

EXTRAIT DU BULLETIN DE L'ACADÉMIE DES SCIENCES DE CRACOVIE classe des sciences mathématiques et naturelles. série 4: sciences mathématiques JANVIER 1916

STUDIEN ZUR CHEMISCHEN DYNAMIK AUTOKATALYTISCHER PROZESSE: III. ÜBER DIE VERSEIFUNGSGESCHWINDIGKEIT DES METHYLSCHWEFELSAUREN KALIUMS

J. ZAWIDZKI UND J. ZAYKOWSKI

VON

CRACOVIE IMPRIMERIE DE L'UNIVERSITÉ 1916

Z hsięgozbioru
Inż. Zygmunta Lepperta
Dział
Grupa A No 49
Ne ogól. kat.

a été fondée en 1873 par ÇOIS JOSEPH I.

ADÉMIE:

JR :

ANISLAS TARNOWSKI.

SECRÉTAIRE GÉNÉRAL: M. BOLESLAS ULANOWSKI.

EXTRAIT DES STATUTS DE L'ACADÉMIE:

(§ 2), L'Académie est placée sous l'auguste patronage de Sa Majesté Impériale Royale Apostolique. Le Protecteur et le Vice-Protecteur sont nommés par S. M. l'Empereur.

- (§ 4). L'Académie est divisée en trois classes:
 - a) Classe de Philologie,
 - b) Classe d'Histoire et de Philosophie,
 - c) Classe des Sciences Mathématiques et Naturelles.
- (§ 12). La langue officielle de l'Académie est la langue polonaise.,

Depuis 1885, l'Académie publie le «Bulletin International» qui paraît tous les mois, sauf en août et septembre. Le Bulletin publié par les Classes de Philologie, d'Histoire et de Philosophie réunies, est consacré aux travaux de ces Classes. Le Bulletin publié par la Classe des Sciences Mathématiques et Naturelles paraît en deux séries. La première est consacrée aux travaux sur les Mathématiques, l'Astronomie, la Physique, la Chimie, la Minéralogie, la Géologie etc. La seconde série contient les travaux qui se rapportent aux Sciences Biologiques.

> Publié par l'Académie' sous la direction de M. Ladislas Kulczyński,

Secrétaire de la Classe des Sciences Mathématiques et Naturelles.

Nakładem Akademii Umiejętności.

Kraków, 2016. - Drukarnia Uniwersytetu Jagiellońskiego pod zarządem Józefa Filipowskiego.

EXTRAIT DU BULLETIN DE L'ACADÉMIE DES SCIENCES DE CRACOVIE classe des sciences mathématiques et naturelles. série 4: sciences mathématiques JANVIER 1916

STUDIEN ZUR CHEMISCHEN DYNAMIK AUTOKATALYTISCHER PROZESSE: III. ÜBER DIE VERSEIFUNGSGESCHWINDIGKEIT DES METHYLSCHWEFELSAUREN KALIUMS

VON

J. ZAWIDZKI UND J. ZAYKOWSKI

CRACOVIE IMPRIMERIE DE L'UNIVERSITÉ 1916

Studya nad dynamiką chemiczną procesów autokatalitycznych: III. O szybkości zmydlania metylosiarczanu potasowego. — Studien zur chemischen Dynamik autokatalytischer Prozesse: III. Über die Verseifungsgeschwindigkeit des methylschwefelsauren Kaliums.

Mémoire

de MM. JAN ZAWIDZKI et JANUSZ ZAYKOWSKI,

présenté, dans la séance du 17 Janvier 1916, par M. M. Smoluchowski m. c.

Inhalt A. Einleitung: 1. die Reaktion; 2. das Untersuchungsverfahren; 3. die Beobachtungsfehler; 4. Ermittlung der Reaktionsordnung und Aufstellung der Geschwindigkeitsgleichung. — B. Ergebnisse der Messungen bei 115°: 5. Verseifungsgeschwindigkeit des $CH_s KSO_4$ in wässerigen Lösungen; 6. Einfluß des Methylalkohols auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 7. Einfluß des KNO₃ und KCl auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 8. Einfluß des KHSO₄ auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 9. Einfluß der H_3SO_4 auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 9. Einfluß der H_3SO_4 auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 10. Einfluß des HCl auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 12. Einfluß des K_3SO_4 auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 13. Einfluß basischer Verbindungen auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 13. Einfluß basischer Verbindungen auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 13. Einfluß basischer Verbindungen auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 13. Einfluß basischer Verbindungen auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 13. Einfluß basischer Verbindungen auf die Verseifungsgeschwindigkeit des $CH_3 KSO_4$; 15. Temperaturkoeffizient der Geschwindigkeitskonstante. — D. Zusammenfassung.

A Einleitung.

1. Die Reaktion.

Die von Dabit¹) entdeckten Äthylsulfate, deren chemischen Charakter zuerst Hennell²) richtig formulierte, und deren Eigenschaften und Verhalten Marchand³) eingehend studierte, erleiden

- ¹) Dabit (1800), Ann. Chim. et Phys., 34, 300; 43, 101.
- 2) H. Hennel, Phil. Transact., 1826, 240; 1828, 365.
- ³) R. Marchand, Pogg. Ann., 28, 454 (1833); 32, 345 (1834); 41, 595 (1837).

beim Kochen ihrer wässerigen Lösungen eine eigenartige Selbstzersetzung, die im beschleunigten Tempo vor sich geht ¹).

Das Wesen dieser Zersetzung wurde bereits von Berzelius¹) als eine Art von Hydrolyse aufgefaßt und durch die Gleichung:

$$C_2H_5KSO_4 + H_2O = KHSO_4 + C_2H_5OH$$

ausgedrückt.

Später schilderte Ostwald²) in seinem Lehrbuche der allgemeinen Chemie diese Selbstzersetzung der Alkylsulfate als einen typischen Fall autokatalytischer Beschleunigung, und zwar äußert er sich über denselben folgendermaßen:

"Es ist bekannt, daß z. B. äthylschwefelsaures Kali, das ein wenig Kaliumkarbonat enthält, sich sehr lange ohne Zersetzung aufbewahren läßt; ebenso läßt sich die schwach alkalisch gemachte wässerige Lösung in der Hitze ohne merkbare Zersetzung eindampfen. Sowie aber die schwächste saure Reaktion sich geltend macht, geht der Zerfall in Alkohol und saures Kaliumsulfat an und wird bald vollständig. Nach der traditionellen Lehre von der "prädisponierenden Verwandtschaft" sollte man im Gegenteil erwarten, daß die Gegenwart von Alkali den Zerfall hervorrufen müßte, da sich dabei die Azidität verdoppelt und somit das "Vereinigungsbestreben" des Alkalis mit der Säure Befriedigung fände. Tatsächlich handelt es sich um einen Fall, wo die Reaktionsgeschwindigkeit für den Zerfall des reinen Salzes außerordentlich klein ist, während sie durch die Gegenwart von Wasserstoffionen stark, und zwar proportional deren Konzentration beschleunigt wird. Solange die Flüssigkeit nicht sauer reagiert, besteht die erste, unmeßbar kleine Zersetzungsgeschwindigkeit. Sowie aber die ersten Spuren freier Säure, d. h. von Wasserstoffionen, vorhanden sind, vermehren sie die Reaktionsgeschwindigkeit, es entstehen neue, die Geschwindigkeit nimmt weiter zu, und die Zersetzung wird in kürzester Frist analytisch nachweisbar.

"Wie jeder Chemiker weiß, ist der zuletzt geschilderte Vorgang typisch für eine große Anzahl "freiwilliger Zersetzungen". Eine längere oder kürzere scheinbare Unveränderlichkeit und eine schnell

¹) Siebe: J. J. Berzelius, Lehrbuch d. Chemie, 5. Aufl. Dresden 1848, 5, 616; - Ch. Gerhardt, Lehrbuch d. organischen Chemie, Leipzig 1854, 2, 323.
³) W. Ostwald, Lehrbuch d. allgemeinen Chemie. 2. Aufl. Leipzig. 1902.
II, 2. Verwandtschaftslehre, ×. 267.

sich steigernde Zersetzung lassen regelmäßig auf die Tätigkeit eines katalytischen Stoffes schließen, welcher durch die Reaktion entsteht und sich vermehrt. In sehr häufigen Fällen handelt es sich um Wasserstoffionen, doch sind auch andere Katalysatoren, z. B. salpetrige Säure, nicht selten tätig".

Da der zeitliche Verlauf dieser Reaktion bis jetzt messend nicht verfolgt wurde¹), so entschlossen wir uns, denselben eingehender zu untersuchen, um seinen kinetischen Mechanismus aufzuklären.

Als Untersuchungsobjekt wählten wir zunächst das wohlfeile und leicht zugängliche methylschwefelsaure Kalium. Später dehnten wir unsere Untersuchungen auch auf andere Alkylsulfate aus und haben dieselben bereits abgeschlossen. Die Besprechung ihrer Ergebnisse behalten wir uns aber für die nächstfolgenden Mitteilungen vor.

2. Das Untersuchungsverfahren.

Bei der Selbstverseifung des methylschwefelsauren Kaliums in wässerigen Lösungen und bei höheren Temperaturen findet, gemäß der Gleichung

$CH_3KSO_4 + H_2O \rightleftharpoons CH_3OH + KHSO_4$,

eine Vermehrung der Wasserstoffionen statt. Deshalb läßt sich der zeitliche Verlauf dieses Vorganges sehr bequem auf maßanalytischem Wege verfolgen. Wir titrierten zu dem Zwecke die abpipettierten Proben der Versuchsflüssigkeit mit Baryumhydrat, wobei zuerst p-Nitrophenol, später aber durchweg Phenolphthalein als Indikator angewandt wurde.

Zur Ermittlung der günstigsten Versuchstemperatur wurde zuerst eine Reihe orientierender Vorversuche mit kleinen Flüssigkeitsmengen ausgeführt, die in Röhrchen aus Jenaer Geräteglas eingeschmolzen in einem Thermostat aufgehängt waren. Auf diese Weise stellten wir fest, daß der genannte Verseifungsprozeß bereits bei 115° so schnell vor sich geht, daß man ihn bequem verfolgen kann.

