edmund Husserl (12), Charles Peirce (18), Ludwig Wittgen-
stein (25), Felix Kaufmann (14), Alferd Tarski (23), and Jerzy  Loś.

3.6.2 Entish as an open language

Let’s go back to Entish. Openness of Entish is clear because of the format of
names. Anyone can introduce his/her own concepts to the language, however it
must be done according to the fixed rules, that is, the concept must be defined in
a document being an instance of the schema definitions.xsd, and the document
must be available on the www. So that the name of a new concept contains the
pointer to the document where this very concept was defined.

3.6.3 Meaning of Entish

Generally, Entish describes applications that process and exchange data. An ap-
plication is described either as an agent in terms of its intentions, or as a service
in terms of the precondition and the postcondition of the operation it performs
as well as its commitments. Data are described as resources of some types. Data
processing is described by functions, whereas data passing is described by rela-
tions. The crucial point is that in order to describe data processing and exchange
in Entish, the concepts used in the description must be defined according to the
rules determined by the schema definitions.xsd.

Since axioms were not even mentioned, the question is what the meaning of the
language is. How do the names get their meaning in this language? The answer
is extremely simple. A name gets its meaning by pointing to the place where it
was originally defined either as a primitive concept or as a complex concept. This
very name contains the pointer to this original place. There are two cases:

• If the name denotes a primitive concept, then the definition consists only of
definiens. Since the name of this primitive concept is unique, and points to
the very unique place where it was originally defined (only by definiens) the
meaning of this primitive concept is fixed. Anyone who uses this name refers
to this very unique place where it was originally defined. Informal meaning
of this concept may be described in a natural language also in this place.

• If the name denotes a complex concept, then its meaning is defined in the
definiendum by means of names of less complex concepts. Any of these less
complex concepts is either a primitive concept (with meaning fixed by its
name) or is defined in terms of less less complex concepts. The result of this
unfolding (i.e., substituting name of complex concept by its definiendum) is
a tree whose root is the name, the nodes are names of less complex concepts,
and the leaves are names of primitive concepts.

There are three kinds of primitive concepts that can be introduced to Entish,
namely, types of resources, functions, and relations. It is clear that there should be
no constrains for introducing names for new primitive resource types and primitive
functions, because this is related to introducing new services that perform new
operations on new data. However, in the case of primitive relations it is natural
to constrain primitive relations to a fixed small set. The reason is as follows.
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What the language describes is merely data processing and exchange that can
be described in terms of resource types and functions. Hence, except for a small
number of primitive relations (needed to express equality, the fact that a resource
is in some place, etc.,) there is no need to introduce more primitive relations.
This is important for keeping the semantics of Entish clear and precise. For this
very reason it is required that any primitive relation introduced to Entish must be
accompanied by precise specification how to evaluate this relation in an automatic
way. Without this requirement, the only way to provide meaning for this primitive
relation is to characterize it by axioms. This, however, would be a return to the
classic formal semantics.

Hence, Entish can be developed by defining and using, step by step, more and
more sophisticated concepts having their meaning maintained precise by keeping
chains of unique names that end up with unique names of primitive data types
and functions.

This may be seen as a trick, nothing new, and no (machine readable) semantics
at all. However, it works. The critical point is to grasp who can create formu-
las and who (rather what) processes them. In fact, the semantics, or language
understanding is always on the side of humans, i.e., users and service providers.
They express their requests, and types of operations performed by their services
in terms of data types and functions. Only they can create formulas, so that they
must understand what the formulas mean. In the composition protocol, we are
going to introduce, the formulas are processed automatically (by applications) in
the very similar way as data are.

3.6.4 Entish - say nothing that isn’t worth saying

Now, let us explain why our description language is called Entish.
Original Old Entish was the ancient language of Ents, see (24) The Lord of

the Rings by J.R.R. Tolkien. Tolkien describes Entish as agglomerated and long-
winded. This was due to the fact that each word was actually a very long and very
detailed description of the thing in question. Treebeard said of his own Entish
name that it was growing all the time, and I’ve lived a very long, long time; so my
name is like a story. Real names tell you the story of the things they belong to in
my language, in the Old Entish as you might say.

Treebeard’s own description of Entish is as follows:
It is a lovely language, but it takes a very long time to say anything in it,

because we do not say anything in it, unless it is worth taking a long time to say,
and to listen to.

The analogy with the language of Ents is obvious. The names in our description
language DL can be compared to the real names of the Old Entish, that is, a
name of DL has the precise and clear meaning that is associated with this very
name. This meaning can be unfolded by referring to the names of really primitive
concepts. However, the process of unfolding may sometimes be complex and take
a time.
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3.7 Entish and the Semantic Web - a comparison

Let us introduce the idea of Semantic Web by the following citations from (55)
and (10):

”The Semantic Web is the representation of data on the World Wide Web.
It is a collaborative effort led by W3C with participation from a large number
of researchers and industrial partners. It is based on the Resource Description
Framework (RDF) (56) which integrates a variety of applications using XML for
syntax and URIs for naming.”

”The Semantic Web is an extension of the current web in which information
is given well-defined meaning, better enabling computers and people to work in
cooperation.”

There is also a number of more or less formal introductions of the idea of the
Semantic Web, see for example (57), (58), and (59). The short overview of the
Semantic Web presented below is based on the contents of the website (58).

The Semantic Web is an evolving collection of knowledge, built to allow any-
one on the Internet to add what they know and find answers to their questions.
Information on the Semantic web, rather than being in natural language text, is
maintained in a structured form (RDF) which is fairly easy for both computers
and people to work with.

The problem is that, in Semantic Web, concepts from natural language are
used as well as their intuitive semantics. In Entish, the meaning of concepts is
built from the very beginning starting with the primitive concepts, and according
to the precise rules.

3.7.1 Description in the Semantic Web

An RDF statement is very much like a simple sentence, except that almost all the
words are URIs. Each RDF statement has three parts: a subject, a predicate and
an object. Let’s look at a simple RDF statement:

<http://www.ipipan.waw.pl/mas/stan/>

<http://love.example.org/terms/reallyLikes>

<http://www.w3.org/People/Berners-Lee/Weaving/> .

The first URI is the subject. In this instance, the subject is the person Stanislaw
Ambroszkiewicz. The second URI is the predicate. It relates the subject to the
object. In this instance, the predicate is ”reallyLikes.” The third URI is the
object. Here, the object is Tim Berners-Lee’s book ”Weaving the Web.” So the
RDF statement above says that Stanislaw Ambroszkiewicz really likes ”Weaving
the Web.” Although the statement is true, it does not mean that he agrees with
the thesis stated in the book.

It is rather curious to identify a person with one of his / her personal websites.
The same may be applied to the subject that is supposed to denote a book written
by T. Berners-Lee. As to the predicate, its meaning is supposed to be fixed by
pointing to existing or not existing HTML document.

RDF statements can say practically anything, and it doesn’t matter who says
them. There is no official website that says everything about Weaving the Web.
This leads us to an important RDF principle, namely ”anything can say anything
about anything”. Information is spread across the Web, and two people can even
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say contradictory things – Bob can say that Aaron loves Weaving the Web and
John can say that Aaron hates it. This is the freedom that the Web provides.

The statement above is written in N-Triples, a language that allows you to
write simple RDF statements. However, the official RDF specification defines an
XML representation of RDF, which is a bit more complicated, but says the same
thing:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:love="http://love.example.org/terms/"

>

<rdf:Description rdf:about="http://www.ipipan.waw.pl/mas/stan/">

<love:reallyLikes rdf:

resource="http://www.w3.org/People/Berners-Lee/Weaving/"/>

</rdf:Description>

</rdf:RDF>

Hence, in Semantic Web the basic component for description is the so called
”triple” consisting of Object URI, Predicate URI, and Subject URI. And using
these triples anything can say anything about anything. It seems that this means
exactly the same as ”nothing can say nothing about nothing”.

Entish is a simple version of a language of first order logic with types, so that
its formulas are used for description. The way the new names (denoting concepts)
are introduced to Entish is precisely defined. Entish is a language describing only
how applications process and exchange data. The names for the data types and
constants denoting concrete data, and the names for operations types performed
by the applications, as well as the names for relations used in the description,
had to be introduced to the language. Although, data processing and exchange
may cause some effects on the real world, concepts from natural language cannot
be used in Entish directly. A name from natural language can be, of course,
introduced to Entish only as a string in the element short name of the concept
name. However, the long name of this very concept name must be the pointer to
the XML document where this concept was defined along with its meaning.

3.7.2 Names in the Semantic Web

On the Semantic Web, each thing (and relationship) is identified using more com-
plicated unambiguous names. The names are web addresses (sometimes called
URLs or URIs). This can cause some confusion, e.g., Is ”http://www.ibm.com” a
company or the company’s web site?

There are also special names for text strings (literals), and temporary names
are allowed which function like pronouns. This lets us write ”The country with
the ISO country code ’US’ has a president who has the name ’George W. Bush’”
without ever using an identifier for the US.

In Entish the names are in fact also URI, that is, an Entish name (except
constants that are literals) contains a pointer (URL) to the XML document where
this very name was defined.
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3.7.3 Logic in the Semantic Web

Some facts (like ”Mary is a mother” and ”A mother is a kind of parent””) lead
logically to other facts (”Mary is a parent”). That is often intuitive to people, but
can be very hard to explain to a computer. When properly programmed, however,
computers can be very helpful in figuring out which facts follow logically from
other facts.

A precise explanation of one’s terms and reasoning in some subject area, which
can allow computers to help, is called an ontology. Ontologies can be expressed in
various languages and carried by the Semantic Web. With them, computers can
sometimes act as if they ”understand” the information they are carrying. This is
where the term ”semantic” comes in.

No logic languages have yet been recommended for the Semantic Web. Some
of the experimental languages are RDF Schema (60), DAML (61), and OWL (62).

Entish is a well defined logic language, so that there is no problem with au-
tomatic reasoning. There are no ontologies in the classic sense, i.e., as a formal
specification of concepts by axioms. In Entish, an ontology may be understood
as a collection of concepts that correspond to one application domain. So that
such ontology may include names of types, their attributes, names for functions
operating on these types as well as names for relations. It is important to stress
once again that a name for relation can be introduced either as a complex concept,
or as a primitive concept, however, under the condition that a precise evaluation
of the primitive relation must be provided in its definition. One more important
feature of Entish is that its formulas are evaluated locally and temporarily, i.e., in
spatio-temporal manner, in a certain place and at a certain time.

3.7.4 Services in the Semantic Web

The process of buying a book over the Semantic Web may be described in the
following way:

1. You browse/query until you find a suitable offer to sell the book you want.

2. You add information to the Semantic Web saying that you accept the offer
and giving details (your name, shipping address, credit card information,
etc). Of course you add it with access control so only you and seller can see
it, and you store it in a place where the seller can easily get it, perhaps the
seller’s own server, and you notify the seller about it.

3. You wait or query for confirmation that the seller has received your accep-
tance, and perhaps (later) for shipping information, etc.

This approach allows automation of the process, detailed record-keeping, and ex-
cellent process abstraction. However, this automation has not been realized so
far.

It seems that this very automation is extremely hard to realize. We propose
quite simple and already implemented protocol for realizing clients’ requests. It
is based on Entish, so that a request is realized by discovering, and composing
services. Our protocol realizes the functionality of the scenario presented above
as well as much more.
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Now, we are going to present some details of the composition protocol starting
with the format of message.

3.8 Message format

The service composition protocol, we are going to propose, is a conversation pro-
tocol between agents, services, and infoServices. During a conversation (i.e., a
protocol session) messages, that may affect the state of sender and recipient, are
exchanged. The language of the message contents is supposed to be our descrip-
tion language, i.e., the contents is an evaluated formula of our language describing
a situation between an agent, services and resources. The message format defined
in the document message.xsd (see the Appendix) is extremely simple.

<xsd:element name="message">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="header">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="from" type="xsd:anyURI"/>

<xsd:element name="to" type="xsd:anyURI"/>

<xsd:element name="protocolName"

type="xsd:string"/>

<xsd:element ref="protocolVersion"/>

<xsd:element name="protocolSession"

type="xsd:string"/>

<xsd:element ref="protocolOrder"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="body" type="listOfInfos"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

So that it consists of the following elements:

• header:

– from; it contains sender’s address.

– to; it contains recipient’s address.

– protocolName; it contains the name of protocol.

– protocolVersion; it contains the version of the protocol.

– protocolSession; it contains the session identifier.

– protocolOrder; it contains the type (order) of the message in the pro-
tocol.

• body; it is the contents of the message.
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Although we do not use SOAP, the message format was designed to fit to
the format of SOAP envelope. That is, our header corresponds to the header of
SOAP, and our body corresponds to the body of SOAP.

The element body contains facts, i.e., evaluated formulas. The format of eval-
uated formula is info defined in the document info.xsd, and is composed of
the following elements: formula, time, place, and signature. The intended
meaning of info is that formula was true at the time, in the place, and this was
stated by the one who made the signature.

3.9 Composition protocol entish 1.0

Now, we are ready to explain the idea of our protocol for service composition;
formal specification is presented in Chapter 6.

Generally, a protocol is a specification of message exchange between parties,
and how sending or receiving a specific message type changes the state of sender
and recipient. The parties that participate in a conversation (protocol session)
are agent, services, and infoService. The format of agent and service state was
specified in Section 3.4. The state format of infoService is extremely simple; it
consists of a collection of facts, i.e., of elements of type info.

The protocol is divided into the following conversation phases: Publication,
discovery, workflow formation, workflow execution, and finally the phase realizing
a distributed transaction. The publication phase is a conversation between service
and infoService. The discovery phase is between agent and infoService. The
workflow formation phase is between agent and services. The workflow execution
and the transaction phase are between agent and the services engaged in the
workflow.

The protocol serves for the following purposes:

1. Applications could be joined to our infrastructure as services.

2. Tasks, issued by the clients, could be realized.

Although tasks and intentions could be defined as arbitrary formulas of the descrip-
tion language, we define the canonical formats of the following kinds of formulas:
task formula, intention formula, commitment formula, and formula describing the
type of operation a service performs. These formats are specified in Chapter 6.

Let us present a sketch of the workflow formation phase that consists of service
invocation and service composition. Service invocation comprises the following
five steps:

1. An agent sends to the service0 the message: ”my intention is psi0 ” , formally
it is the following formula

( psi0 implies intentions( agent ) )

2. The service0 responds with the following commitment: ”I commit to realize
psi0 if psi1 is satisfied”, formally:

(

(psi1 implies formInCommitment(service0))
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and

(formOutCommitment(service0) implies psi0)

)

It is supposed that the commitment can be realized, i.e., it is consistent with
the operation type performed by the service0. It means that once the formula
psi1 has been satisfied, then the precondition for the service0 invocation is
satisfied, and the operation can be performed by the service0. Once the
operation has been performed (i.e., the post condition of the operation type
has been satisfied), then the formula psi0 is satisfied.

3. Suppose that the formula psi1 is satisfied by another service1.

4. Then, the formula psi0 is satisfied, and the agent’s intention is realized.

5. Finally, the service0 sends a confirmation to the agent.

Composition of two services (service0 and service1) is arranged by the agent in
the following way. The agent arranges the realization of its first intention psi0 by
the service0. The service agrees to realize this intention conditionally, i.e., if the
formula psi1 is satisfied. Then, the agent puts the formula psi1 as its current
intention, and looks for another service that could realize this intention. Suppose
that the agent got to know that it follows from the operation type of the service1
that the service could realize its current intention. The agent starts a conversation
with the service1 by sending the message: ”my intention is psi1 ” . Once the
service1 agrees to realize this intention, the operations of the service0 and the
service1 are composed, and form a part of a workflow the agent must construct in
order to realize its task.

In the protocol entish 1.0, the message elements are specified as follows.

• protocolName (i.e., the protocol name) is set as entish.

• protocolVersion is set as 1.0.

• protocolSession is set as the address (see Section 3.2) of the process (agent
or service) that has initialized the conversation session. There are two cases.
A newly created agent can initialize a session dedicated to its task realization;
the session last as long as the agent exists. Or a newly created service
initializes a session for publishing the type of operation it performs; the
session lasts as long as the service exists.

• protocolOrder denotes the message type (order) in the protocol.

We distinguish the following message types:

• protocolOrder is set as 000. Then, service sends to infoServices an info

containing formula expressing its operation type. The contents, i.e., the
info, may be forwarded in a messages having the same order and session.

• protocolOrder set as 111. Then, infoService sends message of this order, as
the reply to the service, confirming the publication of the service’s operation
type, and setting a timeout for its validity. The info contains the timeout
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formula. The infoService can also send message of this order to an agent
as the reply to the agent message of order 001. The info of this message
is an info sent previously by a service. These two messages have different
protocolSession elements; the first one contains the address of service,
whereas the second one contains the address of the agent.

• protocolOrder is set as 001. Then, agent sends info with formula express-
ing its current intention to an infoService or to a service. The contents, i.e.,
the info, may be forwarded in a messages having the same order and session.

• protocolOrder is set as 021. Then, a service sends to agent an info with a
formula expressing its commitment to realize the agent’s intention sent in a
previous message of protocolOrder set as 001.

• protocolOrder is set as 020. Then, agent sends info to the service and
cancels the commitment from the previous message. The message con-
tents, i.e., the info, is the same as the contents of the previous message
of protocolOrder set as 021. This message can be sent only if the message
of protocolOrder set as 222 has not been sent by the agent before.

• protocolOrder is set as 002. Then, service sends info to the agent to inform
that the commitment (the service has made towards the agent) is canceled.
The message contents is the same as the contents of the previous message of
protocolOrder set as 021. This message can be sent only if the message of
protocolOrder set as 222 has not been sent by the agent before.

• protocolOrder is set as 222. Then, agent sends (synchronously!) confir-
mation to all the services engaged in the workflow, informing them that the
workflow is completed and ready to start, i.e., there are no elements in the
agent’s plan. The contents of the message is info with the formula ( true

) . After sending it successfully, the workflow execution is started. For the
services that provide initial resources in the workflow, it is the signal that
they may send messages of protocolOrder set as 321 to the next services in
the workflow.

• protocolOrder is set as 321. Then, service0 sends info about the resource
(it has already produced) to the next service1 in the workflow. The next
service1 is supposed to download the resource. The info contains formula
of the form

(

?res1=url1

and

token(?res1)=tok1

)

• protocolOrder is set as 331. Then, the service1 in the workflow (after
successful downloading the resource) sends info to the service0 confirming
the downloading. The info contains formula of the form
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(

isIn(?res1, service1 )

and

token(?res1)=tok1

)

• protocolOrder is set as 333. Then, the service0 sends the confirmation to
the agent. The contents of the info is the post condition of the commitment
made by the service to the agent. It is the intention formula sent in the
message of protocolOrder set as 001.

• protocolOrder is set as 009. Then, the message is sent by a service (par-
ticipating in the workflow) to the agent if the service cannot perform the
operation it has declared to do in the commitment that it made in message
of protocolOrder set as 021. This message can be sent only in the workflow
execution phase, i.e., after sending the message of protocolOrder set as 222
by the agent.

• protocolOrder is set as 090. Then, agent sends to all services engaged in
the workflow that the transaction is canceled. The contents of the message is
info with the formula ( false ). The services perform rollback, i.e., undo
the effect resulting from operation performance.

• protocolOrder is set as 999. Then, agent sends (synchronously) confirma-
tion, to all participants of the workflow, informing that the workflow has
been successfully executed and the result is approved. The message may be
sent if plan and workflow in agent’s state are empty. The contents of the
message is info with the formula ( true ). This message type implements
successful realization of the distributed transaction.

It is important to note that the message orders defined above correspond to
the performatives of KQML (26) and FIPA ACL (27).

In the next two Chapters, detailed description of the implementation of the
running examples (see Chapter 2, Section 2.3) are presented. They serve as an ex-
planation of the composition protocol. A detailed specification of the composition
protocol is presented in Chapter 6.

3.10 Chapter summary: What is enTish?

enTish is a proposal of an experimental technology for describing and composing
heterogeneous services in open and distributed environment. enTish is merely a
formal specification of description language Entish, and non-formal but precise
specification of composition protocol entish 1.0.

Abstract architecture for implementing enTish is proposed in Chapter 7. Now,
enTish is in the stable version 1.0 verified by several implementations.
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Let us reconsider the first running example from Chapter 2. The example is
about flight booking and the travel agent FirstClass. This chapter is devoted to
the description of an implementation of this example explaining some details of
the service composition protocol entish 1.0 that was specified formally in Chapter
6.

4.1 Service operation and state

In order to implement the example we must specify the resource types (for orders
and invoices) and the function that given an order produces an invoice.

First of all we must look at the contents of EntishDictionary that is the cen-
tral repository (implemented in the enTish prototype) of instances of the schema
definitions.xsd. We must find out if the names for types of resources, names
of their attributes and the name for the function that the FirstClass has imple-
mented as its operation have been already defined there. If they have not been
defined there, then we must define them using either EntishDictionary or manually
creating a XML-document being an instance of definitions.xsd.

For the realization of the service First Class, we need the following types:

• Order, that defines air ticket orders. Let ?order be a variable of type Order.
This type has the following attributes:

– person( ?order ), returns string that specifies person name.

– creditCard( ?order ), returns string that specifies credit card de-
tails.

– airLine( ?order ), returns string that specifies airline.

– destination( ?order ), returns string that specifies flight destina-
tion.

– departure( ?order ), returns string that specifies flight departure.

– price( ?order ), returns string that specifies price.

• Invoice, that defines air ticket invoices. Let ?invoice be a variable of type
Invoice. This type has the following attributes:

– Destination( ?invoice ), returns string that specifies flight destina-
tion.

– Departure( ?invoice ), returns string that specifies flight departure.

– Price( ?invoice ), returns string that specifies ticket price.

– ... and perhaps some others attributes.

We define the following function: SELL-TICKET: Order -> Invoice

which, given an order, produces an invoice. It describes production of air ticket
invoice from air ticket order.

Suppose that there is a service called FirstClass which is a travel agent office.
The service implemented the function SELL-TICKET as its operation. The service
FirstClass has its state. The formula

isIn( ?order, FirstClass )
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is put into the element formIn of goal of the state of the service. The formula

isIn( ?invoice, ?anyService )

and

?invoice = SELL-TICKET( ?order )

is put into the element formOut of goal of the state of the service. Once these
two formulas are put into formIn and formOut of goal of the state of FirstClass,
they describe the type of operation performed by the service FirstClass. That
is, if a resource of type Order is delivered to the FirstClass, then the FirstClass
produces an appropriate resource of type Invoice that can be delivered to any
service (place) by the FirstClass.

4.2 Publication of the operation type of First-

Class

If a service wants to publish its operation type to an infoService, then it sends
message of protocolOrder 000, and protocolSession set as FirstClass’ address.
The info is created by the FirstClass, so that the address of FirstClass is put
into the element place of the info. The element formula of info contains the
following formula:

( ( isIn( ?order, FirstClass ) implies

formInOperationType( FirstClass )

)

and

( formOutOperationType( FirstClass ) implies

( isIn( ?invoice, ?anyService ) and

?invoice = SELL-TICKET(?order)

)

)

)

Note that this formula expresses the operation type of the service FirstClass. If the
infoService agrees to publish the operation type of FirstClass, then the infoService
puts the info into the element knowledge of its state.

Then, infoService replies with the message of protocolOrder 111, with the
same protocolSession, and with info (created by infoService) with the formula:

timeout(t1)

that sets the timeout for the validity of the entry ( i.e., the info sent by FirstClass)
in the infoService registry.

4.3 Task

Client’s task is the following:
Purchase airline ticket for a flight from Warsaw to Geneva; departure: Warsaw,
June 22, 2002; timeout for task realizing: July 1, 2002.



60 Chapter 4. Implementation of the First Running Example

The client is associated with a user interface called TaskManager. The client’s
task is formulated as follows:

(3.1)

( timeout("July 1, 2002")

and

isIn( ?invoice, TM-00)

and

?invoice = SELL-TICKET( ?order )

and

token( ?invoice ) = tok1

and

(

index( ?invoice ) = "0"

and

Destination( ?invoice )="Geneva"

and

Departure( ?invoice )="Warsaw, July 22, 2002" )

)

)

The meaning of the formula is that the resource ?invoice is to be delivered to the
service TM-00 (associated with the TaskManager) by July 1, 2002; the ?invoice is
the output of some operation that implements the abstract function SELL-TICKET

describing production of airline ticket invoice from airline ticket order. The re-
source ?invoice is specified by some attributes like Destination and Departure.
The functions index and token are polymorphic functions defined for all types
of resources. They are introduced in properEntish.xml, see the Appendix. The
role played by these functions in the composition protocol will be explained later
on.

The TaskManager must create a service TM-00 for storing the final resource
specified in the task formula. In order to do so the following formula:

(3.2)

( timeout("July 1, 2002")

and

isIn( ?invoice, TM-00)

and

token( ?invoice )=tok1

and

(

index( ?invoice ) = "0"

and

Destination( ?invoice )="Geneva"

and

Departure( ?invoice )="Warsaw, July 22, 2002" )

)

)

is put into the element formIn of a commitment of the state of the service TM-
00. It means that the service TM-00 is expecting that a resource specified in this
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formula will be delivered to it.
The TaskManager creates also a service for delivering initial resource needed

for the task realization. The service name is TM-01. The formula ( true ) is put
into the element formIn of a goal of the state of the service TM-01. Whereas
the formula isIn( ?order, ?anyService ) is put to into the element formOut

of the goal of the state of the service TM-01.
These two auxiliary services are created dynamically by the TaskManager. The

service TM-00 is supposed to receive and store the final resource of type Invoice

specified in the task, i.e., the resource with the token tok1. Whereas the service
TM-01 is supposed to deliver initial resource of type Order. This initial resource
is supposed to be created by the client associated with the TaskManager.

4.4 Agent

The task formula (3.1) is delegated to the agentServer (see the Chapter 7 for the
details of abstract implementation architecture) where a process is created that is
responsible for a realization of this task. The process is called agent01 and has its
own state. The task formula (3.1) is put into the element formOut of goal of the
state of the agent01.

The new element info is created by TM-01. The info contains the formula
that states that TM-01 produces resources of type Order. It is the following
formula:

(4.1)

( true implies formInOperationType( TM-01 ) )

and

( formOutOperationType( TM-01 ) implies

isIn( ?order, ?anyService)

)

The info is put into the element knowledge of the agent01’s state.
Agent01 starts its algorithm. Initially, the element plan of intentions of

agent01’s state is empty. Because the function composition in the task formula
(3.1) is simple, i.e., only one function occurs there, this task formula becomes the
first agent01’s intention. Let int0 denotes the following formula:

(4.2)

( timeout("July 1, 2002")

and

isIn( ?invoice, TM-00)

and

?invoice = SELL-TICKET( ?order )

and

token( ?invoice ) = tok1

and

(

index( ?invoice ) = "0"

and

Destination( ?invoice )="Geneva"
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and

Departure( ?invoice )="Warsaw, July 22, 2002" )

)

)

The formula int0 is put as the first element of plan of intentions of the agent01’s
state.

For the general way to create the first agent’s intention from a task formula,
see Chapter 6.

4.5 Workflow construction

The protocolSession of all the messages below is set as agent01’s address.
Message of protocolOrder 001, with the info (created by agent01, i.e., the

agent01’s address is put into the elment place of the info) that contains the
formula:

int0 implies intentions( agent01 )

is sent by the agent01 to an infoService (suppose that there is at least one). The
intended meaning of the formula is that satisfaction of the formula int0 is an
intention of agent01.

Suppose that infoService replies by forwarding the info of the message with
protocolOrder 000 sent previously by the service FirstClass. The message sent by
infoService to the agent01 has the protocolOrder 111, and the protocolSession

set as the agent01’s address. Once the message is delivered to the agent, agent01
puts the info into its knowledge. So that agent01 knows that (according to
the infoService) the service FirstClass can realize its current intention. Hence,
agent01 sends the message with protocolOrder 001 to FirstClass. The info of
this message is the same as the one sent by agent01 to the infoService in the
previous message.

Suppose that the service FirstClass commits to realize the int0, however, under
the condition described by the following formula:

(5.2)

(

timeout("June 30, 2002")

and

isIn(?order, FirstClass)

and

token(?order)=tok2

and

(

( index( ?order )="0.0" and

price(?order)="300euro" and airLine(?order)="Swissair"

and

destination(?order)="Geneva"

and

departure(?order)="Warsaw, July 22, 2002"

)
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or

( index( ?order )="0.1" and

price(?order)="350euro" and airLine(?order)="Lufthansa"

and

destination(?order)="Geneva"

and

departure(?order)="Warsaw, July 22, 2002"

)

or

( index( ?order )="0.2"

and

price(?order)="280euro" and airLine(?order)="LOT"

and

destination(?order)="Geneva"

and

departure(?order)="Warsaw, July 22, 2002"

)

)

)

Let the formula (5.2) be denoted by pre. The meaning of pre is that ?order

with token tok2 is delivered to FirstClass by June 30, 2002, and attributes of the
?order should be chosen according to the ones listed in this formula. Actually,
this attribute listing represents the options identified by indexes. The first option
is identified by index ”0.0”, the second one by index ”0.1”, whereas the third one
by the index ”0.2”. Note that the token as well as index of the input resource
?order are determined by the service FirstClass that made this commitment.

The state of FirstClass is changed. A new element commitment of
listOfCommitments of its state is created, and the formula int0 is put into
the element formOut of the commitment, whereas the formula pre is put into the
element formIn of the commitment.

The service FirstClass replies to agent01 with a message with protocolOrder

021 with protocolSession set as agent01’s address and with info (created by
FirstClass) having the formula:

( pre implies formInCommitment( FirstClass ) )

and

( formOutCommitment( FirstClass ) implies int01 )

The meaning of this formula is that FirstClass commits to make the formula int0

true, however under the condition that pre is true first. Hence, to invoke the
service FirstClass, the formula pre must be satisfied.

Agent01 puts info into its knowledge of its state, and moves the formula
int0 from plan to workflow of its state. On the basis of the task formula, the
agent01 knows that the formula pre describes the initial resource. The formula
pre becomes the next intention of agent01, i.e., it is put into its plan.

Agent01 is looking for a service that can realize its current intention, i.e.,
satisfy the formula pre. From its knowledge the agent01 ”knows” that TM-01
can realize this intention, see the formula (4.1). Agent01 sends a message with
protocolOrder 001, and with info (created by agent01) having the formula:
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( pre implies intentions( agent01 ) )

to the service TM-01.
The service TM-01 receives the message and displays the offers specified in

the formula pre to the client. Then, TM-01 commits to realize this intention,
creates appropriate element commitment in its state, i.e., the formula ( true )

is put into the element formIn of the commitment, whereas the formula pre is
put into the element formOut of the commitment. Then the service TM-01 sends
the appropriate message to the agent01, i.e., TM-01 replies to agent01 with the
message with protocolOrder 021 having info (created by TM-01) that contains
the following formula:

( true implies formInCommitment( TM-01 ) )

and

( formOutCommitment( TM-01 ) implies pre )

Agent01 puts the info into its knowledge, and moves the formula pre from plan

to workflow of its state. Since the precondition of the commitment is true, the
element plan of the agent01’s state becomes empty so that a workflow for realizing
the task is already constructed. The workflow consists of the three services: TM-
01, FirstClass, and TM-00. This workflow is represented by the formulas that are
in the element workflow of agent’s state. The formulas describe the commitments
of the services involved into the workflow. The service TM-01 has committed to
deliver a resource of type Order, satisfying the specification expressed in formula
(5.2), to the service FirstClass. The service FirstClass has committed to deliver a
resource of type Invoice, satisfying the specification expressed in formula (4.2),
to the service TM-00.

Note that according to the protocol entish 1.0 (specified formally in Chapter 6)
a service engaged in the workflow may cancel its commitment by sending a message
with protocolOrder 002 to the agent. Once the service does so, the state of this
service as well as the agent01’s state must be changed. In the case of the service’s
state it is relatively simple, i.e., the appropriate element commitment is removed
from listOfCommitments of this state. However, in the case of agent’s state it
is more complex, see details in the Chapter 6, Section 6.7. Analogously an agent
may cancel service’s commitment by sending a message with protocolOrder 020
to this service.