¹) Erst nach Beginn unserer Arbeit haben wir erfahren, daß R. Kremann (Monatshefte f. Chemie, 1910. 31. 165) die Zersetzungsgeschwindigkeit des äthylschwefelsauren Baryams in saurer und alkalischer Lösung bei verschiedenen Temperaturen studiert hat. Es ist ihm aber nicht gelungen, das Zeitgesetz dieses Vorganges zu ermitteln.

Diese Vorversuche in Glasröhrchen lieferten aber keine regelmäßigen Zersetzungskurven. Die einzelnen Punkte derselben wichen ziemlich stark von ihrem mittleren Verlauf ab, und Parallelversuche ergaben keinesfalls identische Reaktionskurven. Die Ursache hiervon mußte in dem wechselnden Einflusse der Röhrenwände auf die Versuchsflüssigkeit gesucht werden. Denn obwohl man Röhrchen von ungefähr demselben Querschnitt aus dem widerstandsfähigen Jenaer Geräteglas gebrauchte und dieselben sorgfältig auf dieselbe Art und Weise reinigte und ausdämpfte, so konnte dennoch bei dem Mißverhältnis zwischen ihrer inneren Oberfläche und dem Flüssigkeitsvolumen ein geringer Unterschied in dem Gehalte an wasserlöslichen Alkalisalzen einen großen, ganz unkontrollierbaren Einfluß auf den zeitlichen Verlauf der studierten Reaktion ausüben. Um nun diese Fehlerquelle auf ein Minimum zu reduzieren, wurden die eigentlichen Meßversuche in größeren Gefäßen ausgeführt.

Diese Reaktionsgefäße hatten ein Fassungsvolumen von zirka 100 ccm und die in Fig. 1 abgebildete Gestalt 1). Sie bestanden aus dem zylindrischen Reaktionsgefäß A aus ziemlich dickwandigem Jenaer Geräteglas, an das zwei dickwandige Kapillarröhrchen b und c angeschmolzen waren. Die Enden dieser Kapillaren wurden durch dickwandige Gummischläuche und Schraubenquetschhähne (d und e) geschlossen. Das Füllen des Reaktionsgefäßes A mit der Versuchsflüssigkeit erfolgte durch Ansaugen in e und Eintauchen des Kapillarendes d in die zu untersuchende Lösung. Nachdem dieses geschehen war, wurden beide Schraubenquetschhähne (d, e)geschlossen und das Reaktionsgefäß in den Thermostat bis zur Linie f-q eingetaucht. Durch Erwärmung der eingeschlossenen Luft und durch Entwicklung von Wasserdämpfen bildete sich im Innern des Reaktionsgefäßes ein bedeutender Überdruck, welcher gestattete, durch Öffnen in bestimmten Zeitmomenten des Quetschhahnes d kleine Proben der Versuchsflüssigkeit automatisch zu entnehmen. Diese Flüssigkeitsproben (2 bis 3 ccm) wurden in kleine Probierröhrchen aufgefangen und zur Unterbrechung der Reaktion

¹) Sie wurden von einem von uns (Zawidzki) bereits im Jahre 1898 gelegentlich einer Untersuchung über zeitlichen Verlauf der Karboxylierung des Resorzins konstruiert und ausprobiert. Da aber die Ergebnisse jener Untersuchung nicht voröffentlicht wurden, so unterblieb auch eine Beschreibung jener Reaktionsgefäße. ins Eiswasser eingetaucht. Aus den Probierröhrchen entnahm man später mittelst einer 1-ccm-Pipette die zur Titration nötige Menge der Lösung.

Als Thermostat benutzten wir den "ökonomischen Thermostat" von Zawidzki¹). Er wurde mit flüssigem Paraffinöl gefüllt, mit einem Ostwald'schen Xylol-Thermoregulator versehen und mittelst eines Ostwald'schen Gasofens geheizt. Die Thermostatflüssigkeit war durch einen mittelst eines Heinrici-Heißluftmotors betriebe-

Fig. 1.

nen Propellerrührer kräftig durchgemischt. Ihre Temperatur blieb auch während längerer Zeitintervalle bis auf $\pm 0.02^{\circ}$ konstant.

Bei Versuchen, die länger als 10 Stunden dauerten, wurde die Reaktion nach Ablauf dieser Zeit durch Herausnehmen des Reaktionsgefäßes aus dem Thermostat und durch Einsenken in einen Eiswasserbehälter plötzlich unterbrochen und am folgenden Tage durch abermaliges Einsetzen in die Thermostatflüssigkeit wieder in Gang gesetzt und messend verfolgt.

Alle angewandten Chemikalien wurden von der Firma C. A. F.

¹) J. Zawidzki, Österr. Chem. Ztg., **17**, 197 (1914) und auch J. Zawidzki u. W. Staronka, Bull. de l'Acad. des Sciences de Cracovie, (A), **1915**, S. 328. Kahlbaum in Berlin bezogen und vor Gebrauch zweckmäßig gereinigt. Das käufliche methylschwefelsaure Kalium war stets schwach sauer und gab mit BaCl₂ einen Niederschlag von BaSO₄. Deshalb kristallisierte man es wiederholt aus heißem Wasser schnell um, bis die Lösung von 1 g dieses Salzes, in wenig Wasser gelöst, keinen deutlichen Niederschlag mit BaCl₂ gab und mit Phenolphthalein versetzt, bereits von einem Tropfen einer 0.01 n Ba(OH)₂-Lösung rot gefärbt wurde. Das auf solche Weise gereinigte Salz enthielt Kristallisationswasser, entsprechend der Formel $2 \text{ CH}_3\text{KSO}_4,\text{H}_2\text{O}.$ Zur Entfernung desselben wurde es in einem Trockenschranke bei 95° bis zum Eintritt der Gewichtskonstanz getrocknet und dann in einem Exsikkator über konz. Schwefelsäure aufbewahrt. Außerdem wurde sein Gehalt an Schwefelsäure, nach erfolgter vollständiger Verseifung, gewichtsanalytisch bestimmt.

3. Die Beobachtungsfehler.

Die Messungen des zeitlichen Verlaufes der Verseifung des methylschwefelsauren Kaliums waren mit Beobachtungsfehlern teils zufälligen, zum Teil aber methodischen Charakters behaftet, auf die besonders eingegangen werden muß.

Was nun die methodischen Beobachtungsfehler anbetrifft, so bestand der wichtigste von ihnen darin, daß zu den Titrierungen eine zu geringe Quantität der Lösung, und zwar nur 1 ccm derselben, angewandt wurde. Infolge der schnell eintretenden Verfettung der Meßpipetten wurde hiedurch ein unkontrollierbarer Fehler in die Ergebnisse der einzelnen Titrierungen eingeführt, der besonders die Bestimmungen am Anfange und gegen das Ende der Reaktion belastete. Man wählte diese Anordnung aus dem Grunde, um durch Entnahme größerer Quantitäten der Lösung den Dampfraum in den Reaktionsgefäßen nicht allzusehr zu vergrößen, was eine Änderung der Konzentration des Methylalkohols nach sich ziehen würde. Nachdem sich später der Einfluß des Methylalkohols auf das Tempo der Reaktion als sehr gering herausgestellt hatte, wurde dieselbe Versuchsanordnung trotzdem beibehalten, hauptsächlich aus Rücksicht auf Gleichmäßigkeit und Vergleichbarkeit der Messungsergebnisse.

Der Säuregehalt der Reaktionsgemische wurde durch Titrieren derselben mit einer Baryumlydratlösung bestimmt. Während dieser Titrationen bildete sich ein Niederschlag von BaSO₄, der die gelösten Stoffe zum Teil adsorbierte und zugleich den Farbenumschlag des Indikators verdeckte. Besonders störend erwies sich dieser Umstand bei Anwendung von p-Nitrophenol als Indikator, weshalb man ihn später durch Phenolphthalein ersetzte.

In der überwiegenden Zahl der Versuchsreihen mußte der Reaktionsverlauf während mehrerer Tage verfolgt werden. Zu diesem Zwecke wurde die Reaktion am Ende jedes Arbeitstages durch Einsenken der Reaktionsgefäße ins Eiswasser unterbrochen und am Anfange des nächsten Tages durch Hineintauchen jener Gefäße in die Thermostatflüssigkeit wieder in Gang gesetzt. Hiedurch kam ein gewisser Fehler in die Zeitangaben hinein, da die Abkühlungsperiode nicht ganz genau der Erwärmungsperiode entsprach.

Diese methodischen Fehler kompensierten sich teilweise, manchmal aber summierten sie sich auch, und dann wichen die beobachteten Reaktionspunkte ziemlich stark von dem mittleren Verlauf der Reaktionskurve ab. In solchen Fällen wurden die abspringenden Punkte parallel der Zeitachse nach der Richtung der Reaktionskurve (auf graphischem Wege) verschoben und die auf solche Weise korrigierten Zeitangaben als $t_{corr.}$ in den weiter unten folgenden Tabellen bezeichnet.

Außer den genannten Fehlerquellen, die die Genauigkeit der einzelnen Ablesungen mehr oder weniger beeinträchtigten, wurde noch das Tempo der studierten Reaktion durch Gegenwart größerer oder geringerer Spuren der Zersetzungsprodukte des Estersalzes, insbesondere des KHSO4, stark beeinflußt. Trotzdem das methylschwefelsaure Kalium vor seinem Gebrauch durch wiederholtes Umkristallisieren sorgfältig gereinigt wurde, so ließen sich dennoch auf diesem Wege die letzten Spuren von KHSO, nicht vollständig beseitigen. Je nach den Umständen enthielt das gereinigte Estersalz größere oder geringere Spuren von KHSO4, die maßanalytisch kaum bestimmbar, dennoch einen bedeutenden Einfluß auf die Größe der Anfangsgeschwindigkeit des betrachteten Verseifungsprozesses ausübten. Diese Fehlerquelle wie auch diejenige. welche dadurch entstand, daß der Inhalt des Reaktionsgefäßes die hohe Thermostattemperatur (von 105°, resp. 115°) nicht momentan annahm, versuchte man nach dem Ostwald'schen Verfahren¹), erst während der Be-

') W. Ostwald, Journ. f. prakt. Chem., (2) 28, 453 (1883).

J. Zawidzki u. J. Zaykowski.

81

2

rechnung der betreffenden Geschwindigkeitskoeffizienten, auf solche Weise zu eliminieren. daß die ganze Reaktionskurve längs der Zeitachse ein wenig nach dem Koordinatenanfangspunkt oder von demselben weg verschoben wurde.

Diejenigen Versuchsreihen, bei denen diese oder die früher erwähnten Zeitkorrektionen vorgenommen wurden, sind dadurch gekennzeichnet, daß in den folgenden Zahlentabellen die betreffenden Zeiten unter t_{corr} stehen. Dies gilt aber nicht für die entsprechenden Figuren, die sämtlich nach den unmittelbaren Beobachtungsdaten aufgezeichnet wurden.

4. Ermittlung der Reaktionsordnung und Aufstellung der Geschwindigkeitsgleichung.

In Übereinstimmung mit den anfangs angeführten Ausführungen von Ostwald zeigte die spontane Verseifung des methylschwefelsauren Kaliums einen typisch autokatalytischen Verlauf, wie dieses auf den ersten Blick aus den weiter folgenden graphischen Darstellungen der betreffenden Reaktionskurven (Fig. 2. u. ff.) zu ersehen ist. Der Ostwald'schen¹) Theorie der autokatalytischen Vorgänge gemäß erwarteten wir, daß die Geschwindigkeit dieser Reaktion durch die Differentialgleichung

(1)
$$\frac{dx}{dt} = (k_1 + k_2 x) (a - x)$$

ausgedrückt werden wird.

Setzt man in dieser Gleichung x = ax', $k_1 = ak'_1$, und $\frac{k'_1}{k_2} = n$, so folgt die "reduzierte Geschwindigkeitsgleichung"

(2)
$$\frac{dx'}{dt} = ak_2 (n + x') (1 - x'),$$

deren Integral lautet:

(3)
$$ak_2 = \frac{1}{(n+1)t} \ln \frac{n+x'}{n(1-x')}.$$

1) W. Ostwald, Lehrbuch d. allgem. Chemie, 2. Aufl. II. Bd. 2. Teil. Verwandtschaftslehre. Leipzig 1902, S. 262.-269.

83

Wird die Differentialgleichung (2) nochmals nach x' differenziert und ihre rechte Seite gleich Null gesetzt, so folgt

$$(4) n = (1 - 2x'_m),$$

in welchem Ausdruck x'_m die Ordinate des Geschwindigkeitsmaximums (des Wendepunktes der Reaktionskurve) bedeutet.

Da die beobachteten Reaktionskurven in ihrem mittleren Teile fast geradlinig verliefen, so ließ sich x'_m auf graphischem Wege nicht genau bestimmen. Wir konnten nur näherungsweise feststellen, daß es zwischen x' = 0.3 und x' = 0.5 lag, nahmen deswegen $x'_m = 0.4$ und dem entsprechend n = 0.2 an.

Dieses vorausgesetzt, erhielt die Integralgleichung (3) die Gestalt

(5)
$$ak_2 = \frac{2 \cdot 302}{1 \cdot 2 t} \log \frac{0 \cdot 2 + x'}{0 \cdot 2 (1 - x')}.$$

Wir versuchten, mittelst dieser Gleichung die Ergebnisse unserer Messungen umzurechnen und erhielten für Lösungen des reinen Estersalzes in den einzelnen Versuchsreihen ziemlich konstante Werte für k_2 . Jedoch die Zahlenwerte von k_2 für Lösungen von verschiedener Anfangskonzentration a des Estersalzes waren voneinander verschieden. Dabei wiesen ihre Mittelwerte eine ganz merkwürdige Abhängigkeit von jener Anfangskonzentration auf, die aus folgender Tabelle zu erschen ist.

Nr. Versuchs- reihe	a	$ak_{ m _2}$. 10^5	k ₁ .105	$k_2 . \ a . 10^5$	$\frac{k_1}{\sqrt{a}} \cdot 10^{s}$
1	0.167	136	27.2	323	66 6
2	0.22	164	32.7	346	69.3
3	0.20	234	46.8	346	69.2
4	1.00	334	66.8	334	66.8
5	1.20	424	84.8	331	66-2
6	2.00	490	98.0	328	65.4
7	3.00	577	115.4	383	66.5
· 🛶 . 🕕				334	67.0

TABELLE 1.

 2^*

Nachdem durch dieses Ergebnis die Unzulänglichkeit der Geschwindigkeitsgleichung (1) erwiesen worden war, versuchten wir, die richtige Geschwindigkeitsgleichung auf rein empirischem Wege zu ermitteln. Zu diesem Zwecke war es vor allem notwendig, die Ordnung der studierten Reaktion auf einwandfreie Weise festzustellen.

Wir wählten hierzu die strengere Integralmethode von Ostwald¹) und verfuhren dabei folgendermaßen. Der Reaktionsverlauf der Versuchsreihen Nr. 1 bis Nr. 7 wurde in großem Maßstabe auf Millimeterpapier aufgezeichnet und aus den erhaltenen Reaktionskurven wurden die Zeiten für die relativen Umwandlungsbeträge x' = 0.2, 0.3, 0.4, 0.5 und 0.6 auf graphischem Wege ermittelt. Die auf solche Weise erhaltenen Zahlendaten sind in folgender Tabelle Nr. 2 systematisch zusammengestellt worden. Die erste Kolonne derselben gibt die laufenden Nummern der betreffenden Versuchsreihen an; die zweite die Anfangskonzentrationen a des CH₃KSO₄; die dritte die Zeiten t, in denen der angegebene Umwandlungsbetrag x' erreicht wurde; die vierte das Produkt l/a u. s. w.

		x' =	= 0.5	x' =	= 0.3	x' =	= 0.4	x' =	= 0 5	x' =	0.6
Nr.	a	t	t¥a	t	t∛a	t	t∛a	t	t∛a	t	t∛a
1	0.1667	576	(235)	778	318	967	395	1167	476	1400	571
2	0.25	495	247	653	326	807	403	973	486	1163	581
3	0.20	367	259	474	336	581	411	687	485	810	573
4	1.00	262	262	342	342	412	412	484	484	548	548
5	1.50	209	255	268	328	328	402	388	47 5	448	548
6	2.00	179	253	227	321	276	390	324	(458)	373	527
7	3.00	147	255	180	312	213	(369)		1.1224	-	-
		1	255	-	326	-	404	-	481	1.00	558

TADELUD 5.	ľ A.	BE	LL	E	2.
------------	------	----	----	---	----

Aus obiger Tabelle folgt nun, daß das Produkt t/a konstant ist, das heißt, daß die Zeiten gleicher relativer Umwandlungsbe-

1) W. Ostwald, Lehrbuch d. allgem. Chemie, 11. Bd 2. Teil, Leipzig 1902. S. 235. träge des Reaktionssubstrats den Quadratwurzeln aus dessen Anfangskonzentrationen umgekehrt proportional sind. Diese Beziehung besagt also, daß die betreffende Reaktion von der anderthalbfachen Ordnung ist.

Es gibt eine ganze Reihe von Geschwindigkeitsgleichungen, die dieser Bedingung entsprechen würden. Von den einfachsten nennen wir nur die folgenden:

(6) (I) $\frac{dx'}{dt} = k_2 \sqrt[3]{a} \cdot \sqrt{(1-x')^8}$

(7) (II) $\frac{dx'}{dt} = k_2 \sqrt[]{a} \sqrt[]{x'} (1 - x')$

(8) (III) $\frac{dx'}{dt} = k_2 \sqrt[3]{a} \cdot \frac{(1-x')^2}{\sqrt[3]{x'}}.$

Da nun aber die Selbstverseifung der Alkylsulfate in verdünnten wässerigen Lösungen einen "monomolekularen" Vorgang darstellt, und dieser Prozeß durch eines von den Reaktionsprodukten (KHSO₄) autokatalytisch beschleunigt wird, so kann sein Zeitgesetz einzig und allein nur durch die Differentialgleichung

(7)
$$\frac{dx'}{dt} = k_2 \sqrt[4]{a} \cdot \sqrt[4]{x'} (1 - x')$$

ausgedrückt werden.

Differenziert man diese Gleichung nochmals nach x' und setzt ihre rechte Seite gleich Null, so folgt

(9)
$$x'_{m} = \frac{1}{3},$$

was heißt, daß die Lage des Maximums der Reaktionsgeschwindigkeit unabhängig von der Anfangskonzentration des Reaktionssubstrats ist und jedesmal nach Umwandlung des dritten Teiles seiner ursprünglichen Menge erreicht wird.

Diese Forderung wurde auch "angenähert" bestätigt gefunden. Wir betonen ausdrücklich nur "angenähert", da die Reaktionsgeschwindigkeiten auf graphischem Wege aus den Tangenten an die Reaktionskurven ermittelt wurden; und da die betreffenden Kurven in ihrem mittleren Teil fast geradlinig verlaufen, so läßt sich der Zahlenwert der Tangenten gerade für diesen mittleren Teil der Reaktionskurven nur mit grober Annäberung feststellen.

Integriert man die Differentialgleichung (7) und führt in den erhaltenen Ausdruck die Bedingung ein, daß für t=0 auch x'=0wird, so folgt

(10)
$$k_2 = \frac{1}{t\sqrt{a}} \frac{\ln \frac{1+\sqrt{x'}}{1-\sqrt{x'}}}{t},$$

und da stets mit dekadischen Logarithmen gerechnet wird,

(11)
$$k_{2} = \frac{2 \cdot 302}{t \sqrt{a}} \log \frac{1 + \sqrt{x'}}{1 - \sqrt{x'}}.$$

Die Integralform der Geschwindigkeitsgleichung (7) wurde der experimentellen Prüfung, an der Hand der Ergebnisse unserer Messungen, unterworfen, und sie bestand dieselbe recht gut, wie aus der eingebenden Diskussion der Versuchsergebnisse zu ersehen sein wird.