During the phase of workflow formation a service engaged in the workflow
reserves temporarily some of its capabilities specified in the precondition of the
commitment it has made. In the case of FirstClass, it reserves three places in the
flights specified in the precondition, however, only by the time specified in the
timeout. It is important that this very timeout is determined by the FirstClass
itself.

4.6 Workflow execution

The workflow can be executed if agent01 sends synchronously the message
of protocolOrder 222 to all the services engaged in the workflow. The
protocolSession is set as the agent01’s address, whereas the info in the message
is created by agent01 and contains the formula ( true ). The intended meaning
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of this message is that the workflow for realizing the agent01’s task is already con-
structed and approved by the client, so that it may be executed. It is the signal
for the services that are supposed to produce the initial resources to do so, and
then to send them to the next services in the workflow.

Suppose that the client chooses one of the options (it is the one identified by
the index ”0.2”) and creates a resource of type Order satisfying the constrains
associated to this option.

Then, TM-01 puts this resource (as a file) into a www server. An element
constant of type Order is created by service TM-01. The URL address of this file
is put into the element longName of constantName of the constant. Let orderURL
denote this constant.

Then, TM-01 sends a message with protocolOrder 321 to FirstClass, with
info (created by TM-01) having the formula:

(

?order = orderURL

and

token( ?order ) = tok2

)

Once FirstClass receives the message, it knows (by the token tok2 of the resource
specified in this formula ) what this resource is and what commitment is associated
to this resource. Note that this very FirstClass has determined this token. So that
FirstClass downloads the file that contains the resource of type Order produced
by the client via TM-01, and sends confirmation to TM-01, i.e., a message with
protocolOrder 331 with the info (created by FirstClass) having the following
formula:

(

isIn( ?order, FirstClass )

and

token( ?order ) = tok2

)

Once TM-01 receives this message, it sends a message with protocolOrder 333 to
the agent01. The info of this message contains the formula pre, see the formula
(5.2). This is the confirmation sent to the agent0 by the service TM-01, that the
commitment of service TM-01 has been realized. The service TM-01 may put
the info into its knowledge. Then, TM-01 removes the corresponding element
commitment from listOfCommitments of its state.

At this very moment the FirstClass cancels the rest of reservations specified
in the precondition of its commitment except the one chosen by the client in the
order.

Then agent01, after receiving the message with protocolOrder 333, moves the
intention pre from the element workflow to the element realized of its state.

Once FirstClass has got the resource specified in the formula pre of its com-
mitment, it produces a resource of type Invoice, and puts it (as a file) on a www
server. An element constant of type Invoice is created by the service FirstClass.
The URL address of this file is put into the element longName of constantName
of the constant. Let invoiceURL denote this constant.
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Then, FirstClass sends a message with protocolOrder 321 to TM-00 with
info (created by FirstClass) with the formula:

(

?invoice = invoiceURL

and

token( ?invoice ) = tok1

)

Once the service TM-00 receives the message, it downloads the invoice, and replies
to FirstClass with a message with protocolOrder 331 having info (created by
TM-00) that contains the following formula:

(

isIn( ?invoice, TM-00 )

and

token( ?invoice ) = tok1

)

After receiving this message, FirstClass removes the commitment, puts the info

into its knowledge, and sends a message with protocolOrder 333 to the agent01.
The info of this message is created by the FirstClass, and contains the formula
int0, see the formula (4.2). This is the confirmation sent to the agent 01 by the
service FirstClass.

Then, agent01 moves the formula int0 from workflow to realized of its
state. Now, the workflow of agent01’s state is empty. It means that the work-
flow has been executed successfully. The required invoice is in service TM-00
associated with the TaskManager of the client.

4.7 Transactional semantics

It may happen that during the phase of workflow execution one or more of the
services fails to realize the commitments. The reason may be that the host (running
the applications associated with the service) is down or the network is broken, or
for some other reasons the service cannot realize its commitment; it means that the
service cannot send the confirmation message with protocolOrder 333. In this
case the service may send a message with protocolOrder 009 to agent01. The
protocolSession of the message is set as the agent01’s address, whereas the info

is created by the service and contains the formula ( false). If, for some reasons,
the service cannot send this message with protocolOrder 009, then after the
timeout set for the commitment, the whole distributed transaction associated with
this workflow will be canceled. This is because the final approval of this distributed
transaction is done by the agent01 by sending synchronously the final confirmation
to all the services participating in the workflow execution. In order to do so,
agent01 must receive the confirmations (i.e., messages of protocolOrder 333)
from all services involved in the workflow. The final approval consists in sending
synchronously the message with protocolOrder 999 with protocolSession set
as the agent01’s address to all the services engaged in the workflow. The info

of the message is created by agent01 and contains the formula ( true ). This
completes the distributed transaction.
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However, the agent might not send the final approval after receiving all the
confirmation from the services. If (for some reasons) the agent does not send the
final approval by the timeout determined for the task realization, the distributed
transaction is canceled automatically after this timeout. Note that the timeout for
the task realization is encoded in agent’s address, (see Chapter 6, Section 6.1) and
this very address is put into the element protocolSession of every message sent
during workflow construction phase as well as during workflow execution phase.

The agent01 is allowed to cancel the distributed transaction (after receiving
all the confirmation from the services) by sending a message with protocolOrder

090. The protocolSession is set as the agent01’s address, whereas the info of
the message is created by the agent and contains the formula ( false ).

If the transaction is canceled by the agent or the main timeout for task real-
ization is over, every service participating in the workflow execution must undo
the temporary results of performing its operation. Hence, before receiving the
final confirmation from the agent approving the whole distributed transaction, the
effects of performing its operation by a service are not persistent. So that after
sending the invoice to the client, FirstClass has reserved only temporarily one seat
in the flight specified in the invoice. It means that the appropriate ticket was not
printed out and sent to the client. If the final confirmation is not delivered to the
FirstClass before the timeout set for the task, the reservation will be canceled.

So that, even if the workflow was executed sucessfully, the client still has a
chance to change his/her mind and cancel the whole transaction. Invoice is only
a digital document and before approving the distributed transaction, it cannot
influence the real world.

Once the final confirmation is received by FirstClass, the effect on the real
world takes place, i.e., an appropriate ticket (for the flight specified in the order
and in the invoice) is printed out and delivered to the client.
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Let us consider again the second running example from Chapter 2, Section
2.3.2. The example is about buying books. This time we are going to present
details of how the example may be implemented. The example serves for explain-
ing the protocol entish 1.0 (specified formally in Chapter 6), i.e., how services are
arranged into a workflow, how the workflow is executed, and finally how transac-
tional semantics is implemented. In this example we also explain what indexes are
and what they are for.

5.1 Service operation and state

To implement the example we must specify the resource types and the functions
that are involved in the example.

First of all we must look at the contents of EntishDictionary that is the central
repository (implemented in the enTish prototype, see Chapter 7) of instances
of the schema definitions.xsd. We must find out if the names for types of
resources, names of their attributes and the names for functions that the services
BigBank and AnyBook have implemented as their operations have been already
defined there. If they have not been defined, then we must define them either
using EntishDictionary or manually creating a XML-document being an instance
of definitions.xsd.

For the realization of the service AnyBook, we need the following resource
types:

• BookOrder, that defines book orders. Let ?bookorder be a variable of type
BookOrder. This type may have several attributes, however we are interested
in the following ones:

– Author( ?bookorder ), returns string that specifies the author of the
book.

– Title( ?bookborder ), returns string that specifies the title of the
book.

– Price( ?bookorder ), returns string that specifies price.

– Person( ?bookorder ), returns string that specifies details of the per-
son who orders the book.

• BookInvoice, that defines book invoices. Let ?bookinvoice be a variable
of type Invoice. This type has the following attributes:

– author( ?bookinvoice ), returns string that specifies the author of
the book.

– title( ?bookinvoice ), returns string that specifies the title of the
book.

– price( ?bookinvoice ), returns string that specifies price.

– person( ?bookinvoice ), returns string that specifies details of the
person who orders the book.

– Seller( ?bookinvoice ), returns string that specifies details of the
store that sells the book.
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• PayOrder, that defines payment order. Let ?payorder be a variable of type
PayOrder. This type has the following attributes:

– amount( ?payorder ), returns string that specifies the amount of
money to be transferred.

– beneficiary( ?payorder ), returns string that specifies the account
number of the beneficiary of the money transfer.

– Person( ?payorder ), returns string that specifies the account num-
ber of the person who makes the payment.

– subject( ?payorder ), returns string that specifies the subject of the
payment.

• PayConfirm, that defines payment confirmation. Let ?payconfirm be a
variable of type PayConfirm. This type has the following attributes:

– Amount( ?payconfirm ), returns string that specifies the amount of
money to be transferred.

– Beneficiary( ?payconfirm ), returns string that specifies the details
of the beneficiary of the money transfer.

– Subject( ?payconfirm ), returns string that specifies the subject of
the payment.

We define the following function:

SELL-BOOK: BookOrder X PayConfirm -> BookInvoice

that is, given a book order and appropriate payment confirmation, it produces an
invoice for the book specified in the order.

We define also the following function:

PAYMENT: PayOrder -> PayConfirm

that is, given a payment order, it produces payment confirmation.
So that purchasing of a book by a client may be described in an abstract way

as composition of these two functions, i.e.,

SELL-BOOK( ?bookorder, PAYMENT( ?payconfirm )).

Suppose that there is a service called AnyBook which is a bookstore. The service
implemented the function SELL-BOOK as its operation. The service AnyBook has
its state. The formula

isIn( ?bookorder, AnyBook ) and isIn( ?payconfirm, AnyBook )

is put into element formIn of goal of the state of the service. The formula

( isIn( ?bookinvoice, ?anyService )

and

?bookinvoice = SELL-BOOK( ?bookorder, ?payconfirm ) )
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is put into element formOut of goal of the state of the service. Once these two
formulas are put into formIn and formOut of goal of the state of AnyBook, they
describe the type of operation performed by the service AnyBook. That is, if a
resource of type BookOrder and an appropriate resource of type PayConfirm are
delivered to AnyBook, then it produces appropriate resource of type BookInvoice

that can be delivered to any service (place) by AnyBook.
Suppose that there is a service called BigBank which is a service (a bank)

that realizes payments. The service implements the function PAYMENT. The service
BigBank has its state. The formula

isIn( ?payorder, BigBank )

is put into element formIn of goal of the state of the service. The formula

( isIn( ?payconfirm, ?anyService )

and

?payconfirm = PAYMENT( ?payorder ) )

is put into element formOut of goal of the state of the service. Once these two
formulas are put into formIn and formOut of goal of the state of BigBank, they
describe the type of operation performed by the service BigBank.

5.2 Publication of the operation type of Any-
Book and BigBank

If a service wants to publish its operation type to an infoService, then it sends
message of protocolOrder 000, and protocolSession set as the AnyBook’s ad-
dress. The info is created by the service, so that the address of AnyBook is put
into the element place of the info. The element formula of the info contains
the following formula:

( ( isIn( ?bookorder, AnyBook ) and isIn( ?payconfirm, AnyBook ) )

implies formInOperationType( AnyBook )

)

and

( formOutOperationType( AnyBook ) implies

( isIn( ?bookinvoice, ?anyService )

and

?bookinvoice = SELL-BOOK( ?bookorder, ?payconfirm )

)

)

Note that this single formula expresses the operation type of the service Any-
Book. If the infoService agrees to publish the operation type of AnyBook, then
the infoService puts the info into its knowledge of its state.

Then, infoService replies with the message of protocolOrder 111, with the
same protocolSession, i.e., the AnyBook’s address. The info of this message
is created by infoService, that is, the address of the infoService is put into the
element place of the info. The info contains the following formula:

timeout(t1)
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that sets the timeout for the validity of the entry ( i.e., the info sent by AnyBook)
in the infoService registry.

In the analogous way the service BigBank publishes its operation type to an
infoService. It sends message of protocolOrder 000, and protocolSession set
as BigBank’s address. The info is created by the service, so that the address of
BigBank is put into the element place of the info. The element formula of info
contains the following formula:

( ( isIn( ?payorder, BigBank ) implies

formInOperationType( BigBank )

)

and

( formOutOperationType( BigBank ) implies

( isIn( ?payconfirm, ?anyService ) and

?payconfirm = PAYMENT(?payorder)

)

)

)

Note that this single formula expresses the operation type of the service BigBank.
If the infoService agrees to publish the operation type of BigBank, the infoService
puts the info into its knowledge of its state.

Then, infoService replies with message of protocolOrder 111, with the same
protocolSession, and with info (created by infoService) containing the formula:

timeout(t2)

that sets the timeout for the validity of the entry ( i.e., the info sent by BigBank)
in the infoService registry.

5.3 Task

Client’s task is expressed intuitively in the following way:
Purchase a book by J.R.R. Tolkien; timeout for task realizing: July 1, 2002.

The client is associated with a user interface called TaskManager. The client’s
task is expressed formally as the following formula:

(3.1)

( timeout("July 1, 2002")

and

isIn( ?bookinvoice, TM-00)

and

?bookinvoice = SELL-BOOK( ?bookorder, PAYMENT( ?payorder ) )

and

token( ?bookinvoice ) = tok0

and

(

index( ?bookinvoice ) = "0"

and

author( ?bookinvoice )="J.R.R. Tolkien"
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)

)

The meaning of the formula is that the resource ?bookinvoice is delivered to
the service TM-00 (associated with the TaskManager) by July 1, 2002; the
?bookinvoice is the output of some operation that implements the abstract func-
tion SELl-BOOK that describes production of book invoice from book order and
payment confirmation. The payment confirmation is the result of applying an
operation that implements function abstract function PAYMENT to a pay order.
The resource ?bookinvoice is specified by exactly one attribute; it is author.
The functions index and token are polymorphic functions defined for all resource
types. They are introduced in properEntish.xml, see the Appendix. The role
played by these functions in the composition protocol will be explained later on.

The TaskManager must create a service TM-00 for storing the final resource
specified in the task formula. In order to do so the following formula:

(3.2)

( timeout("July 1, 2002")

and

isIn( ?bookinvoice, TM-00)

and

token( ?bookinvoice ) = tok0

and

(

index( ?bookinvoice ) = "0"

and

author( ?bookinvoice )="J.R.R. Tolkien"

)

)

is put into the element formIn of a commitment of the state of the service TM-00.
The TaskManager also creates two services for delivering initial resources

needed for the task realization. The name of the first one is TM-01. The for-
mula ( true ) is put into the element formIn of a goal of the state of the
service TM-01. Whereas the formula isIn( ?bookorder, ?anyService ) is put
to into the element formOut of the goal of the state of the service TM-01.

The name of the second service is TM-02. The formula ( true ) is put into
the element formIn of a goal of the state of the service TM-02. Whereas the
formula isIn( ?payorder, ?anyService ) is put to into the element formOut

of the goal of the state of the service TM-02.
These three auxiliary services are created dynamically by the TaskManager for

a given task. The service TM-00 is supposed to receive and store the final resource
specified in the task, i.e., the resource with the token tok0. The service TM-01 is
supposed to deliver initial resource of type BookOrder whereas the service TM-02
to deliver an initial resource of type PayOrder. These initial resource are supposed
to be created by the client associated with the TaskManager.
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5.4 Agent

The task formula (3.1) is delegated to the agentServer where a process is created
that is responsible for realization of this task. The process is called agent01 and
has its own state. The task formula (3.1) is put into the element formOut of goal
of the state of agent01.

A new element info is created by TM-01. The info contains the formula
that states that TM-01 produces resources of type BookOrder. It is the following
formula:

(4.1)

( true implies formInOperationType( TM-01 ) )

and

( formOutOperationType( TM-01 ) implies

isIn( ?bookorder, ?anyService)

)

The info is put into the element knowledge of the agent01’s state.
Also another element info is created by TM-02. This info contains the for-

mula that states that TM-02 produces resources of type PayOrder. It is the
following formula:

(4.1’)

( true implies formInOperationType( TM-02 ) )

and

( formOutOperationType( TM-02 ) implies

isIn( ?payorder, ?anyService)

)

The info is put into the element knowledge of the agent01’s state.
Agent01 starts its algorithm. Initially, plan of intentions of agent01’s state

is empty. Because in the task formula (3.1) the function composition consists of
two functions, the following formula becomes the first intention of agent01.