B. Ergebnisse der Messungen bei 115°.

Verseifungsgeschwindigkeit des CH₃KSO₄ in wässerigen Lösungen.

Mit Lösungen des reinen methylschwefelsauren Kaliums wurden im ganzen 7 Versuchsreihen ausgeführt, wobei die Anfangskonzentration des Estersalzes 1/6, 1/4, 1/2, 1, 11/2, 2 und 3 Mole pro Liter betrug. Die Ergebnisse dieser unkorrigierten Messungen sind in Fig. 2 graphisch dargestellt worden, wobei als Abszissen die Zeiten, in Stunden ausgedrückt, als Ordinaten die entsprechenden relativen Umwandlungsbeträge x' aufgetragen wurden. Wie man sieht, verlaufen die erhaltenen Reaktionskurven ganz regelmäßig, und nur wenige Einzelpunkte zeigen größere Abweichungen von dem mittleren Lauf der betreffenden Kurven.

In der Versuchsreihe Nr. 7 konnte die Reaktion nur bis zum Umwandlungsbetrage x' = 0.39 verfolgt werden, da sich bei größeren Umwandlungsbeträgen beim Abkühlen der abgeschöpften Proben der Versuchslösung bereits festes KHSO, absetzte.

86

Das gesamte Zahlenmaterial nebst den Ergebnissen der Berechnung der Geschwindigkeitskonstante k_2 nach Gleichung (11) ist in folgenden Tabellen 3 bis 9 systematisch zusammengestellt worden. Dabei wurden in der Tabelle 3 auch die unmittelbar zur Titration der Versuchsflüssigkeit verbrauchten Mengen der Ba $(OH)_2$ -Lösung angegeben, in allen übrigen Tabellen dagegen nur die aus der Ti-

tration sich ergebenden relativen Umwandlungsbeträge x' des gelösten Estersalzes.

Überblickt man die Zahlenwerte der letzten Kolonne dieser Tabellen, so fällt sofort auf, daß in den ersten drei Versuchsreihen, in denen die Konzentration des Estersalzes nur Bruchteile eines Moles, und zwar $1/_6$, $1/_4$ und $1/_2$ Mol betrug, die Anfangswerte des Geschwindigkeitskoeffizienten k_2 ziemlich stark von dessen Mittelwert abweichen und diese Abweichungen dazu einen ausgeprägten Gang aufweisen. Sie erscheinen nämlich um so größer, je geringer der Umwandlungsbetrag des Reaktionssubstrats ist. Dieser Umstand könnte gewisse Bedenken gegen die Richtigkeit der angewandten Geschwindigkeitsgleichung (11) erwecken.

TABELLE 3.

(Versuchsreihe Nr. 1).

Konz. $CH_3KSO_4 = 0.1666 \text{ molar}$; $Ba(OH)_2$ -Lsg. = 0.02935 normal. y = ccm von 0.02935 n. $Ba(OH)_2$ -Lsg. pro 1 ccm der Versuchslsg.

						the second se
t Minut.	y	x'	$1 + \sqrt{x'}$	$1 - \sqrt{\hat{x}'}$	k ₂ . 10 ⁵	$k'_{2} \cdot 10^{5}$ $t_{corr.} = t + 120$
120	0.15	0.0264	1.1625	0.8375	(669)	335
240	0.32	0.0616	1.2482	0.7518	(517)	345
360	0.60	0.1057	1.3251	0.6749	(459)	344
480	0.90	0 [.] 1585	1.3981	0-6019	430	344
600	1.50	0.2114	1.4598	0.5402	406	338
660	1.33	0.2342	1.4810	0.5160	392	332
720	1.22	0.2230	1.5225	0.4775	394	338
780	1.20	0.2994	1.5471	0.4529	386	334
840	1.90	0.3346	1.5771	0.4229	384	336
900	2·10	0.3699	1.6081	0.3919	384	339
1020	2.45	0.4315	1.6569	0·3431	378	331
1080	2.60	0.4580	1.6767	0.3233	373	336
1200	2.90	0.5108	1.7147	0.5823	366	833
1320	3.53	0.5689	1.7543	0.2457	365	334
1440	3.20	0.6150	1.7841	0.2159	359	332
1560	3.73	0.6570	1.8106	0.1894	35ň -	829
1800	4.23	0.7450	1.8632	0.1368	355	838
1920	4.42	0.7785	1.8822	0.1178	354	333
2160	4.75	0.8366	1.9145	0.0855	352	334
8	5.68	1.0		밤, 꽃은,	383	336
Statute :	pr configura	10.00	1.01 0461		Big dia	

ah Hu

1.14

88

(Versuchsreihe Nr. 2).

$0^{\circ}250$ Mole $\rm CH_{3}KSO_{4}$ pro Liter; Temp. 115°.

ť	x'	$1 + \sqrt{x'}$	$1 - \sqrt[]{x'}$	k ₁ .10 ⁸	$k'_{2} . 10^{5}$ $t_{corr.} = t + 120$
120	0.0352	1.1876	0.8124	(633)	316
240	0.0822	1.2867	0.7133	492	328
360	0 1291	1.3592	0.6408	418	313
480	0.1878	1.4333	0.5667	387	309
600	0.2759	1.5252	0.4748	389	324
66 0	0.3052	1.5525	0.4475	377	319
720	0.3464	1.5886	0.4114	375	322
780	0.3875	1.6210	0.3790	373	323
840	0 4227	1.6201	0.3499	369	323
900	0.4580	1.6767	0.3533	366	323
1020	0.5284	1.7268	0.2732	362	324
1080	0.5577	1.7467	0.2533	358	322
1200	0.6106	1.7812	0.2188	349	318
1320	0.6693	1.8181	0.1819	349	320
1 44 0	0.7150	1.8455	0.1545	344	318
1560	0.7608	1.8722	0.1278	344	820
1800	0.8337	1.9131	0.0869	343	322
1920	0.8630	1.9290	0.0710	344	324
2168	0.8983	1.9477	0.0223	335	317
00	1.0	-		371	320

89

TABELLE 5.

(Versuchsreihe Nr. 3).

0.50 Mole CH₂KSO₄ pro Liter; Temp. 115°.

t	x'	$1 + \sqrt{x'}$	$1 - \sqrt[]{x'}$	k_1 . 10 ⁵
60	0.0139	1.1179	0.8821	(557)
120	0.0303	1.1741	0.8259	414
150	0.0145	1.2110	0.7890	404
210	0.0816	1.2856	0.7144	396
360	0.1937	1.4401	0.5599	371
390	0.2196	1.4686	0.5314	369
450	0.2752	1.5246	0.4724	366
510	0.3327	1.5768	0.4232	365
540	0.3679	1.6066	0.3934	368
600	0.4180	1.6466	0.3534	363
660	0 [.] 4791	1.6921	0.3079	365
720	0.5246	1.7243	0.2757	360
810	0.6006	1.7750	0.2250	361
840	0 [.] 6265	1.7914	0.2086	362
900	0.6747	1.8212	0.1288	365
1020	0.7489	1.8654	0.1346	364
1080	0.7860	1.8865 ,	0.1135	368
1170	0.8265	1.9090	0.0910	368
1380	0.9092	1.9535	0.0465	383
1470	0.9305	1.9645	0.0355	386
1590	0.9283	1.9788	0.0212	403
8	1.0	-		375

TABELLE 6.

(Versuchsreihe Nr. 4).

1.00 Mol. CH₃KSO4 pro Liter; Temp. 115°.

t	x'	$1 + \sqrt[]{x'}$	$1 - \sqrt[]{x'}$	$k_{1}.10^{5}$
60	0.0148	1.1216	0.8784	407
90	0.0306	1.1749	0.8251	392
120	0.0487	1.2207	0.7793	374
180	0.1015	1.3185	0.6815	367
210	0.1330	1.3648	0.6352	364
240	0.1729	1.4158	0.5842	369
270	0.2095	1.4577	0.5423	366
300	0.2494	1.4994	0.2006	366
345	0.3059	1.5531	0.4469	361
375	0.3490	1.5907	0.4093	362
420	0.4098	1.6401	0.3599	361
450	0.4256	1.6750	0.3220	364
510	0.2366	1.7324	0.2676	36 6
585	0.6320	1.7969	0.2031	373
675	0.7189	1.8478	0.1522	370
735	0.7777	1.8818	0.1182	376
795	0.8232	1.9072	0.0928	380
870	0 [.] 8577	1.9262	0.0738	375
900	0.8849	1.9406	0.0594	387
960	0.9104	1.9541	0.0459	391
1080	0 9521	1.9757	0.0243	407
00	1.0			375
		1.1	1	APIL.

91

TABELLE 7.

(Versuchsreihe Nr. 5).

t	x'	$1 + \sqrt{x'}$	$1 - \sqrt{x'}$	$k_{_1}$. 10 ⁵
30	0.0041	1.0640	0.9360	349
60	0.0230	1·1ŏ17	0.8483	416
90	0.0459	1.2142	0.7858	395
135	0.0912	1.3025	0.6975	378
180	0.1288	1.3986	0.6014	383
240	0.2664	1.5162	0.4838	389
270	0.3000	1.5478	0.4522	372
300	0.3544	1.5953	0.4047	373
360	0.4530	1.6730	0.3270	370
420	0.2600	1.7484	0.2216	377
480	0.6541	1.8087	0.1913	382
540	0.7398	1.8600	0.1400	391
600	0.7950	1.8917	0.1083	389
660	0.8380	1.9154	• 0.0846	386
780	0.9086	1.9532	0.0468	390
æ	1.0	-		387

1.50 Mol CH₃KSO₄ pro Liter; Temp 115°.

TABELLE 8.

(Versuchsreihe Nr. 6).