(4.2)

( timeout("July 1, 2002")

and

isIn( ?bookinvoice, TM-00)

and

?bookinvoice = SELL-BOOK( ?bookorder, ?payconfirm )

and

token( ?bookinvoice ) = tok0

and

(

index( ?bookinvoice ) = "0"

and

author( ?bookinvoice )="J.R.R. Tolkien"

)

)

Let int0 denote this formula. The formula int0 is put as the first element of plan
of intentions of agent01’s state. The natural question is how agent01 gets to
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know that the function PAYMENT returns value of type PayConfirm, that is, that the
variable ?payconfirm (in the formula above) is of type PayConfirm. In order to
explain this we must go back to the definition of the formula in the language Entish.
The names of functions (as well as of types and relations) are elements of XML type
ConceptName introduced in the schema formula.xsd. Hence, the function name
PAYMENT denotes (in our informal notation) an element of the type ConceptName.
This element (as well as any other element of the type ConceptName) consists of
two elements: The first one is shortName and is of type xsd:string (and is supposed
to be this very string ”PAYMENT”), whereas the second one is longName and is
of type xsd:anyURI. This very longName contains the URL to the XML document
where the function name was defined. This document is an instance of the schema
definitions.xsd and contains the definition of the function denoted by PAYMENT.
This very definition contains the signature (interface) of the function as well as
reference to its meaning in the definiendum part of the definition.

5.5 Workflow construction

The protocolSession of all the messages described below is set as agent01’s
address. Message of protocolOrder 001, with the info (created by agent01)
having the formula:

int0 implies intentions( agent01 )

is sent by agent01 to an infoService (suppose that there is at least one). The
intended meaning of the formula is that satisfaction of the formula int0 is an
intention of agent01.

Suppose that infoService replies by forwarding the info of the message with
protocolOrder 000 sent previously by the service AnyBook. The message sent by
infoService to agent01 has protocolOrder 111, and protocolSession set as the
agent01’s address. Once the message is delivered to the agent, agent01 puts the
info into its knowledge. So that agent01 knows that (according to the infoService)
the service AnyBook can realize its current intention. Hence, agent01 sends the
message with protocolOrder 001 to AnyBook. The info of this message is the
same as the one sent by agent01 to the infoService in the previous message.

Suppose that the service AnyBook commits to realize the int0, however, under
the condition described by the following formula:

(5.2)

( timeout("June 30, 2002")

and

isIn( ?bookorder, AnyBook) and token( ?bookorder ) = tok01

and

isIn( ?payconfirm, AnyBook) and token( ?payconfirm ) = tok02

and

(

( index( ?bookorder ) = "0.0"

and

Author( ?bookorder )="J.R.R. Tolkien"

and
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Title( ?bookorder )="The Lord of the Rings"

and

Price( ?bookorder )="70euro"

and

index( ?payconfirm ) = "0.0"

and

Amount( ?payconfirm )="70euro"

)

or

( index( ?bookorder ) = "0.1"

and

Author( ?bookorder )="J.R.R. Tolkien"

and

Title( ?bookorder )="The Hobbit"

and

Price( ?bookorder )="60euro"

and

index( ?payconfirm ) = "0.1"

and

Amount( ?payconfirm )="60euro"

)

or

( index( ?bookorder ) = "0.2"

and

Author( ?bookorder )="J.R.R. Tolkien"

and

Title( ?bookorder )="The Silmarillion"

and

Price( ?bookorder )="50euro"

and

index( ?payconfirm ) = "0.2"

and

Amount( ?payconfirm )="50euro"

)

)

)

Let the formula (5.2) be denoted by pre. The meaning of pre is that ?bookorder
having token tok01 and ?payconfirm having token tok02 are delivered to Any-
Book by June 30, 2002, and attributes of the ?bookorder and ?payconfirm should
be chosen according to the ones listed in this formula. Actually, this attribute list-
ing represents the options. These options are identified by indexes. So that the
first option has index ”0.0”, the second one has index ”0.1”, whereas the third
one has index ”0.2”. Note that the token as well as index of the input resources
?payconfirm and ?bookorder are determined by the service AnyBook that made
this commitment.

The state of AnyBook is changed. A new element commitment of
listOfCommitments of its state is created, and the formula int0 is put into
the element formOut of the commitment, whereas the formula pre is put into the
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element formIn of the commitment.
The service AnyBook replies to agent01 with a message with protocolOrder

021 with protocolSession set as agent01’s address and with info (created by
AnyBook) having the formula:

( pre implies formInCommitment( AnyBook ) )

and

( formOutCommitment( AnyBook ) implies int0 )

The meaning of this formula is that AnyBook commits to make the formula int0

true, however under the condition that pre is true first. Hence, to invoke the
service AnyBook, the formula pre must be satisfied.

Agent01 puts info into its knowledge of its state, and moves the formula int0

from plan to workflow of its state. On the basis of the task formula, agent01
knows that the formula pre describes one of the initial resources of type BookOrder,
and one resource of type PayConfirm that is a result of processing a resource of
type PayOrder by the function PAYMENT. The formula pre is decomposed into
two intentions in the following way. The first intention (denoted by int01 and
corresponging to the resource ?bookorder) is expressed as the formula:

(5.3)

( timeout("June 30, 2002")

and

isIn( ?bookorder, AnyBook) and token( ?bookorder ) = tok01

and

(

( index( ?bookorder ) = "0.0"

and

Author( ?bookorder )="J.R.R. Tolkien"

and

Title( ?bookorder )="The Lord of the Rings"

and

Price( ?bookorder )="70euro"

)

or

( index( ?bookorder ) = "0.1"

and

Author( ?bookorder )="J.R.R. Tolkien"

and

Title( ?bookorder )="The Hobbit"

and

Price( ?bookorder )="60euro"

)

or

( index( ?bookorder ) = "0.2"

and

Author( ?bookorder )="J.R.R. Tolkien"

and

Title( ?bookorder )="The Silmarillion"

and
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Price( ?bookorder )="50euro"

)

)

)

This formula becomes the next intention of agent01, i.e., it is put into its
plan. The second intention (denoted by int02 and corresponding to the resource
?payconfirm) is expressed as the formula:

(5.4)

( timeout("June 30, 2002")

and

?payconfirm = PAYMENT( ?payorder )

and

isIn( ?payconfirm, AnyBook) and token( ?payconfirm ) = tok02

and

(

( index( ?payconfirm ) = "0.0"

and

Amount( ?payconfirm )="70euro"

)

or

( index( ?payconfirm ) = "0.1"

and

Amount( ?payconfirm )="60euro"

)

or

( index( ?payconfirm ) = "0.2"

and

Amount( ?payconfirm )="50euro"

)

)

)

This formula also becomes the next intention of agent01, i.e., it is also put into its
plan.

Agent01 is looking for a service that can realize its first intention int01. From
its knowledge the agent01 knows that TM-01 can realize this intention, see formula
(4.1). Agent01 sends a message with protocolOrder 001, and with info (created
by agent01) having the formula:

int01 implies intentions( agent01 )

to the service TM-01.
The service TM-01 receives the message and displays the offers specified in

the formula int01 to the client. Then, TM-01 commits to realize this intention,
creates appropriate element commitment in its state, i.e., the formula ( true ) is
put into the element formIn of the commitment, whereas the formula int01 is put
into the element formOut of the commitment. Then the service TM-01 sends the
appropriate message to agent01, i.e., TM-01 replies to agent01 with a message with
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protocolOrder 021 having info (created by TM-01) that contains the following
formula:

( true implies formInCommitment( TM-01 ) )

and

( formOutCommitment( TM-01 ) implies int01 )

Agent01 puts the info into its knowledge, and moves the formula int01 from
plan to workflow of its state. Since the precondition of the commitment is true,
no new intention is created by the agent.

Then, the agent looks for a service that can realize its second intention int02.
A message of protocolOrder 001, with the info (created by agent01) containing
the formula:

int02 implies intentions( agent01 )

is sent by agent01 to an infoService. Suppose that infoService replies by forwarding
to agent01 the info of the message with protocolOrder 000 sent previously by
the service BigBank to the infoService.

Then, agent01 puts the info into its knowledge and sends a message with
protocolOrder 001 to the BigBank. The message contains the same info that
was sent previously by the agent to the infoService.

Suppose that the service BigBank commits to realize the int02, however, under
the condition described by the following formula:

(5.5)

( timeout("June 29, 2002")

and

isIn( ?payorder, BigBank) and token( ?payorder ) = tok021

and

(

( index( ?payconfirm ) = "0.0.0"

and

Amount( ?payconfirm )="70euro"

)

or

( index( ?payconfirm ) = "0.1.0"

and

Amount( ?payconfirm )="60euro"

)

or

( index( ?payconfirm ) = "0.2.0"

and

Amount( ?payconfirm )="50euro"

)

)

)

Let the formula (5.5) be denoted by pre021. The meaning of pre021 is that
?payorder having token tok021 is delivered to BigBank by June 29, 2002, and
attributes of the ?payorder should be chosen according to the ones listed in this
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formula. Actually, this attribute listing represents the options. These options are
identified by indexes, so that the first option has index ”0.0.0”, the second one has
index ”0.1.0”, whereas the third one has index ”0.2.0”. It is important to note
that the service BigBank did not generate additional options, it means that in all
these options the last number (from the left) is 0.

The state of BigBank is changed. A new element commitment of
listOfCommitments of its state is created, and the formula int02 is put into
the element formOut of the commitment, whereas the formula pre021 is put to the
element formIn of the commitment.

The service BigBank replies to agent01 with a message with protocolOrder

021 with protocolSession set as agent01’s address and with info (created by
BigBank) having the formula:

( pre021 implies formInCommitment( BigBank ) )

and

( formOutCommitment( BigBank ) implies int02 )

The meaning of this formula is that BigBank commits to make the formula int02

true, however under the condition that pre021 is true. Hence, to invoke the service
BigBank, the formula pre021 must be satisfied.

Agent01 puts the info into the element knowledge of its state, and moves
the formula int02 from plan to workflow of its state. On the basis of the task
formula, agent01 knows that the formula pre021 describes the initial resource of
type PayOrder. Hence, the formula pre021 becomes its final intention and is put
to plan of its state.

Now agent01 is looking for a service that can realize its final intention. From
its knowledge the agent01 knows that TM-02 can realize this intention, see the
formula (4.1’). Agent01 sends a message with protocolOrder 001, and with info

(created by agent01) with the formula:

pre021 implies intentions( agent01 )

to the service TM-02.
The service TM-02 receives the message and displays the options specified in

the formula pre021 to the client. Then, TM-02 commits to realize this intention,
creates appropriate element commitment in its state, i.e., the formula ( true )

is put into the element formIn of the commitment, whereas the formula pre021

is put into the element formOut of the commitment. Then the service TM-02
sends appropriate message to agent01, i.e., TM-02 replies to agent01 with the
message with protocolOrder 021 having info (created by TM-02) that contains
the following formula:

( true implies formInCommitment( TM-02 ) )

and

( formOutCommitment( TM-02 ) implies pre021 )

Agent01 puts the info into its knowledge, and moves the formula pre021 from
plan to workflow of its state. Since the precondition of the commitment is true,
no new intention is created by the agent.

Now, plan of the agent01’s state becomes empty so that a workflow for realiz-
ing the task has already been arranged. The workflow consists of the five services:
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TM-00, AnyBook, BigBank, TM-01, and TM-02. This workflow is represented
by the formulas that are in the element workflow of agent01’s state. The for-
mulas describe the commitments of the services involved into the workflow. The
service TM-01 has committed to deliver a resource of type BookOrder, satisfying
the specification expressed in formula (5.3), to the service AnyBook. The service
TM-02 has committed to deliver a resource of type PayOrder, satisfying the spec-
ification expressed in the formula (5.5), to the service BigBank. The crucial point
here is to grasp that the specifications (5.3) and (5.5) are interdependent. This
interdependence is expressed by the indexes. It means that if the service TM-02
creates a resource with attribute Amount set as ”70euro” (that corresponds to the
option with index ”0.0.0”), then the service TM-01 cannot create a resource with
attribute Title set as ”The Hobbit” that corresponds to the option with index
”0.1” . Analogously, if the resource produced by TM-01 has attribute Title set as
”Silmarillion” (corresponding to the option with index ”0.2”), then TM-02 cannot
produce a resource having attribute Amount set as ”60euro” that corresponds to
the option with index ”0.1.0” . The reason is that there is a conflict of indexes
that correspond to these options.

Note that the matching of the options is resolved at the level of indexes (identi-
fying these options) without analyzing the attributes of the resources and semantic
interrelations between them, e.g., without knowing that semantically the attribute
Price of the resource of type BookOrder corresponds to the attribute Amount of
the resource of type PayOrder.

Note that according to the protocol entish 1.0 (specified formally in Chapter
6) a service engaged in the workflow may cancel its commitment by sending a
message with protocolOrder 002 to agent01. Once the service does so, the state

of this service as well as the agent01’s state must be changed. In the case of the
service’s state it is relatively simple, i.e., the appropriate element commitment is
removed from listOfCommitments of this state. However, in the case of agent’s
state it is more complex, see details in Chapter 6, Section 6.7. Analogously the
agent may cancel service’s commitment by sending a message with protocolOrder

020 to this service.
During the phase of workflow formation a service engaged in the workflow

reserves temporarily some of its capabilities specified in the precondition of the
commitment it has made. In the case of AnyBook, it reserves three books from
its stock specified in the precondition, however, only by the time specified in the
timeout. It is important that this very timeout is determined by AnyBook itself.

5.6 Workflow execution

The workflow can be executed if the agent01 sends synchronously the mes-
sage of protocolOrder 222 to all the services engaged in the workflow. The
protocolSession is set as the agent01’s address, whereas the info in the mes-
sage is created by agent01 and contains the formula ( true ). The intended
meaning of this message is that the workflow for realizing the agent01’s task is
already constructed and approved by the client, so that it may be executed. It is
the signal for the services that are supposed to produce the initial resources to do
so, and then to send them to the next services in the workflow.

Suppose that the client chooses book entitled ”The Hobbit” according to the
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options displayed by the TM-01 and TM-02. Then the client creates a resource of
type BookOrder and a resource of type PayOrder satisfying the constrains associ-
ated to this option.

Then, TM-01 puts this resource of type BookOrder (as a file) into a www
server. An element constant of type BookOrder is created by service TM-01.
The URL address of this file is put into the element longName of constantName
of the constant. Let bookorderURL denote this constant.

Then, TM-01 sends a message with protocolOrder 321 to AnyBook, with
info (created by TM-01) having the formula:

(

?bookorder = bookorderURL

and

token( ?bookorder ) = tok01

)

Once AnyBook has received the message, it knows (by the token tok01 of the
resource specified in this formula) what this resource is and what commitment
is associated to this resource. Note that this very AnyBook has determined this
token. So that AnyBook downloads the file that contains the resource of type
BookOrder produced by the client via TM-01, and sends confirmation to TM-01,
i.e., a message with protocolOrder 331 with the info (created by AnyBook)
having the following formula:

(

isIn( ?bookorder, AnyBook )

and

token( ?bookorder ) = tok01

)

Once TM-01 has received this message, it sends a message with protocolOrder

333 to agent01. The info of this message contains the formula int01, see the
formula (5.3). This is the confirmation that the commitment of service TM-01 has
been realized. The service TM-01 may put the info into its knowledge. Then,
TM-01 removes the corresponding element commitment from listOfCommitments

of its state.
At this very moment AnyBook can cancel the rest of reservations specified in

the precondition of its commitment except the one chosen by the client in the book
order.

Agent01, after receiving the message with protocolOrder 333, moves the in-
tention int01 from the element workflow to the realized of its state.

Hence, AnyBook has got the first input resource that was specified in the
precondition formula of its commitment.

Now, it is the turn of the service TM-02. It puts this resource of type PayOrder
(as a file) into a www server. An element constant of type PayOrder is created
by service TM-01. The URL address of this file is put into the element longName
of constantName of the constant. Let payorderURL denote this constant.

Then, TM-02 sends a message with protocolOrder 321 to BigBank, with info

(created by TM-02) having the formula:

(
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?payorder = payorderURL

and

token( ?payorder ) = tok021

)

Once BigBank has received the message, it knows (by the token of the resource
specified in this formula i.e., tok021) what this resource is and what commitment
is associated to this resource. Note that this very BigBank has determined this
token. So that BigBank downloads the file that contains the resource of type
PayOrder produced by the client via TM-02 and sends confirmation to TM-02,
i.e., a message with protocolOrder 331 with the info (created by BigBank)
having the following formula:

(

isIn( ?payorder, BigBank )

and

token( ?payorder ) = tok021

)

Once TM-02 has received this message, it sends a message with protocolOrder

333 to the agent01. The info of this message contains the formula pre021, see the
formula (5.5). This is the confirmation that the commitment of service TM-02 has
been realized. The service TM-02 may put the info into its knowledge. Then,
TM-02 removes the corresponding element commitment from listOfCommitments

of its state.
Agent01, after receiving the message with protocolOrder 333, moves the in-

tention pre021 from the element workflow to the realized of its state.
BigBank has got the input resource that was specified in the precondition

formula of its commitment. Hence, it produces a resource of type PayConfirm,
and puts it (as a file) on a www server. An element constant of type PayConfirm

is created by the service BigBank. The URL address of this file is put into the
element longName of constantName of the constant. Let payconfirmURL denote
this constant.

Then, BigBank sends a message with protocolOrder 321 to AnyBook, with
info (created by BigBank) having the formula:

(

?payconfirm = payconfirmURL

and

token( ?payconfirm ) = tok02

)

Once AnyBook has received the message, it knows (by the token of the resource
specified in this formula i.e., tok02) what this resource is and what commitment
is associated to this resource. Note that this very AnyBook has determined this
token. So that AnyBook downloads the file that contains the resource of type
PayConfirm produced by the BigBank and sends confirmation to BigBank, i.e.,
a message with protocolOrder 331 with the info (created by AnyBook) having
the following formula:

(
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isIn( ?payconfirm, AnyBook )

and

token( ?payconfirm ) = tok02

)

Once BigBank has received this message, it sends a message with protocolOrder

333 to agent01. The info of this message contains the formula int02, see
the formula (5.4). This is the confirmation that the commitment of service
BigBank has been realized. The service BigBank may put the info into its
knowledge. Then, BigBank removes the corresponding element commitment from
listOfCommitments of its state.

Agent01, after receiving the message with protocolOrder 333, moves the in-
tention int02 from the element workflow to the realized of its state.

Hence, AnyBook has got the second input resource that was specified in the
precondition formula of its commitment.

Since AnyBook has all input resources, it produces a resource of type
BookInvoice, and puts it (as a file) on a www server. An element constant

of type BookInvoice is created by the service AnyBook. The URL address of
this file is put into the element longName of constantName of the constant. Let
bookinvoiceURL denote this constant.

Then, AnyBook sends a message with protocolOrder 321 to TM-00 with info

(created by AnyBook) with the formula:

(

?bookinvoice = bookinvoiceURL

and

token( ?bookinvoice ) = tok0

)

Once the service TM-00 has received the message, it downloads the invoice, and
replies to AnyBook with the message with protocolOrder 331 having info (cre-
ated by TM-00) that contains the following formula:

(

isIn( ?bookinvoice, TM-00 )

and

token( ?bookinvoice ) = tok0

)

After receiving this message, AnyBook removes the commitment, puts the info

into its knowledge, and sends a message with protocolOrder 333 to agent01.
The info of this message is created by AnyBook, and contains the formula int0,
see the formula (4.2). This is the confirmation that the commitment of service
AnyBook has been realized.

Then, agent01 moves the formula int0 from workflow to realized of its
state. Now, the element workflow of agent01’s state is empty. It means that
the workflow has been executed successfully. The required invoice is in service
TM-00 associated with the TaskManager of the client.

Now, agent01 may approve the distributed transaction by sending the final
confirmation to all the services involved in the workflow. If the agent decides to
complete the trasnsaction, it sends synchronously a message with protocolOrder
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999 with protocolSession set as the agent01’s address to all the services engaged
in the workflow. The info of the message is created by agent01 and contains
formula ( true ). This completes the distributed transaction.

Once the messages with final confirmation have been received by BigBank and
AnyBook, the effect on the real world takes place, i.e., the appropriate money
transfer is realized, and the book is delivered to the client.

Another aspects of transactional semantics, implemented in the protocol entish
1.0, are discussed at the end of the first example in Chapter 4, Section 4.7.
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6.1 Introduction

The protocol entish 1.0 is a specification of conversation between an agent, services,
and an infoService. They exchange messages with specific contents according to
some order.

Sending a message as well as receiving one may cause a change in the sender’s
and recipient’s state. A message of specific type (protocolOrder in our con-
vention) with a specific contents can be sent if the sender’s state satisfies certain
condition associated with this message type.

Note, that the data structures: message, state, and info are XML doc-
uments created according to the schemes defined in message.xsd, state.xsd,
and info.xsd, see the Appendix. The most important elements of each of such
structures are Entish formulas. Entish is a language for service description. Its
syntax is defined in formula.xsd and properEntish.xml, so that Entish formulas
are XML-elements. Entish is an open language. Names for new concepts can
be introduced according to the schema definitions.xsd in a distributed way,
i.e., anyone can introduce any concept or a collection of concepts that may be
regarded as an ontology. Any name of type, function, and relation that occur in
a well formed Entish formula must contain the URI of a XML document (being
an instance of the definitions.xsd schema) where these names are introduced.
The document must be available on www.

Since XML syntax of Entish is hard to read, for the purpose of the pre-
sentation we have also introduced the translation of the XML-syntax into a
typical syntax of a language of first order logic. See the Chapter 3, Section 3.3
for details. In this protocol specification Entish formulas will be represented in
this typical syntax. So that, if psi and phi are formulas, then (psi or phi),

(psi and phi), (psi implies phi) are formulas. Terms and atomic formulas
are defined in the usual way however, quantifiers and explicit negation are not used.

Let us start with the specification of the elements of message. The element
to and the element from of the header of the message are respectively the recip-
ient address and the sender address. They are addresses of agents, services, and
infoServices. The format for the addresses is the following:

(1.1)

http://host.name/path/party_id

where party id is either a pointer to agent, service, or infoService. In the case of
agent, the string party id is of the form agentname/date-timewhere date-time
is a string of the type xsd:dateTime, and denotes the timeout set for the task
delegated to the agent for realization.

It is supposed that HTTP is the transport protocol for delivering (using the
POST method) the messages between conversation parties.

The element protocolName of message is set as entish. The element
protocolVersion is set as 1.0.

The message contents, i.e., the body contains the element listOfInfos.
The element listOfInfos contains the elements signedInfo. The element
signedInfo contains element info and the optional element signature. In the
present version of the protocol it is assumed that exactly one element signedInfo
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is in the listOfInfos, and there is no element signature in the signedInfo. The
element info contains three elements: formula, time, and place. It represents
a fact, i.e., that the formula (i.e., formula of our language Entish defined in the
schema formula.xsd) was true at the time and in the place.

Please note that the operators ”and” , ”or”, and ”implies” (defined in the
formula.xsd) can have arbitrary (at least two) number of formulas as elements.
Usually, these operators are binary. So that we introduce the following convention:
The formulas:

( phi1 and phi2 and ... phiN )

( phi1 or phi2 or ... phiN )

represent (in our typical syntax) the appropriate XML-formulas with the number
of elements equal to N.

From now on, by the name of function, or type, or relation we mean the
the element functionName, or typeName, or relationName created in a XML
document according to the schema definitions.xsd.

In the document properEntish.xml (that is an instance of the schema
definitions.xsd) we have introduced several primitive names for types, rela-
tions, and functions. The types Service and Agent are special ones; they describe
the processes associated with agents and services. Their elements are called agents
and services. There are also auxiliary types: Time, Index, Token. Elements of
these types are special strings and correspond to the type xsd:string of XML
Schema.

For any other type that can be introduced to Entish via definitions.xsd,
its elements are called resources.

A resource or an agent, or a service as well as an element of any type is
described in Entish by a term, i.e., by variable, constant, or by a complex term,
see formula.xsd in Appendix and Chapter 3, Section 3.3 for details. However,
in the case of agent and services, if it is a constant, i.e., fixed name of agent
or service, then the element longName of the constantName of the constant is
an agent’s or service’s address created according to the format defined in (1.1);
whereas the element shortName contains party id.

If the constant is the name of a resource, then the element longName of the
constantName of the constant is an URL that points to the very place where
the resource is stored. Hence, it is natural that resources are transported by the
method GET of the HTTP protocol.

For the auxiliary types, i.e., Time, Index, Token whose elements are strings,
a constant of any of these types contains this very string in the shortName of its
element constantName, and there is no element longName.

For any message order, a canonical form of formula will be defined that occurs
in its element info. The reason for introducing canonical formula format is, first
of all, to exclude any ambiguity with their interpretation, and also to reduce
reasoning overload.
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6.2 Service state and operation type

Suppose that a service (having name service fun) implements an abstract En-
tish function fun. The function has K parameters (input variables): ?input0,

?input1, ... , ?inputK.
The service’s address (defined according to (1.1)) is put in the element owner of

state, The element state represents the state of the service fun in the protocol
entish 1.0.

Type of operation performed by service fun consists of:
(i) precondition necessary for invoking the service:

(

isIn( ?input0, service_fun )

and

isIn( ?input1, service_fun )

and

...

isIn( ?inputK, service_fun )

and

propIn( ?input0, ?input2, ?inputK )

)

This formula (denoted by for in) is put into the element formIn of the goal of
the state of the service fun. Note that the formula

propIn( ?input0, ?input2, ?inputK )

is an arbitrary Entish formula specifying the input of the service.
(ii) post condition describing the result of operation performed by the service:

(

isIn( ?finRes, ?anyService )

and

?finRes = fun( ?input0, ?input1, ... ?inputK )

and

propOut( ?finRes )

)

This formula (denoted by for out) is put into the element formOut of goal of
state of the service fun. Note that propOut( ?finRes ) is an arbitrary Entish
formula specifying the output of the service.

6.3 Publication of the service operation type to
an infoService

If the service wants to register to an infoService, then it sends a message of
protocolOrder set as 000, and protocolSession set as service fun’s address.
The info is created by the service, so that the address of service fun is put in
the element place of the info. The element formula of info contains a formula
of the form:
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(2.1)

(

for_in implies formInOperationType( service_fun ) )

and

( formOutOperationType( service_fun ) implies for_out )

)

The info is stored in infoService for some time specified by the formula timeout(

t1 ). Note that t1 is a constant of type dateTime. The infoService may reply
with a message of protocolOrder set as 111, protocolSession set as service -

fun’s address. The info in the message is created by the infoService, so that
the address of infoService is put in the element place of the info. The element
formula of info contains a formula of the form:

timeout( t1 )

The intended meaning is that registration is valid as long as the formula timeout(

t1 ) is true. Once the service has received the message, the info of this message
is put into knowledge element of the state of the service. Before the timeout is
over, the service must repeat the registration procedure taking into account the
current value of the GMT time, i.e., the service must update the value of the
element time of the info in the registration message.

6.4 Task and agent state

Type of task is defined as a term of the Entish language; see formula.xsd in
Appendix for the term definition. However, we consider only those terms that do
not contain subterms of the type Agent or of the type Service.

For the simplicity of the presentation let us assume that the term in question
is a composition of functions already defined in Entish, and there are no constants
in the term, and all variables in the composition have different names, i.e., any
variable occurs exactly once in the term. Once we grasp this simple case, it will be
clear how to extend the protocol to the case where the type of task is an arbitrary
term. The extension is done in Section 6.9.

The canonical form of the simple term defining task type is the following:

(3.1)

fun( fun0(...), fun1(...), ... , funN(...) )

Note, that some of the subterms inside fun( ... ) may be variables.
Let

(3.2)

?x0, ?x1, ... , ?xJ

be all the variables occurring in the term (3.1). It may happen that one (or more) of
the terms fun0(...), fun1(...), ... , funN(...) is a variable listed above.

The notion of task is crucial in our approach. It is created by the client side,
i.e., an application or by a user via a TaskManager. It is supposed that the appli-
cation or the Task Manager is responsible to deliver initial resources for the task



92 Chapter 6. Service Composition Protocol entish 1.0

realization as well as for storing the final resource being the result of a successful
realization of the task.

The canonical format of task formula is defined as follows:

(3.3)

(

timeout( date0 )

and

isIn( ?finRes, service0 )

and

?finRes = fun( fun0(...), fun1(...), ... , funN(...) )

and

token( ?finRes ) = tok0

and

prop( ?finRes )

)

where the format of the formula prop( ?finRes ) is defined in (3.4), and ser-
vice0 is the name of a service (created by an application or TaskManager) that is
supposed to receive the final resource, i.e., the result of successful task realization.
Note that date0 is a constant of type dateTime, service0 is a constant of type
Service whereas tok0 is a constant of type Token. The following formula

(

timeout( date0 )

and

isIn( ?finRes, service0 )

and

token( ?finRes ) = tok0

and

prop( ?finRes )

)

is put into the element formIn of a commitment of listOfCommitments of the
state of the service0. Whereas the formula ( true ) is put into the element
formOut. Note, that service0 is regarded as an ordinary service so that it also
exchanges messages according to the protocol entish 1.0, see Section 6.5 for more
details concerning service commitments.

Note that in the formula (3.4) we apply the following conventions: "0", "1",

... ,"K" denote constants of type Index, where a string inside ”” is put into
element shortName of constantName of the appropriate constant. The same
convention is applied also to the constants of type dateTime, and Token.

The canonical format of the formula prop( ?finRes ) in (3.3) is defined as
follows:

(3.4)

(

( index( ?finRes ) = "0" and prop0( ?finRes ) )

or

( index( ?finRes ) = "1" and prop1( ?finRes ) )

or



6.4. Task and agent state 93

...

or

( index( ?finRes ) = "K" and propK( ?finRes ) )

)

Hence, the formula prop( ?finRes ) is the disjunction of options. Each of the
options is identified by an index. Usually, the formula specifing such option
describes the final resource ?finRes in terms of its attributes; see the examples
in Chapters 4 and 5.

For every variable from the sequence (3.2), say ?xj, let service xj denote the
name of a service (being a part of an application or created by TaskManager),
that can deliver resources of the same type as the type of the variable ?xj. These
services are either associated (by an application) with the task, or dedicated by
TaskManager to the task. Note, that these services also exchange messages ac-
cording to the protocol entish 1.0, in the very same way as ordinary services do.
Therefore, any of the services, say service xj, has its own state. The formula (

true ) is put into the element formIn of goal of the state of the service service -
xj, whereas the formula ( isIn( ?xj, ?anyService ) ) is put into the element
formOut of the goal of the state.

Note, that the services: service0, and service xj for j=0, 1, ... J, as well as the
state of an agent process responsible for realization of the task, must be created
by an application or a TaskManager.

Let agent0 be the name of an agent process. The agent0’s address (defined
according to (1.1)) is put into element owner of the state of the agent. Then, the
task formula (3.3) is put into element formOut of the element goal of state of
the agent. And for every j = 0, 1, 2, ... ,J; the following formula:

(3.5)

(

( true implies formInOperationType( service_xj ) )

and

( formOutOperationType( service_xj ) implies

isIn( ?xj, ?anyService)

)

)

is put into the element formula of info. The address of the service j is put into
the element place of the info. These elements info are put into the element
knowledge of the agent’s state.

Note that the formula (3.5) has a similar form as the formula (2.1). Hence, it
means that an agent knows that these services can deliver the initial resources (of
the types specified by variable ?xj) that are needed for task realization.

Once the agent’s state is completed as it was described above, it represents
the agent in the entish1.0 protocol. From the protocol’s point of view, the way the
state and the corresponding services were constructed is not important. They
may be constructed by an application, TaskManager, or a user.
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6.5 Intentions

Canonical format of the intention derived from the task formula (3.3) is defined
as:

(4.1)

(

timeout( date0 )

and

isIn( ?finRes, service0 )

and

?finRes = fun( ?res_0, ... , ?res_N )

and

token( ?finRes ) = tok0

and

prop( ?finRes )

)

For every j=0,1, ... , N the variable ?res j corresponds to the term
funj(...) in (3.1). Note that the type of variable ?res j is the the same as
the type returned by the function funj. Let the formula (4.1) be denoted by int.
It is put into the element plan of the element intentions of the state of agent0.