 $2.00~Mole~CH_{8}KSO_{4}$ pro Liter; Temp. 115°.

t	_ <i>x</i> ′	$1 + \sqrt{x'}$	$1 - \sqrt{x'}$	$k_{2}.10^{4}$
60	0.0259	1.1609	0.8391	382
120	0.0897	1.2961	0.7039	360
180	0.2040	1.4516	0.5484	382
240	0.3184	1.5643	0.4357	377
300	0.4507	1.6713	0.3287	383
360	0.5740	1.7575	0.2425	389
420	0.6720	1.8198	0.1802	389
480	0.7530	1.8678	0.1322	390
540	0.8050	1.8973	0.1027	382
00	1.0		_	381

TABELLE 9.

(Versuchsreihe Nr. 7).

t _{corr} .	x'	$1 + \sqrt{x'}$	$1 = \sqrt{x'}$	k ₂ 10 ⁵
25	0.0068	1.0824	0 9176	381
ōō	0.0296	1.1720	0.8280	365
70	0.0456	1.2135	0.7865	358
85	0.0696	1.2638	0.7362	367
115	0.1306	1.3613	0.6387	380
145	0.2189	1.4679	0.5321	400
160	0.2523	1.2032	0 4965	400
205	0.3906	1.6250	0.3750	413
8	1.0	*	_	383

3 00 Mole CH_aKSO, pro Liter; Temp. 115°.

Nun läßt sich aber die Ursache dieser Abweichungen der k_2 -Werte am Anfange des Verseifungsprozesses ganz ungezwungen auf folgende Weise erklären. Das angewandte Estersalz (CH₃KSO₄), auch das am sorgfältigsten gereinigte, enthielt stets geringe Mengen von KHSO₄, die am Anfange des Verseifungsprozesses eine gewisse Beschleunigung desselben, also eine Vergrößerung des Geschwindigkeitskoeffizienten bedingten, die umso stärker zum Vorschein kam, je langsamer der betreffende Prozeß verlief, je geringer also die Anfangskonzentration des Reaktionssubstrats war.

Für die Richtigkeit dieser Erklärung spricht ganz unzweideutig der Umstand, daß, wenn man die betreffenden Reaktionskurven längs der Zeitachse etwas nach rechts von dem Koordinatenanfangspunkt verschiebt, d. h. wenn man die beobachteten Zeitwerte um ein konstantes Korrektionsglied $(t_{corr.} = t + c)$ vermehrt, der frühere Gang der Zahlenwerte der Geschwindigkeitskoeffizienten sofort verschwindet. Es folgt dies unmittelbar aus der Betrachtung der Zahlenwerte für k'_2 , die mit derart korrigierten Zeiten $(t_{corr.} = t + 120')$ berechnet wurden.

Demnach unterliegt es keinem Zweifel, daß das Zeitgesetz des studierten Verseifungsprozesses tatsächlich durch die Differentialgleichung (7) ausgedrückt wird. Stellt man die Mittelwerte der für verschiedene Anfangskonzentrationen des Estersalzes erhaltenen Geschwindigkeitskoeffizienten zusammen:

<i>a</i> -	0.1667	0.250	0.200	1.00	1.50	2.00	3.00
$k_2 . 10^5$	= 383	371	375	375	387	381	383,

so ergibt sich, daß sie um ihren arithmetischen Mittelwert = 380 ganz unregelmäßig herumschwanken. Die Geschwindigkeitskonstante k_2 ist also, gemäß ihrer Definition, von der Anfangskonzentration des Reaktionssubstrats unabhängig.

Damit ist auch das Zeitgesetz der spontanen Verseifung des methylschwefelsauren Kaliums endgültig festgestellt worden, und es läßt sich folgendermaßen formulieren: die betreffende Reaktion ist ihrem Wesen nach eine "pseudo-monomolekulare" und sie wird durch eines ihrer Reaktionsprodukte, proportional der Quadratwurzel aus dessen Konzentration, katalytisch beschleunigt.

Weitere Versuche bezweckten nun die Feststellung des katalytisch wirksamen Reaktionsproduktes, Untersuchung des Einflusses anderer Stoffe auf das Tempo des studierten Vorganges sowie überhaupt eine eingehendere Prüfung der theoretischen Konsequenzen, die sich unmittelbar aus der Geschwindigkeitsgleichung (11) ergeben.

6. Einfluß des Methylalkohols auf die Verseifungsgeschwindigkeit des CH_8KSO_4 .

Zur Feststellung des Einflusses von Zusätzen des Methylalkohols auf die Verseifungsgeschwindigkeit des methylschwefelsauren Kaliums wurden zwei Versuchsreihen ausgeführt, in denen auf 1 Mol CH₃KSO₄ je 0·1 resp. 0·5 Mole CH₃OH pro Liter der Lösung kamen. Die Ergebnisse dieser Messungen sind in den folgenden zwei Tabellen zusammengestellt worden.

Die Mittelwerte 0.00365 resp. 0.00361 der nach Gleichung (11) berechneten Geschwindigkeitskoeffizienten differieren nur wenig von dem arithmetischen Mittelwert 0.00380 der Geschwindigkeitskonstante für Lösungen des reinen Salzes. Sie sind etwas kleiner, was jedenfalls auf einen sehr geringen hemmenden Einfluß des freien Methylalkohols auf die Geschwindigkeit des betrachteten Prozesses hindeutet.

94

t	x'	$1 + \sqrt[]{x'}$	$1 - \sqrt{x'}$	$k_{2}.10^{4}$
120	0.0558	1.2362	0.7638	401
180	0.1061	1.3257	0.6743	375
240	0.1630	1.4024	0.5976	355
300	0.2436	1.4935	0.2065	360
360	0.3296	1.5741	0.4259	363
420	0.4246	1.6516	0.3484	371
540	0.2676	1.7534	0.2466	363
600	0.6280	1.7925	0.2075	359
720	0.7430	1.8620	0.1380	361
780	0.7877	1.8876	0.1124	362
840	0.8290	1.9105	0.0892	364
900	0.8548	1.9245	0.0252	360
960	0.8771	1.9365	0.0632	356
1020	0.8995	1.9484	0.0516	356
1200	0.9274	1.9629	0.0371	(331)
8	1.0	-	-	365

TABELLE 10. (Versuchsreihe Nr. 8). 1.0 Mol CH_aKSO₄+0.1 Mol CH_aOH pro Liter; Temp. 115°.

TABELLE 11.

	$k_{2}.10^{6}$	$1 - \sqrt{x'}$	1 + 1/x'	<i>x</i> ′	t _
	400	0.7638	1.2362	0.0558	120
	365	0.6829	1.3171	0.1006	180
	362	0.5906	1.4094	0.1676	240
	361	0.2062	1.4935	0.2436	300
	363	0.4259	1.5741	0.3296	360
	364	0.3570	1.6430	0 4134	420
	355	0.2563	1.7437	0.5531	540
	357	0.2104	1.7896	0.6235	600
	352	0 1465	1.8535	0.7285	720
	368	0.1075	1.8925	0.7965	780
	354	0.0969	1.9031	0.8156	840
	360	0.0755	1.9245	0.8548	900
	351	0.0665	1.9335	0.8715	960
	350	0.0546	1.9454	0.8940	1020
	361	0.0871	1.9629	0.9274	1100
1	361		—	1.0	00

(Versuchsreihe Nr. 9).

7. Einfluß des KNO₃ und KCl auf die Verseifungsgeschwindigkeit des CH_3KSO_4 .

An zweiter Stelle wurde der Einfluß von Neutralsalzen mit gleichnamigen Kationen untersucht. In dieser Richtung führten wir 6 Versuchsreihen aus, zwei mit Zusätzen von KNO_3 und vier mit verschieden großen Zusätzen von KCl. Ihre Ergebnisse sind bildlich in Fig. 3 und 4 dargestellt, und es ist daraus zu ersehen, daß Zu-

sätze von KNO₃ keinen nennenswerten Einfluß auf die Verseifungsgeschwindigkeit des CH₃KSO₄ ausüben. Die beobachteten Reaktionskurven fallen beinahe mit der Reaktionskurve für die Lösung des reinen Estersalzes zusammen.

Aus Fig. 4, die den Einfluß wechselnder Zusätze von KCl veranschaulicht, ergibt sich, daß geringe Mengen von KCl einen schwach verzögernden, dagegen größere Mengen einen schwach beschleunigenden Einfluß auf die Verseifungsgeschwindigkeit des CH₃KSO₄ ausüben. (Die gestrichelte Kurve 4 stellt den Reaktionsverlauf in der Lösung des reinen Estersalzes dar.). Quantitativ werden diese Einflüsse durch die folgenden Tabellen Nr. 12 bis 17 illustriert, deren letzte Kolonnen die nach Gleichung (11) berechneten Geschwindigkeitskoeffizienten angeben.

Aus diesen Tabellen ist vor allem zu entnehmen, daß das Zeitgesetz des betrachteten Verseifungsprozesses durch Gegenwart von Neutralsalzen nicht geändert wird. Die nach Gleichung (11) berechneten Geschwindigkeitskoeffizienten weisen sogar eine bessere Konstanz auf als im Falle der Lösungen des reinen Estersalzes, was

dadurch zu erklären wäre, daß der unkontrollierbare Einfluß von Spuren des sauren Kaliumsulfats auf die Anfangsgeschwindigkeit dieses Prozesses durch die zugesetzten Neutralsalze einigermaßen kompensiert wird.

Stellt man die Mittelwerte der berechneten Geschwindigkeitskoeffizienten zusammen, wie folgt:

KNO ₃ ,	b =	0	0.1	0.2	-		100	
KCl,	b =	0	_	-	0.1	0.5	0.2	1.0
$k_{2} . 10^{5}$	=	380	360	360	350	377	398	414,
J. Zaw	idzki u. J	. Zaykows	ski.					3

TABELLE 12. (Versuchsreihe Nr. 10).

t	x'	$1 + \sqrt{x'}$	$1 - \sqrt{x'}$	k_{2} . 10 ⁵
120	0.0447	1.2113	0.7887	357
240	0.1732	1.4161	0.5839	369
300	0.2402	1.4901	0.2099	358
360	0.3240	1.5692	0.4308	359
420	0.4190	1.6473	0.3527	367
480	0.4863	1.6972	0.3028	359
540	0.5642	1.7511	0.2489	361
600	0.6313	1.7945	0.2055	361
660	0.6872	1.8288	0.1712	359
780	0.7821	1.8843	0.1157	358
840	0.8287	1.9103	0.0897	364
900	0.8495	1.9215	0.0285	355
960	0.8712	1.9335	0.0665	$351 \cdot$
1080	0.9218	1.9601	0.0399	361
1200	0.9441	1.9716	0.0284	353
00	1.0	_		360

1.0 Mol $CH_{_{3}}KSO_{_{4}} + 0.1$ Mol $KNO_{_{3}}$ pro Liter; Temp. 115°.

TABELLE 13.