The agent may send a message of protocolOrder set as 001 and
protocolSession set as agent0’s address to an infoService or to a service. The
info of message is created by the agent, i.e., the agent’s address is put into the el-
ement place of the info. The canonical format of formula in the element formula
of the info is of the following form:

(4.2)

( int implies intentions( agent0 ) )

If a message of protocolOrder set as 001 was sent to an infoService, then
the infoService may reply with a message of protocolOrder set as 111 and
protocolSession set as agent0’s address. The info of the message is one of
the elements info sent by services to the infoService; see the Section 6.2.1. It is
supposed that it is the info created and sent by a service (to the infoService) that
can realize the formula int, i.e., the agent’s intention.

6.6 Commitments

Suppose that a service (its name is service1) receives the message of
protocolOrder set as 001 from agent0. Then, service1 stores the info of the
message in the element knowledge of its state. Suppose also that service1
agrees to realize the agent’s intention. Then, service1 replies with a message

of protocolOrder set as 021 and protocolSession set as agent0’s address. The
info of the message is created by service1, that is, the service1’s address is put
into the element place of the info of the message. Formula to be put into element
formula of the info has the following canonical format:

(5.1)
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(

( pre implies formInCommitment( service1 ) )

and

( formOutCommitment( service1 ) implies int )

)

Once the message of protocolOrder set as 021 has been received by the agent,
the agent puts the info of the message into its element knowledge of its state,
and then moves the formula int from the element plan of intentions of its state
into the element workflow. Then, agent0 is obliged to create next intentions from
the formula pre and put them into the element plan of intentions of its state.

Once the message was sent successfully by the service1 to the agent0, a new
element commitment of the element listOfCommitments of the state of service1
is created. Formula pre is put into the element formIn of the new commitment

whereas the formula int is put into the element formOut of the new commitment.
The canonical format of the formula pre occurring in the formula above (5.1)

is the following:

(5.2)

( timeout( date1 ) and

isIn( ?res_0, service1 ) and token( ?res_0 ) = tok00 and

isIn( ?res_1, service1 ) and token( ?res_1 ) = tok01 and

... and ... and

isIn( ?res_N, service1 ) and token( ?res_N ) = tok0N and

(

option00( ?res_0, ?res_1, ... , ?res_N ) or

option01( ?res_0, ?res_1, ... , ?res_N ) or

... or

option10( ?res_0, ?res_1, ... , ?res_N ) or

option11( ?res_0, ?res_1, ... , ?res_N ) or

... or

option20( ?res_0, ?res_1, ... , ?res_N ) or

option21( ?res_0, ?res_1, ... , ?res_N ) or

... or

optionK0( ?res_0, ?res_1, ... , ?res_N ) or

optionK1( ?res_0, ?res_1, ... , ?res_N ) or

...

)

)

Where the number K is the number of options in the task and intention formulas,
see (3.3), (3.4), and (4.1). The canonical format of the formula

optionij( ?res_0, ?res_1, ... , ?res_N )

(for i=0, 1, ... , K; and j=0,1,.... , where for each i the number of
optionij is of course finite) is the following:
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(

index( ?res_0 ) = "i.j" and prop0ij( ?res_0 ) and

index( ?res_1 ) = "i.j" and prop1ij( ?res_1 ) and

... and

index( ?res_N ) = "i.j" and propNij( ?res_N )

)

It is important to note, that the index "i.j" corresponds to this very option
optionij. The option is the conjunctions of formulas. Any of the formulas corre-
sponds to a separate variable; the formula determines the index for the variable,
and describes it. Since it is a conjunction, for the option to be true all formulas
must be true. Later on the formulas will be separated (see (5.4) ) but the index
will be attached to each one to indicate that they are bound by the conjunction.

Note that any option having index "i.*" is generated from the option having
index "i", see the formula (3.4), and the examples in Chapters 4 and 5.

Each of the formulas:

prop0ij( ?res_0 )

prop1ij( ?res_1 )

...

propNij( ?res_N )

is a conjunction of atomic formulas describing the resources ?res 0, ?res 1, ...

?res N in terms of their attributes.
For example, the formula

prop1ij( ?res_1 )

may be of the following form:

(

atribute0( ?res_1 ) = "string0"

and

atribute1( ?res_1 ) = "string1"

and

atribute2( ?res_1 ) = "string2"

and

...

)

where the functions atribute0, atribute1, ... are attributes of the same
type as the type of the variable ?res 1. Note, that according to our convention,
attributes of a type (that is, functions defined on this very type) are usually defined
in the very XML-document (an instance of definitions.xsd) where this type is
defined.

Now, let’s go back to agent0. It is obliged to create next intentions from the
formula pre, i.e., (5.2). Each of these intentions is associated with one of the
input resources specified in the formula pre and denoted by ?res 0, ?res 1,

... ?res N.
For example, for the input resource ?res j (that corresponds to the term

funj(...), see (3.1)) the intention is of the following form:
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(5.3)

(

timeout( date1 )

and

isIn( ?res_j, service1 )

and

?res_j = funj( ?res_j0, ?res_j1, ... )

and

token( ?res_j ) = tok0j

and

Prop_j( ?res_j )

)

where ?res j0, ?res j1, ... are the variables that ocurr in the term
funj(...), see (3.1). Let this formula be denoted by intj . Note, that the
format of formula intj is the same as the format of the formula (4.1). Hence, the
canonical format of intention formula is one and the same.

The formula Prop j( ?res j ) in the formula (5.3) is defined as

(5.4)

(

( index( ?res_j ) = "0.0" and propj00( ?res_j ) )

or

( index( ?res_j ) = "0.1" and propj01( ?res_j ) )

or

...

( index( ?res_j ) = "1.0" and propj10( ?res_j ) )

or

( index( ?res_j ) = "1.1" and propj11( ?res_j ) )

or

...

( index( ?res_j ) = "K.0" and propjK0( ?res_j ) )

or

( index( ?res_j ) = "K.1" and propjK1( ?res_j ) )

or

...

)

Now, let us have a look at the formulas (3.3) and (5.3). If for some i = 0,1,2,

... N: the term funi(...) is one of the variables from the sequence (3.2), say
?x j, then the intention formula for the resource ?res i is defined as

(5.5)

(

timeout( date1 )

and

isIn( ?res_i, service1 )

and

?res_i = ?x_j

and
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token( ?res_i ) = tok0i

and

Prop_i( ?res_i )

)

These new intentions (i.e., of the form defined in (5.3) and (5.5) ) are put into the
element plan of intentions of the state of agent0. Once the agent has received
a commitment from a service to realize an intention, this intention is moved to the
element workflow of the intentions of state of agent0. And so on.

Agent0 repeats this rutine until it reaches the services that deliver the initial
resources (see 3.5), i.e., the services: service xj that delivers resources of the same
type as the type of the variable ?xj, for j=0,1, ..., J. The variables occur in
the task formula (3.2).

Now, suppose that agent0 sends intention intK to service xj, and suppose that
service xj agrees to realize this intention. Then, the commitment formula of the
service is the following:

(

( true implies formInCommitment( service_xj ) )

and

( formOutCommitment( service_xj ) implies intK )

)

Then, agent0 moves intK from plan to workflow. Since the formula pre in the
commitment is ( true ), one chain of intentions was closed, i.e., agent0 has no
new intention to put into plan. If the agent reaches all services (that are supposed
to deliver the initial resources for task realization), then the element plan of
intentions of the agent’s state will be empty. It means that agent0 has already
arranged services into a workflow that can realize its task.

The intentions formulas in the workflow form a tree order. The root of the
tree is the intention formula (4.1) generated from the task formula (3.3). It has N
children nodes corresponding to the terms

fun0(...), fun1(...), fun2(...), ... funN(...)

These nodes are of the form of formulas defined in (5.3) and (5.5). If a node is of
the form (5.5), then it is a leaf node of the tree. If it is of the form (5.3), then
it is a parent node and has other children. Hence, the tree corresponds to the
function composition in the task formula (3.3).

Since for any intention formula from the element workflow there is a service
that has committed to realize this intention, these services are composed into the
workflow. The workflow also has a structure of the tree. It starts its execution
from the leaf services that deliver the initial resources. The initial resources are
delivered to the next services as input resources in the tree order. Each of the
next services produces an output resource from the input resources and delivers
the output to the next service in the tree order. And so on. Finally, the root
service stores the final resource. If the final resource is delivered successfully, then
it means that the task has been realized.
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6.7 Control of workflow formation

Once the element plan of intentions of the state of agent0 is empty, agent0
may send (synchronously!) a message of protocolOrder set as 222 and of
protocolSession set as agent0’s address to all the services engaged in the work-
flow. The element info of the message is constructed by the agent so that the
agent’s address is put into the element place of info. The formula ( true ) is
put into the element formula of the info.

Once a leaf service has received this message, it is obliged to start the workflow
execution, see the next Section.

During workflow construction phase (i.e., before sending a message of
protocolOrder set as 222 by the agent), the agent may cancel the commitment

of a service as well as the service may also cancel its own commitment.

A service may cancel its commitment by sending a message of protocolOrder
set as 002 and of protocolSession set as agent0’s address to agent0. The info

of the message is the same info as the one in the message of protocolOrder
set as 021 and protocolSession set as agent0’s address sent before to agent0 by
the service. After sending this message, the corresponding element commitment

is removed from the listOfCommitments of the state of the service.

Once the agent receives the message of protocolOrder 002 from the service,
it is obliged to move back the corresponding intention formula (say intK) from
workflow to plan of intentions of its state. Then, agent0 has to remove all
intention formulas from the workflow that come later than intK according to the
tree order, and to cancel all commitments associated with the removed intentions.

To cancel a commitment of a service, agent0 sends the message of
protocolOrder set as 020 and of protocolSession set as agent0’s address to
the service. The info of the message is the same info as in the message of
protocolOrder set as 021 sent previously by the service to agent0. Once the
service receives this message of protocolOrder set as 020, it removes the cor-
responding element commitment from listOfCommitments of its state. If the
message does not follow the message of protocolOrder set as 002, then, after
sending the message, agent0 moves the associated intention back to the element
plan of its state.

6.8 Workflow execution and control

Suppose that the element plan of intentions of the state of agent0 is empty,
and agent0 has already sent message of protocolOrder set as 222 and of
protocolSession set as agent0’s address to all the services composed into the
workflow. So that the workflow execution was started by agent0. Now, suppose
that service (of name service2) has committed to realize one of the agent’s
intentions i.e., the previous elements of plan of agent0.

Suppose that this intention is one of the intentions of the form (5.3), i.e., it is
the following formula:
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(7.1)

(

timeout( date1 )

and

isIn( ?res_j, service1 )

and

?res_j = funj( ?res_j0, ?res_j1, ... )

and

token( ?res_j ) = tok0j

and

Prop_j( ?res_j )

)

Let this formula be denoted by intj . Once service2 has committed to realize this
intention, the formula intj was put into the element formOut of the appropriate
element commitment of listOfCommitments of the state of service2.

So that this formula was moved from plan of the intentions of the state of
agent0, to the element workflow.

Now, suppose that the service2 has got all the initial resources it needed to
produce its output resource. Service2 produced the resource specified in the for-
mula intj , and stored it in its HTTP server giving it the URL. Let URLj be a
constant of the same type as the type of the resource, i.e., the URL is put into
the element longName of constantName of the constant.

Then, service2 sends the message of protocolOrder set as 321 and
protocolSession is set as agent0’s address to service1. The info of a message

is created by service2, so that the address of service2 is put into element place

of the info. The formula in the element formula of the info is of the following
form:

(

?res_j = URLj

and

token( ?res_j ) = tok0j

)

Once service1 has received the message of protocolOrder set as 321, it downloads
the resource from the URL. After successful downloading, the service1 replies with
the message of protocolOrder set as 331 and protocolSession set as agent0’s
address to service2. The info of the message is created by service1, so that the
address of service1 is put into the element place of the info. The formula in the
element formula of the info is of the following form:

(

isIn( ?res_j, service1 )

and

token( ?res_j ) = tok0j

)

Once service2 has received a message of protocolOrder set as 331, it puts the
info of the message into the element knowledge of its state. Then, service2
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sends a message of protocolOrder set as 333 and protocolSession set as
agent0’s address to agent0. The info of the message is created by service2, so
that the address of service2 is put into the element place of the info. The
formula in the element formula of the info is the formula from the element
formOut of the appropriate commitment element of listOfCommitments of the
state of service2. Note that this formula is the formula intj, i.e., (7.1). Once
the message has been sent successfully, the commitment element is removed from
the listOfCommitments of state of service2. Agent0 receives the message and
moves the formula intj from element workflow of the intentions of its state

to the element realized of the intentions.

It is possible that the timeout timeout( date1 ) specified in the commit-
ment formula (5.2) is over, and service1 did not receive all the messages of
protocolOrder set as 321 associated with its input resources. Then, the ap-
propriate element commitment is removed from the listOfCommitments of the
state of service1. Then, service1 is obliged to send a message of protocolOrder
set as 009 to agent0, see Section 6.10 for details.

6.9 Task formula is an arbitrary term

Suppose that one of the terms fun0(...), fun1(...), ... , funN(...) ,
say funi(...), in (3.1) is a constant const i , i.e., the element longName of the
constantName of the constant contains the URL i of a resource. Suppose that
service1 replies with the commitment formula (5.2), so that the resource ?res i

should be delivered to service1, and the token tok0i is assigned to this resource
by service1.

Once the workflow execution is initiated by the agent, agent0 sends a message

of protocolOrder set as 321 and protocolSession set as agent0’s address to
service1. The info of the message is created by agent0, so that the address of
agent0 is put into the element place of the info. The formula in the element
formula of the info is of the following form:

(

?res_i = const_i

and

token( ?res_i ) = tok0i

)

Once service1 has received the message of protocolOrder set as 321, it downloads
the resource from URL i. After successful downloading, service1 replies with a
message of protocolOrder set as 331 and protocolSession set as the agent0’s
address to agent0. The info of the message is created by service1, so that the
address of service1 is put into element place of the info. The formula in the
element formula of the info is of the following form:

(

isIn( ?res_i, service1 )

and

token( ?res_i ) = tok0i

)



102 Chapter 6. Service Composition Protocol entish 1.0

Finally, agent0 stores this info in knowledge of its state.

Now, suppose that two of the terms fun0(...), fun1(...), ... ,

funN(...) , in (3.2) are one and the same. Let fun i(...) be the same
as fun j(...) . Suppose that service1 replies with the commitment formula
(5.2), So that the resource ?res i should be delivered to service1, and the token
tok0i is assigned to this resource by service1.

And the resource ?res j should be delivered to service1, and the token tok0j

is assigned to this resource by service1.
Then, agent0 creates only one intention that has the following form:

(

timeout( date1 )

and

isIn( ?Res, agent0 )

and

?Res = funj( ?res_j0, ?res_j1, ... )

and

token( ?Res ) = Tok

and

Prop( ?Res )

)

Note that in this intention formula the resource ?Res must be delivered to agent0,
and the constant Tok is created by agent0.

The formula Prop( ?Res ) is defined as

(

( index( ?Res ) = "0.0" and propj00( ?Res ) and propi00( ?Res ) )

or

( index( ?Res ) = "0.1" and propj01( ?Res ) and propi01( ?Res ) )

or

...

( index( ?Res ) = "1.0" and propj10( ?Res ) and propi10( ?Res ) )

or

( index( ?Res ) = "1.1" and propj11( ?Res ) and propi11( ?Res ) )

or

...

( index( ?Res ) = "K.0" and propjK0( ?Res ) and propiK0( ?Res ) )

or

( index( ?Res ) = "K.1" and propjK1( ?Res ) and propiK1( ?Res ) )

or

...

)

Hence, the options for resources ?res i and ?res j are joint now. Of course the
problem is whether any of such options can be satisfied. However, it is not a
problem of the agent; it is a problem of the next service in the workflow. The
understanding is always on the side of service or user.

Now, suppose that some service called service2 agreed to realize this intention,
and during the workflow execution phase it sent the message of protocolOrder
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set as 321 and protocolSession set as agent0’s address to agent0. The info

of the message is created by service2, so that the address of service2 is put into
element place of the info. The formula in the element formula of the info is of
the following form:

(

?Res = uri

and

token( ?Res ) = Tok

)

where uri is the constant of the same type as the type of ?Res pointing to
the resource produced by service2. Once agent0 has received the message of
protocolOrder set as 321 from service2, it acts as a broker. The agent sends
a messages of protocolOrder set as 321 to the services in the workflow that
need the resource produced by service2. So that agent0 sends the message of
protocolOrder set as 321 with the formula

(

?res_j = uri

and

token( ?res_j ) = tok0j

)

to service1. And at the same time the agent sends a message of protocolOrder
set as 321 with the formula

(

?res_i = uri

and

token( ?res_i ) = tok0i

)

to service1. Service1 downloads the resource denoted by
?res j and sends as the confirmation a message of protocolOrder set as 331 and
protocolSession set as agent0’s address to agent0. The info of the message is
created by service1, so that the address of service1 is put into element place of the
info. The formula in the element formula of the info is of the following form:

(

isIn( ?res_j, service1 )

and

token( ?res_j ) = tok0j

)

The same is done by service1 for the resource ?res i .
Once agent0 has got all the messages of protocolOrder set as 331, it sends

the confirmation message of protocolOrder set as 331 to service2. Once service2
got this message, it replies with a message of protocolOrder set as 333 to agent0
that the appropriate intention was realized.

Important note: two or more identical sub terms may occur in the task term
not only at the same level of function composition. However, the same procedure
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is applied also in this case, i.e., these identical sub terms are represented by one
term. (This is the job of the agent to analyze the task term and to separate
occurrences of the same sub term.) Then, in the course of workflow formation,
the agent creates one common intention from the intentions corresponding to the
same sub terms. During the workflow execution, the agent acts as a broker and
distributes copies of the resource among the services that need it in the workflow.

6.10 Transactional Semantics

If a service cannot realize its commitment (i.e., cannot perform its operation and
produce the resource it has declared in the commitment), it is obliged to send
a message of protocolOrder set as 009 and protocolSession set as agent0’s
address to agent0. The info of the message is created by the service, and the
formula ( false ) is put into the element formula of the info.

If agent0 receives a message of protocolOrder set as 009 and protocolSession

set as agent0’s address, it is obliged to cancel the distributed transaction associated
with the workflow execution. Then, agent0 sends a message of protocolOrder set
as 090 and protocolSession set as agent0’s address to all the services engaged
in this transaction. The element info of the message is created by agent0. The
formula ( false ) is put into the element formula of the info of the message.
Once a service has received such message, it performs so called rollback (undo)
of the operation it has already performed during the workflow execution. If the
service has not performd the operation, then the associated commitment formula
is removed from the listOfCommitments of its state.

Once agent0 has canceled the transaction, it removes all formulas from the
element workflow of its state, and starts its routine again from the very begin-
ning, i.e., from the task formula (3.3) if the timeout in the task formula is not over.

Now, suppose that the workflow was performed successfully, i.e., the agent re-
ceived confirmation messages (of protocolOrder set as 333) from all the services
engaged in the workflow. Then, agent0 may either send message of protocolOrder
set as 090 and protocolSession set as agent0’s address that cancels the transac-
tion, or sent synchronously to all the services engaged in the workflow the message
of protocolOrder set as 999 and protocolSession set as agent0’s address that
confirms the distributed transaction. Suppose that the message of protocolOrder
set as 999 and protocolSession set as agent0’s address was sent. The info is
created by agent0. The formula ( true ) is put into the element formula of the
info. Once a service has received the message of protocolOrder set as 999 the
effect of performing operation by the service becomes persistent.

If a service has received the message of protocolOrder set as 090 and
protocolSession set as agent0’s address, the service performs the rollback of
the operation it has done during the workflow execution, i.e., the service must
undo the temporary results of this operation.

Note, that the main timeout is set in the task formula. This timeout is
encoded in the agent’s address (see Section 6.1) that is put into the element
protocolSession of all the messages exchanged in the workflow formation phase
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and the workflow execution phase. Hence, all services engaged in the workflow
know the main timeout. The next timeouts are determined by services in their
commitment formulas, and are consecutively earlier and earlier in order to syn-
chronize the workflow execution. Once the main timeout is over and neither the
message of protocolOrder set as 999 and protocolSession set as agent0’s ad-
dress nor the message of protocolOrder set as 090 has been received by the
service, the service performs the rollback of the operation it has done during the
workflow execution. The transactional semantics implemented in this protocol is
similar to the 3PC transaction. It may be seen as is a bit ad hoc solution, how-
ever, the transactional semantics is not the main subject of this work. The work
concerning the transactions within the framework of enTish technology will be
published shortly as dissertation written by Leszek Rozwadowski.

This completes the specification of the protocol entish 1.0.
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In this Chapter an abstract implementation architecture of the enTish tech-
nology is presented as well as some details of the prototype implementations.

The first pilot implementation of enTish was completed a year ago, in Novem-
ber 2002. During this implementation and testing, the final versions of the lan-
guage and the protocol entish 1.0 were refined. Now, the pilot implementation
serves as the living demo available on our website.

The prototype implementation of the final version of the language Entish and
the protocol entish 1.0 was done by Dariusz Pawluczuk in the framework of his
Master thesis under the supervision of the author.

7.1 enTish abstract architecture

There are three basic components of the enTish technology namely, agents, ser-
vices, and infoServices. The protocol entish 1.0 is a conversation protocol between
them. From the point of view of the protocol, a service is a process that repre-
sents a raw application in the conversation. An agent is a process that represents
a client application, and is dedicated to realization of the task delegated by the
client. An infoService represents a service registry.

Although, the agent processes as well as service processes may be implemented
individually, i.e., a client may implement its own agent, whereas a service provider
may implement its own service process, it is reasonable to have agent server and
service server. Agent server is an application dedicated to host agents whereas
service server to host service processes. This solution is optimal for several reasons.
The first reason is that client applications and service applications may be running
inside intranets protected by firewalls, so that they are not visible from outside
and cannot participate in a conversations. The second reason is that even if a
client application or service applications are down for a while, the corresponding
agent or service process can still represent the agent or service in the conversation
protocol. Hence, agent server can act as agent proxy whereas service server as
service proxy.

There must be special communication protocols between client application and
its agent running on an agent server, as well as between service application and
the corresponding service process. These protocols are not standardized because
there is no need for doing so. They are implementation dependent, i.e., they
correspond to a particular abstract architecture of the enTish technology. Anyone
who implements a service server and agent server should provide such protocols for
client applications and service applications to integrate them with the appropriate
server.

Now, we are going to describe the architecture of an application that can be
exposed as a service in enTish technology.

7.1.1 Service architecture

We follow the idea of a layered view of service architecture introduced in (15; 63).
Our service architecture comprises the following three layers: Conversation layer,
functionality layer, and database management (executive) layer. The database
management layer is the same as in (15), it influences the real world. However,
the next two layers have different meaning. The functionality layer has exactly two
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interrelated components: Raw application, and so called filter associated with the
raw application. Raw application implements a single operation, i.e., given input
resources, it produces the output resource according to the operation specification.
Note, that operation has exactly one output, although it may have several inputs.
The associated filter works as follows. Given constrains on the output resource,
it produces the constrains on the input resources. That is, given a specification
of the desired output, the filter replies with properties that must be satisfied by
the input in order to produce the desired output by the raw application. It is
clear that these constrains must be expressed in the description language, i.e., in
Entish. The conversation layer implements the communication protocol between
the application and a service server in order to arrange raw application invocation,
to pass input / output resource to / from the raw application, as well as to realize
transactional semantics.

Since our service architecture is different than the one corresponding to WSDL
and UDDI of the Web services, we were forced to revise the concept of service
description language as well as the concept of service registry. It is natural that
service description language should describe the types of service input / output
resources as well as attributes of these resources to express constrains. Note, that
the description language is supposed merely to describe resources in terms of
theirs attributes, not to construct data structures as it is done in WSDL. It is also
natural to describe what service does in the language, i.e., to describe the type of
the operation the service performs. This type is expressed in terms of abstract
function implemented by the operation. In Web services technology, what service
does is described in UDDI. We express this description in our language Entish.

Since service has additional functionality performed by filter (i.e., service may
be asked if it can produce output resources satisfying some properties), the descrip-
tion language Entish was augmented with a possibility to formulate such questions
as well as answers.

Note that Entish describes also some static properties of service composition
process such as intentions, and commitments; this corresponds to the functionality
of WS-Coordination (41).

7.1.2 The demo of the pilot implementation

Let us present the demo of the pilot implementation. The system resulting from
this implementation allows providers to join their application as services as well
as to formulate requests by clients, and delegate the requests to the system for
realization.

The demo of the system is available for testing and evaluation via three www in-
terfaces starting with http://www.ipipan.waw.pl/mas/ . The first interface called
EntishDictionary serves for introducing names for new data types, their attributes,
and new functions to the language Entish. The second interface called serviceAPI
is for joining applications (that implement the new functions) as networked ser-
vices to our system. The third interface called TaskManager is devoted to a client
to specify its request (task) in Entish, and provide initial resources for the task
realization. Hence, from the outside, i.e., from service providers and clients point
of view, the system consists of the three interfaces: EntishDictionary, TaskMan-
ager, and serviceAPI. What is inside, that is, the system engine is transparent for
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service providers and clients. The engine implements the language Entish, and the
protocol entish 1.0 that realizes clients’ tasks by discovering appropriate services,
composing them into a workflow, and finally invoking them. The www interfaces
are user friendly so that to use the system almost no knowledge on XML, the
Entish syntax, and the protocol entish 1.0 is needed.

EntishDictionary (ED for short) serves also as an ordinary dictionary, i.e., for
looking at the existing ontologies as well as for explanation of names used in the
language. Ontology is meant as a collection of names of resource types, their
attributes, and functions defined on these types. It is supposed that they come
from one application domain. Any user can introduce its own ontology. There is
no conflict of names, because short names introduced by users are automatically
extended to long names that are URIs (64). ED has also additional functionality.
It allows a service provider to create Entish formula that describes the type of
operation performed by its application. The formula along with some additional
information about the host on which the application is running is sent automati-
cally to the system (actually to serviceServer) for registration and publication.

The second functionality of ED is that it allows the user to create a task;
usually it is a composition of abstract functions. The task is sent automatically
to TaskManager for realization. It is important to note, that a task is merely an
abstract description of what is to be realized, so that it does not indicate what
services could realize it. Note, that EntishDictionary realizes some functionality of
UDDI concerning service classification. However, service publication and discovery
are done inside the system.

Generally in enTish, there is no restriction on the type of resources that can
be defined in the dictionary. However, for the purpose of system demonstration
we assume that a resource type has flat XML format, i.e., it has several elements
that are of type xsd:string.

TaskManager is a GUI that, given a task from a user, creates and manages
appropriate interfaces for delivering (by the user) initial resources needed for task
realization. Then, the task is sent to the system (actually to agentServer) for
realization. If the system is ready to realize the task (it means that a workflow
consisting of appropriate services has already been arranged), the TaskManager
asks the user to provide the initial resources according to the constrains returned by
the system. More sophisticated tasks can be generated directly from a repository
of typical tasks provided by the TaskManager.

The interface serviceAPI provides Java classes and explanation for creating
services (according to our architecture) by a service provider.

7.1.3 The prototype

The prototype implementation is based on the same abstract architecture and
realizes the same functionality as the demo presented above, however without
such graphical interfaces. In our opinion, it verifies the enTish technology in the
sense that the description language and the composition protocol can be applied
to integration of heterogeneous applications in open and distributed environment
based on HTTP as the transport protocol between the applications.

The fact that the enTish technology can be realized within the framework
of a Master thesis (notabene a very good thesis) proves that enTish is not too
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complex. However, more independent implementations are needed to verify the
interoperablity between components.

7.2 Conclusion and summary of the work

enTish is not based on the basic protocol stack of the Web services, i.e., on
SOAP+WSDL+UDDI. It may be seen as the main drawback of enTish. All ex-
isting technologies that aim at integrating heterogeneous services in open environ-
ment are based on the Web services or provide translation to the Web services like
DAML-S.

Actually enTish is based on different principles, so that it is impossible to
translate it into Web services. The main difference is the service description lan-
guage. WSDL is an interface definition language, and provides means for binding
service interface with a concrete application, and with a transport protocol.

Entish describes service operation types in terms of abstract functions imple-
mented by operations, and in terms of precondition and post condition of operation
invocation. Similar approach was taken by DAML-S, however, it is based on RDF,
and therefore it is enormously complex.

As to SOAP it has turned out recently (in SOAP 1.2) that only asynchronous
document passing style of communication between services is obligatory. Data
that are passed between applications are included in documents. Since RPC-style
is optional, it means that it is not considered as a communication method any
more.

In enTish the asynchronous message passing as well as separate asynchronous
data passing are used. Hence, the enTish communication cannot be reduced to
SOAP.

UDDI as a service registry has a lot of functionality useful for business appli-
cations. However, from the point of view of integrating heterogeneous services it
is not sufficient. It seems that the main reason is that the taxonomy (provided by
UDDI) for classifying service operations is not generic and open.

In enTish, a service registry is realized as infoService. It is extremely simple
and useful for our experimental technology.

Since enTish is based on different principles, it should be viewed as an alter-
native approach to integrating heterogeneous services.

Since enTish is an experimental technology, it is not perfect. In fact, the
main reason for designing and realizing enTish was to prove that it is possible
to integrate heterogeneous applications in open and distributed environment, and
provide a simple solution for realizing it.

One of the key aspects that are only mentioned in the work is transactional se-
mantics implemented in the protocol entish 1.0. Obviously, there are other possible
ways for doing so. It would be interesting to compare the transactional seman-
tics implemented in enTish with the ones proposed for example by BPEL4WS,
WS-Coordination, WS-Transactions. This, however, is the subject of dissertation
prepared by Leszek Rozwadowski - a member of the enTish team.

Another important aspect is the concept of Entish Dictionary as an open and
distributed ontology. Also in this case a detailed discussion and comparison with
existing approaches to ontologies, especially to DAML and OWL would be ex-
tremely interesting. However, this is the subject of dissertation prepared by Dar-
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iusz Mikulowski - another member of the enTish team.
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The XML version of the Entish syntax presented in this chapter was created
in cooperation with Dariusz Mikulowski.

The three schemes message.xsd, state.xsd, and info.xsd define the com-
munication Entish, i.e., the data structures for message, state, and signedInfo.
Messages are exchanged between conversation parties, (i.e., agents and services)
according to a fixed protocol. Message exchange may change the state of the
sender and the recipient. The basic element of message and state is signedInfo
defined in info.xsd. The meaning of an element signedInfo is that the Entish
formula (the basic component of signedInfo) was true at some time and in a
place.

Two documents formula.xsd and definitions.xsd constitute the upper En-
tish that is nothing but an empty form for expressing well formed formulas.

The upper Entish is a simple version of the language of first order logic with
types, and without quantifiers. The XML version of the upper Entish syntax is
defined in formula.xsd schema, where the definition of well formed formulae is
introduced. The language is open. It means that names of new primitive concepts,
i.e., names for new types of resources, names for their attributes, names for new
relations, as well as names for new functions can be introduced to the language
by any user. This can be done by an instance of the schema definitions.xsd.
The name of any new concept must be uniqe and contain the URI to the very
document where it was defined.

The document properEntish.xml defines the standard part of the language
Entish. It is introduced in the same way as another concepts (ontologies) can be in-
troduced, i.e., properEntish.xml is an instance of the schema definitions.xsd.

The properEntish may be considered as a proposal of upper ontology for service
description and composition.
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A.1 XML-schema message.xsd

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ii5.ap.siedlce.pl/entish"

xmlns="http://ii5.ap.siedlce.pl/entish"

elementFormDefault="qualified">

<xsd:include schemaLocation="info.xsd"/>

<!--

Xsd schema defining message format in the protocol entish.

Authors: S. Ambroszkiewicz, D. Mikulowski, and D. Pawluczuk

http://www.ipipan.waw.pl/mas

Last modified April 2, 2003

-->

<xsd:element name="message">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="header">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="from" type="xsd:anyURI"/>

<xsd:element name="to" type="xsd:anyURI"/>

<xsd:element name="protocolName" type="xsd:string"/>

<xsd:element ref="protocolVersion"/>

<xsd:element name="protocolSession" type="xsd:string"/>

<xsd:element ref="protocolOrder"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="body" type="listOfInfos"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="protocolVersion">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{1}.\d{2}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="protocolOrder">

<xsd:simpleType>

<xsd:restriction base="xsd:nonNegativeInteger">

<xsd:maxInclusive value="999"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:schema>
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A.2 XML-schema info.xsd

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ii5.ap.siedlce.pl/entish"

xmlns="http://ii5.ap.siedlce.pl/entish"

elementFormDefault="qualified">

<xsd:include schemaLocation="formula.xsd"/>

<!--

Xsd schema defining fact, i.e., Entish evaluated formula.