(Versuchsreihe Nr. 11). 1.0 Mol $CH_8KSO_4 + 0.5$ Mol KNO_8 pro Liter; Temp. 115°.

t .	x'	$1 + \sqrt{x'}$	1 Vx'	$k_{_2}$, 10^5
120	0.0203	1.2243	0.7757	380
240	0.1542	1.3926	0.6074	346
300	0.3346	1.4843	0.5157	352
360	0.3218	1.5672	0.4328	357
420	0.4112	1.6412	0.3588	362
480	0.4860	1.6971	0.3029	359
540	0.5531	1.7437	0.2563	355
600	0.6257	1.7911	0.2089	358
660	0.6921	1.8322	0.1678	362
840	0.8268	1.9093	0.0907	363
900	0.8603	1.9274	0.0726	364
1020	0.8994	1.9484	0.0216	356
1200	0.9386	1.9687	0.0313	345
00	1.0		-	360

TABELLE 14

(Versuchsreihe Nr. 12).

t	x'	$1 + \sqrt[]{x'}$	$1 - \sqrt{x'}$	$k_{ m _2}$, 10^5
65	0.0134	1.1157	0.8843	357
125	0.0493	1.2220	0.7780	353
180	0.0989	1.3145	0.6855	362
240	0.1614	1.4017	0.222	355
300	0.5377	1 4872	0.5128	355
360	0.3139	1.5602	0.4398	352
420	0.3815	1.6173	0.3827	343
480	0.4664	1.6829	0.3171	348
540	0.5426	1.7365	0.2635	349
600	0.6009	1.7752	0.2248	344
660	0.6682	1.8174	0.1826	348
720	0.7220	1.8496	0.1204	349
780	0.7713	1.8782	0.1218	351
900	0.8430	1.9181	0.0819	350
1020	0.8879	1 9421	0.0579	344
1200	0.9400	1 9694	0.0306	347
00	1.0	_	_	350

1.0	Mol.	CH.KSO.	-+- 0.1	Mol.	KCI	pro	Liter;	Temp.	115%
-----	------	---------	---------	------	-----	-----	--------	-------	------

TABELLE 15.

(Versuchsreihe Nr. 13).

t	x'	$1 + \sqrt[]{x'}$	$1 - \sqrt[4]{x'}$	$k_{ m s}$. $10^{ m s}$
70	0.0179	1.1338	0.8662	385
125	0.0538	1.2319	0.7681	378
185	0.1121	1.3348	0.6652	377
240	0.1838	1.4287	0.5713	382
300	0.2556	1.5054	0.4946	371 .
360	0.3453	1.5876	0.4124	374
390	0.3852	1.6210	0.3790	373
420	0.4260	1.6527	0.3473	371
510	0.5426	1.7365	0.2635	370
540	0.2830	1.7635	0.2365	372
600	0.6547	1.8091	0.1909	375
660	0.7169	1.8467	0.1233	377
720	0.7623	1.8792	0.1208	381
800	0.8296	1.9107	0.0893	383
960	0.9032	1.9506	0.0494	383
1140	0.9462	1.9727	0.0523	375
00	1.0	_		377

1.0 Mol $CH_3KSO_4 + 0.2$ Mol KCl pro Liter; Temp. 115°.

3*

t	x'	$1+\sqrt{x'}$	$1 - \sqrt[]{x'}$	$k_{2}.10^{5}$
75	0.0324	1.1496	0.8504	402
136	0.0719	1.2681	0.7319	407
190	- 0.1300	1.3604	0.6396	397
250	0.2152	1 4638	0.2363	402
300	0.2915	1.5399	0.4601	402
360	0.3767	1.6138	0.3862	397
390	0.4260	1.6527	0.3473	400
420	0.4663	1.6828	0.3123	397
510	0.2880	1 7635	0.5362	394
540	0.6533	1.7894	0.2106	396
600	0.6906	1.8310	0.1690	397
660	0.7438	1.8624	0.1376	395
720	0.7892	1.8884	0.1116	393
840	0.8610	1:9279	0.0721	391
960	0.9193	1.9588	0.0412	402
1140	0.9550	1 9772	0.0228	392
œ	1.0	=	-	398

TABELLE 16. (Versuchsreihe Nr. 14). 1.0 Mol CH₃KSO₄ + 0.5 Mol KCl pro Liter; Temp. 115[°].

TABELLE 17.(Versuchsreihe Nr. 15).1.0 Mol CH₃KSO₄ + 1.0 Mol KCl pro Liter; Temp. 115°.

t	x'	$1 + \sqrt[]{x'}$	$1 - \sqrt[]{x'}$	$m{k}_{_2}$, 10 a
90	0.0813	1.1769	0.8231	400
18ŏ	0.0762	1.2761	0.7239	420
195	0.1455	1.3787	0.6213	409
255	0.2377	1.4875	0.5125	419
315	0.3318	1.5759	0.4241	419
360	0.4)25	1.6422	0.3578	423
420	0.4888	1.6990	0.3010	412
480	0.5740	1.7575	0.2425	413
540	0.6547	1.8091	0.1909	416
600	0.7175	1.8470	0.1230	415
660	0.7713	1.8782	0.1518	415
720	0.8117	1.9010	0.0990	410
780	0.8475	1.9206	0.0794	410
8	1.0			414

so ergeben sich die bereits aus der graphischen Darstellung gezogenen Schlußfolgerungen.

Diese Schlußfolgerungen stimmen im allgemeinen damit überein, was seit den Versuchen von Spohr¹) und Arrhenius²) über die Art der Beeinflussung der katalytischen Wirksamkeit von Säuren durch die Gegenwart von Neutralsalzen bekannt wurde³).

Sonst aber sind unsere Beobachtungen viel zu dürftig, um an ihnen die Frage nach der Wirkungsart von Neutralsalzen prinzipiell zu diskutieren, wie dieses in den neuesten Untersuchungen von Taylor⁴), Poma⁵) u. a. getan wird.

8. Einfluß des KHSO₄ auf die Verseifungsgeschwindigkeit des CH_3KSO_4 ,

Nachdem durch die bereits besprochenen Versuchsergebnisse die Gültigkeit der Geschwindigkeitsgleichung

(12)
$$\frac{dx'}{dt} = k_2 \sqrt[3]{a} \sqrt[3]{x'} (1-x')$$

festgestellt und ihr guter Anschluß an die Erfahrung erwiesen wurde, erübrigte es noch, diese Gleichung selber einer Diskussion zu unterwerfen, um ihren kinetischen Sinn darzutun.

Die genannte Gleichung besagt im allgemeinen, daß der untersuchte pseudo-monomolekulare Verseifungsprozeß durch eines der sich bildenden Reaktionsprodukte, proportional der Quadratwurzel aus dessen Konzentration, katalytisch beschleunigt wird.

J. Spohr, Journ. f. prakt. Chem., (2) 32, 32 (1885); (2) 33, 265 (1886);
 Zeitschr. f. physikal. Chem., 2, 194 (1888); - H. Trey, Journ. f. prakt. Chem.,
 (2) 34, 353 (1886).

²) Sv. Arrhonius, Zeitschr. f. physikal. Chem., 1, 110 (1887); 4, 237 (1889); 31, 197 (1899); Zeitschr. f. Elektrochem., 6, 10 (1899).

³) Man vergleiche hierzu die neuere Literatur, insbesondere die Arbeiten von H. Euler, Öfvers. K. Vetensk. Akad. Förb. 56, 465 (1899); — B. Szyszkowski Zeitschr. f. physikal. Chem., 63, 421 (1908); 73, 269 (1911); — A. C. Rivett, ebda 85, 113 (1913); — H. Snethlage, ebda 85, 211 (1913).

4) H. St. Taylor, Meddelander från K. Vetenskapsakademien Nobelinstitut, 2. Nr. 34, 35, 37 (1913).

³) G. Poma u. A. Patroni, Zeitschr. f. physikal. Chem., 87, 196 (1914);-G. Poma, ebda 88, 671 (1914). Da, wie bereits gezeigt wurde, von den beiden Reaktionsprodukten der Methylalkohol keinen merklichen Einfluß auf das Reaktionstempo ausübt, so kann die beobachtete Beschleunigung nur von dem zweiten Reaktionsprodukt, nämlich dem sauren Kaliumsulfat herrühren.

Durch weiter mitgeteilte Versuche wird nachgewiesen, daß freie Säuren einen viel stärkeren beschleunigenden Einfluß als das KHSO₄ ausüben. Diese Tatsache deutet darauf hin, daß die untersuchte Reaktion eigentlich durch Wasserstoffionen, die sich aus dem entstehenden KHSO₄ bilden, autokatalytisch beschleunigt wird.

Das Kaliumhydrosulfat unterliegt in wässerigen Lösungen folgender stufenweisen elektrolytischen Dissoziation:

(I)
$$\text{KHSO}_4 \rightleftharpoons \text{K}^{-} + \text{HSO}_4^{-}$$

(II) $\text{HSO}_4^{-} \rightleftharpoons \text{H}^{-} + \text{SO}_4^{-}$.