Authors: S. Ambroszkiewicz, D. Mikulowski, and D. Pawluczuk

http://www.ipipan.waw.pl/mas

Last modified April 2, 2003

-->

<xsd:element name="signedInfo">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="info"/>

<xsd:element name="signature" type="xsd:anyURI" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="info">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="formula"/>

<xsd:element name="place" type="xsd:anyURI"/>

<xsd:element name="time" type="xsd:dateTime"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="listOfInfos">

<xsd:sequence>

<xsd:element ref="signedInfo" maxOccurs="unbounded" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

A.3 XML-schema state.xsd

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ii5.ap.siedlce.pl/entish"

xmlns="http://ii5.ap.siedlce.pl/entish"

elementFormDefault="qualified">

<xsd:include schemaLocation="info.xsd"/>

<xsd:include schemaLocation="formula.xsd"/>

<!--

Xsd schema defining agent’s / service’s state in the protocol entish.
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Authors: S. Ambroszkiewicz, D. Mikulowski, and D. Pawluczuk

http://www.ipipan.waw.pl/mas

Last modified April 2, 2003

-->

<xsd:element name="state">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="owner" type="xsd:anyURI"/>

<xsd:element ref="goal"/>

<xsd:element ref="intentions"/>

<xsd:element ref="listOfCommitments"/>

<xsd:element name="knowledge" type="listOfInfos"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="goal">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="formIn" type="Formula" minOccurs="0"/>

<xsd:element name="formOut" type="Formula"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="intentions">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="plan" type="listOfFormulas"/>

<xsd:element name="workflow" type="listOfFormulas"/>

<xsd:element name="realized" type="listOfFormulas"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name="listOfFormulas">

<xsd:sequence>

<xsd:element ref="formula" maxOccurs="unbounded" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="listOfCommitments">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="commitment" maxOccurs="unbounded" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="commitment">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="formIn" type="Formula"/>
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<xsd:element name="formOut" type="Formula"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>
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A.4 XML-schema formula.xsd

<?xml version="1.0"?>

<!--

Xsd schema defining Entish formula and term.

Authors: S. Ambroszkiewicz, D. Mikulowski, D. Pawluczuk,

M. Calka, and P. Izdebski

http://www.ipipan.waw.pl/mas

Last modified April 2, 2003

-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ii5.ap.siedlce.pl/entish"

xmlns="http://ii5.ap.siedlce.pl/entish"

elementFormDefault="qualified">

<xsd:element name="formula" type="Formula"/>

<xsd:complexType name="Formula">

<xsd:sequence>

<xsd:choice>

<xsd:sequence>

<xsd:element ref="relationName"/>

<xsd:element ref="term" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:sequence>

<xsd:element name="operator">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="or"/>

<xsd:enumeration value="and"/>

<xsd:enumeration value="implies"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element ref="formula" minOccurs="2" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

<!--

Note, the following three elements of type Concept MUST correspond to

the appropriate elements of relationDefinition, functionDefinition and

typeDefinition defined in definitions.xsd. Moreover, the signature of

relationName, or functionName MUST agree with the signature defined in

the relationDefinition, or functionDefinition. The element longName of

relationName, or functionName, or typeName MUST be the URI of

the document (an instance of definitions.xsd) where the Name

was defined.

-->

<xsd:element name="relationName" type="Concept"/>

<xsd:element name="functionName" type="Concept"/>

<xsd:element name="typeName" type="Concept"/>

<xsd:complexType name="Concept">

<xsd:sequence>
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<xsd:element name="shortName" type="xsd:string"/>

<xsd:element name="longName" type="xsd:anyURI" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="term" type="Term"/>

<xsd:complexType name="Term">

<xsd:sequence>

<xsd:choice>

<xsd:sequence>

<xsd:choice>

<xsd:element ref="variable"/>

<xsd:element ref="constant"/>

</xsd:choice>

</xsd:sequence>

<xsd:sequence>

<xsd:element ref="functionName"/>

<xsd:element ref="typeName"/>

<xsd:element ref="term" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="variable" type="Variable"/>

<xsd:complexType name="Variable">

<xsd:sequence>

<xsd:element name="variableName" type="xsd:string"/>

<xsd:element ref="typeName" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="constant" type="Constant"/>

<xsd:complexType name="Constant">

<xsd:sequence>

<xsd:element name="constantName" type="Concept"/>

<xsd:element ref="typeName"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>
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A.5 XML-schema definitions.xsd

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ii5.ap.siedlce.pl/entish"

xmlns="http://ii5.ap.siedlce.pl/entish"

elementFormDefault="qualified">

<xsd:include schemaLocation="formula.xsd"/>

<!--

The schema is for introducing new concepts, i.e., types, relation,

and function names to the language Entish.

Authors: S. Ambroszkiewicz, D. Mikulowski, and D. Pawluczuk

http://www.ipipan.waw.pl/mas

Last modified April 2, 2003

-->

<xsd:element name="definitions">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="typeDefinition" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element ref="relationDefinition" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element ref="functionDefinition" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="typeDefinition">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="definiens">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="typeName"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="definiendum">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="documentation"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!--

Note that in relationDefinition as well as in

functionDefinition specified below the variables

(if there are any) occurring in the element formula
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(resp. element term) of the element definiendum,

MUST be the same as all variables occurring in the

element definiens.

-->

<xsd:element name="relationDefinition">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="definiens">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="relationName"/>

<xsd:element ref="variable" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="definiendum">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="formula" minOccurs="0"/>

<xsd:element ref="documentation"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="functionDefinition">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="definiens">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="functionName"/>

<xsd:element ref="typeName"/>

<xsd:element ref="variable" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="definiendum">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="term" minOccurs="0"/>

<xsd:element ref="documentation"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>



A.5. XML-schema definitions.xsd 127

<xsd:element name="documentation">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="humanInfo" type="xsd:string"/>

<xsd:element name="appiInfo" minOccurs="0">

<xsd:complexType>

<xsd:sequence>

<xsd:any/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>
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A.6 XML-schema properEntish.xml

<?xml version="1.0"?>

<definitions xmlns="http://ii5.ap.siedlce.pl/entish"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ii5.ap.siedlce.pl/entish

definitions.xsd">

<!--

Introduction of basic Entish primitive types, relations, and functions.

Last modified April 9, 2003.

Authors: S. Ambroszkiewicz and D. Mikulowski.

-->

<typeDefinition>

<definiens>

<typeName>

<shortName>Agent</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#Agent

</longName>

</typeName>

</definiens>

<definiendum>

<documentation>

<humanInfo>

agent (i.e., element of type Agent) is a process equipped with

state (i.e., element State defined in state.xsd).

A constant (defined in formula.xsd) of this type contains

agent’s short name in the element shortName,

and agent’s communication address in the element longName.

It is supposed that all essential data of agent are stored in

its state. Agent is dedicated for a single task realization.

It is created when there is a task to be realized, and is

terminated after the task realization or if the task can not

be realized. More details on http://www.ipipan.waw.pl/mas/

</humanInfo>

</documentation>

</definiendum>

</typeDefinition>

<typeDefinition>

<definiens>

<typeName>

<shortName>Service</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#Service

</longName>

</typeName>

</definiens>

<definiendum>

<documentation>

<humanInfo>

service (i.e., element of type Service) is a process having
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its own state (i.e., element State defined in state.xsd).

It is an application processing data (e-documents).

A constant (defined in formula.xsd) of this type contains

service’s short name in the element shortName, and service’s

communication address in the element longName.

Processing e-documents may result in effecting the real world,

e.g., purchasing a commodity or withdraw of some amount of

money from a bank account, or just taking some physical actions

like switching off/on a washing machine.

More details on http://www.ipipan.waw.pl/mas/

</humanInfo>

</documentation>

</definiendum>

</typeDefinition>

<typeDefinition>

<definiens>

<typeName>

<shortName>Time</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#Time

</longName>

</typeName>

</definiens>

<definiendum>

<documentation>

<humanInfo>

element of this type is a date and time written according to

xsd:dateTime format. A constant (defined in formula.xsd) of

this type contains this string in the element shortName of

the constantName, and there is no longName in the constantName.

</humanInfo>

</documentation>

</definiendum>

</typeDefinition>

<typeDefinition>

<definiens>

<typeName>

<shortName>Token</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#Token

</longName>

</typeName>

</definiens>

<definiendum>

<documentation>

<humanInfo>

token is an arbitrary string of type xsd:string.

A constant (defined in formula.xsd) of this type contains

this string in the element shortName of the constantName,

and there is no longName in the constantName. It is used as

value of function token(?resource). It is a general way to



130 Appendix A. XML Sources of the enTish Technology

identify resources (e-docs) of any type on the language level.

Note that our language Entish is independent from data format

of resources; the format may be arbitrary, e.g., MS Word, XML,

txt, binary, and so on.

</humanInfo>

</documentation>

</definiendum>

</typeDefinition>

<typeDefinition>

<definiens>

<typeName>

<shortName>Index</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#Index

</longName>

</typeName>

</definiens>

<definiendum>

<documentation>

<humanInfo>

element of type Index is a string of type xsd:string.

The string is the form of decimal numbers

separetad by dots in the same way as IP addresses, e.g.,

’0.12.3’

’34.0.11.45.1’

’5.34’

A constant (defined in formula.xsd) of this type contains

this string in the element shortName of the constantName, and

there is no longName in the constantName. It is used as value

of function index( ?resource ). The value (index) is

associated with an option. Indexes serve to determine

interdependencies between options that describe resources

in workflow.

</humanInfo>

</documentation>

</definiendum>

</typeDefinition>

<relationDefinition>

<definiens>

<relationName>

<shortName>intentions</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#intentions

</longName>

</relationName>

<variable>

<variableName>?agent</variableName>

<typeName>

<shortName>Agent</shortName>

</typeName>

</variable>
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</definiens>

<definiendum>

<documentation>

<humanInfo>

intentions(?agent) is an atomic formula.

It is evaluated (only!) locally (i.e., by ?agent).

The evaluation returns the disjunction of all formulas

from the element plan of the state of the ?agent.

</humanInfo>

</documentation>

</definiendum>

</relationDefinition>

<relationDefinition>

<definiens>

<relationName>

<shortName>true</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#true

</longName>

</relationName>

</definiens>

<definiendum>

<documentation>

<humanInfo>

true is the relation always true,

it corresponds to the Boolean value "true".

</humanInfo>

</documentation>

</definiendum>

</relationDefinition>

<relationDefinition>

<definiens>

<relationName>

<shortName>false</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#false

</longName>

</relationName>

</definiens>

<definiendum>

<documentation>

<humanInfo>

false is the relation always false,

it corresponds to the Boolean value "false".

</humanInfo>

</documentation>

</definiendum>

</relationDefinition>

<relationDefinition>

<definiens>
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<relationName>

<shortName>timeout</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#timeout

</longName>

</relationName>

<variable>

<variableName>

?t

</variableName>

<typeName>

<shortName>Time</shortName>

</typeName>

</variable>

</definiens>

<definiendum>

<documentation>

<humanInfo>

timeout(?t) can be evaluated at any host.

It is true if the time ?t is less or equal to the

current GMT time at the host.

</humanInfo>

</documentation>

</definiendum>

</relationDefinition>

<relationDefinition>

<definiens>

<relationName>

<shortName>equals</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#equals

</longName>

</relationName>

<variable>

<variableName>?x</variableName>

</variable>

<variable>

<variableName>?y</variableName>

</variable>

</definiens>

<definiendum>

<documentation>

<humanInfo>

equals(?x, ?y) or more frequently (?x = ?y) is a polimorphic

equality relation.

It can be evaluated if ?x and ?y are of the same type.

</humanInfo>

</documentation>

</definiendum>

</relationDefinition>

<relationDefinition>
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<definiens>

<relationName>

<shortName>formInOperationType</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/

properEntish.xml#formInOperationType

</longName>

</relationName>

<variable>

<variableName>?service</variableName>

<typeName>

<shortName>Service</shortName>

</typeName>

</variable>

</definiens>

<definiendum>

<documentation>

<humanInfo>

formInOperationType( ?service ) is an atomic formula to

be evaluated only by ?service. The evaluation returns the

formula from the formIn element of the state of ?service.

The formula describes the precondition necessary for

?service invocation.

</humanInfo>

</documentation>

</definiendum>

</relationDefinition>

<relationDefinition>

<definiens>

<relationName>

<shortName>formOutOperationType</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/

properEntish.xml#formOutOperationType

</longName>

</relationName>

<variable>

<variableName>?service</variableName>

<typeName>

<shortName>Service</shortName>

</typeName>

</variable>

</definiens>

<definiendum>

<documentation>

<humanInfo>

formOutOperationType( ?service ) is an atomic formula to

be evaluated by ?service. The evaluation returns the

formula from the formOut element of the state of ?service.

The formula describes the postcondition of ?service

invocation, i.e., the result of performing the operation

by ?service.
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</humanInfo>

</documentation>

</definiendum>

</relationDefinition>

<relationDefinition>

<definiens>

<relationName>

<shortName>formInCommitment</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/

properEntish.xml#formInCommitment

</longName>

</relationName>

<variable>

<variableName>?service</variableName>

<typeName>

<shortName>Service</shortName>

</typeName>

</variable>

</definiens>

<definiendum>

<documentation>

<humanInfo>

formInCommitment( ?service ) is an atomic formula evaluated

only by ?service. Evaluation returns the disjunction of

formulas from formIn elements of all commitment elements of

the state of ?service. It describes the precondition of the

commitments made by the ?service.

</humanInfo>

</documentation>

</definiendum>

</relationDefinition>

<relationDefinition>

<definiens>

<relationName>

<shortName>formOutCommitment</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/

properEntish.xml#formOutCommitment

</longName>

</relationName>

<variable>

<variableName>?service</variableName>

<typeName>

<shortName>Service</shortName>

</typeName>

</variable>

</definiens>

<definiendum>

<documentation>

<humanInfo>
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formOutCommitment( ?service ) is an atomic formula evaluated

only by ?service. Evaluation returns the conjunction of

formulas from formOut elements of all commitment elements of

the state of ?service. It describes the postconditions of the

commitments made by the ?service

</humanInfo>

</documentation>

</definiendum>

</relationDefinition>

<relationDefinition>

<definiens>

<relationName>

<shortName>isIn</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#isIn

</longName>

</relationName>

<variable>

<variableName>?resource</variableName>

</variable>

<variable>

<variableName>?place</variableName>

<typeName>

<shortName>Service</shortName>

</typeName>

<typeName>

<shortName>Agent</shortName>

</typeName>

</variable>

</definiens>

<definiendum>

<documentation>

<humanInfo>

isIn( ?resource, ?place )

states that ?resource is in ?place.

It can be evaluated only in ?place.

Usually, the ?place denotes either service or agent.

</humanInfo>

</documentation>

</definiendum>

</relationDefinition>

<functionDefinition>

<definiens>

<functionName>

<shortName>token</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#token

</longName>

</functionName>

<typeName>

<shortName>Token</shortName>
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</typeName>

<variable>

<variableName>?resource</variableName>

</variable>

</definiens>

<definiendum>

<documentation>

<humanInfo>

function token( ?resource ) returns token determined for

?resource.

</humanInfo>

</documentation>

</definiendum>

</functionDefinition>

<functionDefinition>

<definiens>

<functionName>

<shortName>index</shortName>

<longName>

http://ii5.ap.siedlce.pl:8080/Entish/properEntish.xml#index

</longName>

</functionName>

<typeName>

<shortName>Index</shortName>

</typeName>

<variable>

<variableName>?resource</variableName>

</variable>

</definiens>

<definiendum>

<documentation>

<humanInfo>

function index( ?resource ) returns an index that is

associated with an option. Options describe the resources

in workflow. Indexes serve to determine interdependencies

between the options in workflow.

</humanInfo>

</documentation>

</definiendum>

</functionDefinition>

</definitions>