Man darf annehmen, daß in verdünnten Lösungen die erste Stufe dieser elektrolytischen Dissoziation praktisch vollständig ist. Dies ist aber nicht der Fall mit der zweiten Dissoziationsstufe. Setzt man die Konzentration des Hydrosulfations HSO_4 praktisch gleich x, also gleich derjenigen des KHSO₄, das während des Fortschreitens der Reaktion entsteht, so wird das Dissoziationsgleichgewicht

$$\begin{array}{rcl} \text{II} & \text{HSO}_{4} \rightleftharpoons \text{H}^{*} + \text{SO}_{4}^{*'} \\ & (x - y) & y & y \end{array}$$

durch die Beziehung

(13)
$$\frac{y^2}{(x-y)} = \varrho$$

geregelt, in der ϱ die betreffende Dissoziationskonstante bedeutet. Da nun y im Verhältnis zu x verschwindend klein ist, so kann diese letzte Beziehung in erster Annäherung auch folgendermaßen geschrieben werden:

(14)
$$C_{\mathrm{H}} = y = \sqrt{\varrho x}.$$

Die Geschwindigkeit der Verseifung des methylschwefelsauren Kaliums ist der Konzentration dieses Estersalzes (a-x) proportional, und da sie andererseits von den Wasserstoffionen, proportional deren Konzentration, katalytisch beschleunigt wird und die Konzentration der Wasserstoffionen proportional der Quadratwurzel aus der Konzentration des sich bildenden Kaliumhydrosulfats ist, so muß der zeitliche Verlauf dieses Vorganges durch die Geschwindigkeitsgleichung

(15)
$$\frac{dx}{dt} = k \cdot \sqrt{\varrho} \sqrt{x} (\alpha - x)$$

ausdrückbar sein.

Setzt man in dieser Gleichung x = ax', so folgt

(16)
$$\frac{dx'}{dt} = k \cdot \sqrt[]{\varrho} \sqrt[]{a} \sqrt[]{x'} (1-x'),$$

welcher Ausdruck mit der Geschwindigkeitsgleichung (12) identisch wird, falls

$$k_2 = k \sqrt{\varrho}$$

ist. Dies besagt nichts anderes, als daß die berechnete Geschwindigkeitskonstante k_2 das Produkt aus der eigentlichen Geschwindigkeitskonstante k und der Quadratwurzel aus der Dissoziationskonstante ρ des Hydrosulfations darstellt.

Wäre diese molekular-kinetische Deutung der Geschwindigkeitsgleichung (12) richtig, dann müßte sie ihre Gültigkeit auch für diejenigen Fälle behalten, in denen dem Estersalz von vornherein ein Überschuß des katalytisch wirksamen Kaliumhydrosulfats zugesetzt wurde. Dabei müßten sich für die Geschwindigkeitskoeffizienten k_2 dieselben Zahlenwerte ergeben.

Bezeichnet man die Konzentration des zugesetzten Kaliumhydrosulfats mit $b = \alpha \beta$, so nimmt für diesen Fall die Gleichung (12) die Gestalt

17)
$$\frac{dx'}{dt} = k_2 \sqrt[4]{\alpha} \sqrt[4]{\beta + x'} (1 - x')$$

an. Durch Integration derselben und Einsetzen der Bedingung, daß für t = 0 auch x' = 0 wird, erhält man dann:

(18)
$$k_{2} = \frac{1}{t \sqrt{a} \sqrt{1+\beta}} \ln \frac{(1+2\beta)+2 \sqrt{1+\beta} \cdot \sqrt{\beta+x'+x'}}{(1+2\beta+2 \sqrt{1+\beta} \cdot \sqrt{\beta}) (1-x')}$$

Zur experimentellen Prüfung dieser Gleichung wurden sieben

Versuchsreihen ausgeführt, davon vier mit molaren Lösungen des CH₈KSO₄, denen verschiedene Mengen von KHSO₄ zugesetzt wurden, und drei mit anderthalbmolaren Lösungen des Estersalzes.

Die Ergebnisse dieser Mossungen sind graphisch in den Fig. 5 und 6 veranschaulicht. Aus diesen Zeichnungen ersieht man, daß bei geringen Zusätzen des Kaliumhydrosulfats der änßere Habitus der Reaktionskurven für Lösungen ;des reinen Estersalzes (gestri-

chelte Kurven) einigermaßen erhalten wird und die für sie charakteristischen Wendepunkte genügend scharf hervortreten. Bei steigenden Mengen des Kaliumhydrosulfats rückt dieser Wendepunkt immer mehr nach dem Koordinatenanfangspunkt, um schließlich mit demselben zusammenzufallen (siehe Kurve Nr. 19).

Dies verlangt auch die Differentialgleichung (17), denn differenziert man dieselbe nochmals nach x' und setzt ihre rechte Seite gleich Null, so ergibt sich hieraus für die Ordinate des Wendepunktes x'_m der Ausdruck

$$(19) x'_m = \frac{1-2\beta}{3},$$

der besagt, daß mit steigendem $\beta x'_m$ immer kleiner wird, also der Wendepunkt immer mehr nach dem Koordinatenanfangspunkt verschoben wird, um bereits für $\beta = \frac{1}{2}$ mit demselben zusammenzufallen.

Die Ergebnisse der Berechnungen der genannten sieben Versuchsreihen sind in folgenden Tabellen Nr. 18 bis 24 schematisch zusammengestellt worden.

Ein Blick auf die Zahlen der letzten Koloune dieser Tabellen

überzeugt uns, daß in den einzelnen Versuchsreihen genügend konstante Werte für die Geschwindigkeitskoeffizienten k_2 erhalten wurden. Stellt man noch die Mittelwerte dieser Koeffizienten zusammen:

Versuchsreihe	16	17	18	19	20	21	22
CH,KSO4	1.0	1.0	1.0	1.0	1.5	1.2	1.2
KHSO,	0.05	0.1	0.25	0.2	0.02	0.1	0.25
$k_2 . 10^5$	391	390	388	390	392	390	393
-		-		390	1	100	

TABELLE 18.

(Versuchsreihe Nr. 16).

t _{corr} .	x'	1— <i>x</i> ′	$\beta + x'$	$k_{2}.10^{5}$
80	0.0865	0.9135	0.1365	380
110	0.1252	0.8748	0.1225	368
140	0.1788	0.8215	0.52282	396
200	0.3220	0.7250	0.3220	396
260	0.3232	0.6268	0.4535	396
330	0.4758	0.5242	0.5258	391
420	0.6018	0.3985	0 6518	392
450	0.6420	0.3280	0.6920	395
510	0.7102	0.2848	0.7602	397
630	0.8103	0.1897	0.8603	396
750	0.8781	0.1219	0.9281	395
990	0.9510	0.0490	1.0010	393
00	1.0	0.0		391

1.0 Mol $\mathrm{CH_sKSO_4} + 0.05$ Mol $\mathrm{KHSO_4};\;\beta = 0.05\,;$ Temp. 115°.

TABELLE 19.

(Versuchsreihe Nr. 17).

		1/	01-1	<i>b</i> 10
t _{corr} .	x	1-2	p+x	$n_2 \cdot 10^{-10}$
80	0.1039	0.8961	0.5039	356
95	0.1310	0.8690	0.2310	369
125	0.1840	0.8160	0.2840	388
180	0.2783	0.7217	0.3783	382
210	0.3299	0.6701	0.4299	383
270	0.4362	0.9632	0.2362	390
360	0 [.] 5798	0.4202	0.6798	397
420	0.6631	0.3369	0.7631	402
480	0.7263	0.2737	0.8263	401
540	0.7806	0.2194	0.8806	400
630	0.8361	0.1639	0.9361	392
750	0 9039	0.0961	1.0039	401
930	0.9484	0.0516	1.0484	389
1330	0.9901	0.0099	1.0901	392
8	1.0	0.0	-	390

1.0 Mol $CH_3KSO_4 + 0.10$ Mol $KHSO_4$; $\beta = 0.1$; Temp. 115°.
TABELLE 20.

(Versuchsreihe Nr. 18).

1.0 Mol $CH_3KSO_4 + 0.25$ Mol $KHSO_4$; $\beta = 0.25$; Temp. 115°

t _{eorr} .	x'	1-x'	$\beta + x'$	k_{2} , 10^{5}
75	0.1556	0.8444	0.4056	396
95	0.1937	0.8063	0.4437	387
145	0.2679	0.7321	0.5179	350
190	0.3264	0.6236	0.6264	378
220	0.4390	0.5610	0.6890	386
280	0.5514	0.4486	0.8014	396
310	0.2879	0.4151	0.8379	388
370	0.6286	0.3214	0.9286	396
430	0.7515	0.2485	1.0012	402
490	0.8012	0.1988	1.0212	398
550	0.8400	0.1600	1.0900	392
640	0.8864	0.1136	1.1364	388
720	0.9149	0.0851	1.1649	382
900	0.9536	0.0464	1.2036	368
320	0.9948	0.0025	1.2448	400
00	1.0	0.0	_	388

TABELLE 21.

1.0 Mol	(Versuchsreihe Nr. 19). 1.0 Mol $CH_3KSO_4 + 0.5$ Mol $KHSO_4$; $\beta = 0.5$; Temp. 115°.					
t _{corr} .	<i>x</i> ′	1-x'	$\beta + x'$	$k_{2}.10^{2}$		
10	0.0290	0.9710	0.5290	410		
60	0.1640	0.8360	0.6640	391		
90	0.5350	0.7650	0.7350	379		
130	0.3435	0.6565	0.8435	395		
180	0.4468	0.5532	0.9468	386		
220	0.25294	0.4706	1.0294	389		
260	0.5972	0.4028	1.0972	387		
320	0.7063	0.2937	1.2063	407		
4 00	0.7838	0.2162	1.2838	394		
490	0.8522	0.1478	1.3522	389		
550	0.8871	0.1129	1.3871	389		
600	0.9129	0.0871	1.4129	393		
680	0.9330	0.0620	1.4330	379		

0.0209

0.0

1 4 4 9 1

369 390

0.9491

1.0

960

TABELLE 22.

(Versuchsreihe Nr. 20).

1.50 Mol $CH_{g}KSO_{4} + 0.0$	5 Mol KHSO ₄ ; $\beta =$	0.0333; Temp. 115°
----------------------------------	-------------------------------------	--------------------

t _{corr} .	x'	1 - x'	$\beta + x'$	$k_{2}.10^{6}$
100	0.1368	0.8632	0.1701	400
190	0.2997	0.7003	0.3330	391
250	0.4188	0.5812	0.4521	395
310	0.5287	0.4213	0.2650	396
870	0.6206	0.3794	0.6539	393
430	0.2000	0 3000	0.7333	391
480	0.7586	0.2414	0.7919	393
540	0 8171	0.1829	0 8504	396
650	0.8840	0.1160	0.9173	389
750	0 9257	0.0743	0.9590	388
810	0.9467	0.0233	0.9800	398
980	0.9701	0 0299	1.0034	373
s	10	0.0		392

TABELLE 23.

(Vorsuchsreihe Nr. 21).

t _{corr} .	x'	1-x'	$\beta + x'$	$k_{g}.10^{5}$
75	0.1162	0.8838	0.1829	390
185	0.2244	0.7756	0.2911	371
165	0.2925	0.7075	0.3295	390
200	0.3892	0.6105	0.4562	416
260	0.4786	0.5214	0.5453	390
290	0.2829	0.4671	0.2996	391
350	0.6332	0.3668	0.6999	394
380	0.6729	0.3271	0.7396	392
440	0.7502	0.2498	0.8169	395
500	0.8004	0.1996	0.8671	388
.560	0.8200	0.1200	0.9167	390
660	0.9020	0.0930	0.9737	392
760	0.9404	0.0596	1.0071	388
900	0.9655	0.0345	1.0322	377
8	1.0	0.0	-	390

1.50 Mol $\rm CH_3KSO_3 + 0.10$ Mol $\rm KHSO_4$; $\beta = 0.0667$; Temp. 115%

TABELLE 24.

(Versuchsreihe Nr. 22).

1.50 Mol $CH_3KSO_4 + 0.25$ Mol $KHSO_4$: $\beta = 0.1667$. Temp. 1150.

t _{corr} .	x'	1 - x'	$\beta + x'$	$k_{_{2}}$. 10 ⁶
65	0.1418	0.8582	0.3085	396
105	0.2290	0.7710	0:3957	386
175	0.3908	0.6092	0.5575	391
205	0.4660	0 5340	0.6127	399
280	0.5935	0.4065	0.7602	389
320	0.6645	0.3354	0.8312	396
80	1 ·0	0.0	-	393

so erweisen sie sich als identisch und praktisch übereinstimmend mit dem Mittelwerte von $k_2 = 0.00380$, der für die Lösungen des reinen Estersalzes erhalten wurde.

Der Einfluß des Kaliumhydrosulfats auf die Geschwindigkeit der Verseifung des CH_3KSO_4 läßt sich mathematisch noch auf folgende Weise formulieren. Durch frühere Versuche wurde nämlich nachgewiesen, daß der während der Verseifung entstehende Methylalkohol keinen merklichen Einfluß auf die Reaktionsgeschwindigkeit des betrachteten Vorganges ausübt. In Anbetracht dessen kann man den zeitlichen Verlauf der Reaktion in Lösungen von CH_3KSO_4 + KHSO₄ als denjenigen von Lösungen des reinen Estersalzes CH_3KSO_4 von der Anfangskonzentration c = a + b auffassen, wobei die Zeit von dem Augenblicke t = 0 gerechnet wird, in welchem von dem Estersalze bereits die Menge x = b verseift wurde.

Dementsprechend nimmt die Geschwindigkeitsgleichung (10) die Gestalt

(20)
$$k_{z} = \frac{1}{(\sqrt{a+b}) t} ln \frac{1+\sqrt{x''}}{1-\sqrt{x''}} + C$$

an, wobei $x'' = \frac{x+b}{a+b}$ ist.

Wird für t = 0 $x_0'' = \frac{b}{a+b}$ gesetzt, so lautet diese Gleichung folgendermaßen:

(21)
$$k_2 = \frac{1}{t} \cdot \frac{2 \cdot 302}{\sqrt{a+b}} \log \frac{(1+\sqrt{x'})(1-\sqrt{x_0'})}{(1-\sqrt{x'})(1+\sqrt{x_0'})}.$$

Die Prüfung dieser Gleichung wurde an den Daten der Versuchsreihe Nr. 19 durchgeführt und ihr Ergebnis findet sich in folgender Tabelle 25 zusammengestellt.

t _{corr} .	x + b	x''	$1 + \sqrt{x''}$	$1 - \sqrt[]{x^{\prime\prime}}$	$k_{2} . 10^{5}$	
0	0.2000	0.3334	1.5773	0.4227		
10	0.5290	0.3527	1.5939	0.4061	410	
60	0.6640	0.4427	1.6653	0.3347	391	
90	0.7350	0·490 0	1.7000	0.3000	379	
130	0.8435	0.5623	1.7498	0.2202	394	
180	0.9468	0.6313	1.7945	0.2055	385	
220	1.0294	0.6861	1.8283	0.1717	389	
260	1.0972	0.7316	1.8553	0.1447	388	
320	1.2063	0.8041	1.8969	0.1031	407	
400	1.2838	0.8559	1.9251	0.0249	394	
490	1.3522	0.9014	1.9493	0.0202	389	
5 50	1.3871	0.9249	1.9616	0.0384	388	
600	1.4129	0.9419	1.9705	0.0295	392	
680	1.4330	0.9552	1.9772	0.0228	378	
760	1.4491	0.9661	1.9828	0.0172	369	
80	1.20	1.0			390	

TABELLE 25. (Versuchsreihe Nr. 19). 1.0 Mol CH₃KSO₄ + 0.5 Mol KHSO₄; Temp. 115°.

Man sieht aus derselben, daß die berechneten Zahlenwerte für k_2 vollkommen identisch mit denjenigen der vorherigen Tabelle 21 sind. Beide Formulierungen der Geschwindigkeitsgleichung, sowohl Gleichung 18 wie Gleichung 21 führen also zu demselben Resultat

Nachdem auf diese Weise die Forderungen unserer Geschwindigkeitsgleichung hinsichtlich des zeitlichen Verlaufes der betrachteten Reaktion in Gegenwart eines Überschusses von $KHSO_4$ sich vollkommen bewährt haben, konnte man weiter schreiten, um auch den beschleunigenden Einfluß von Säuren auf diese Reaktion quantitativ zu formulieren.

9. Einfluß der H_2SO_4 auf die Verseifungsgeschwindigkeit des CH_3KSO_4 .

Bei der Besprechung des beschleunigenden Einflusses, den KHSO_4 auf die Verseifung des CH_3KSO_4 ausübt, wurde bereits gezeigt, daß dieser Einfluß von Wasserstoffionen ausgeübt wird, die aus dem Hydrosulfation, entsprechend dem Dissoziationsgleichgewicht

(A)
$$\begin{array}{c} \operatorname{HSO}_{4}^{\prime} \rightleftharpoons \operatorname{H}^{\prime} + \operatorname{SO}_{4}^{\prime\prime} \\ (x-y) \quad y \quad y \end{array}$$

herstammen.

In Gegenwart von freier Schwefelsäure bleibt obiges Dissoziationsgleichgewicht bestehen, aber die Konzentration der katalytisch wirksamen Wasserstoffionen wird im allgemeinen eine andere. Sie läßt sich näherungsweise folgendermaßen berechnen. Die Schwefelsäure erleidet in wässerigen Lösungen zwei Stufen elektrolytischer Dissoziation, nämlich

> (I) $H_2SO_4 \rightleftharpoons H^{\bullet} + HSO'_4$ (II) $HSO'_4 \rightleftharpoons H^{\bullet} + SO''_4$.

Man darf annehmen, daß in verdünnten Lösungen die erste Stufe dieser Dissoziation praktisch vollständig ist ¹), daher kann die Konzentration der Hydrosulfationen HSO₄ gleich derjenigen der Schwefelsäure gesetzt werden. Bezeichnet man also mit b die Konzentration der freien Schwefelsäure, so ergibt sich für das ursprüngliche Dissoziationsgleichgewicht (A) die Beziehung:

¹) Dieselbe Annahme machen R. Luther (Zeitschr. f. Elektrochem., **13. 294** (1907)) und K. Drucker (ebda. **17.** 398 (1911)) bei ihren Versuchen, die Dissoziationskonstante des Hydrosulfations zu berechnen.

(B)
$$\begin{array}{c} \text{HSO}'_{4} \rightleftharpoons \text{H}^{*} + \text{SO}'^{*}_{4} \\ (b + x - y) \quad (y + b) \quad (y) \end{array},$$

woraus

$$\frac{(y+b)y}{(b+x-y)} = \varrho$$

folgt. Da nun y gegenüber b und x sehr klein ist, so kann diese letzte Beziehung folgendermaßen vereinfacht werden:

$$yb = \varrho \, (b+x).$$

Hieraus folgt für die Konzentration des SO4-Ions der Ausdruck

$$C_{\mathrm{SO},"} = y = \varrho \, \frac{b+x}{b}.$$

Die Konzentration der im Gleichgewicht befindlichen Wasserstoffionen übertrifft diejenige der SO''_4 -Ionen um den Betrag b, herstammend von der ersten Stufe der Dissoziation der Schwefelsäure. Demnach ist

$$C_{\rm H} = y + b = b + \varrho \, \frac{b+x}{b},$$

und die Geschwindigkeit des betrachteten Verseifungsprozesses in Gegenwart von freier Schwefelsäure müßte durch die Differentialgleichung

(22)
$$\frac{dx}{dt} = k \cdot \left(b + \varrho \frac{b+x}{b}\right) (1-x)$$

ausdrückbar sein.

Führt man in diese Gleichung die Bezeichnungen x = ax' und $b = a\beta$ ein, so nimmt sie die Gestalt

(23)
$$\frac{dx'}{dt} = \frac{k \cdot \varrho}{\beta} \left(\frac{a\beta^2}{\varrho} + \beta + x' \right) (1 - x')$$

an. Wird noch $\frac{a\beta^2}{\varrho} + \beta = m$ gesetzt, also

(23^a)
$$\varrho = \frac{a\beta^2}{m-\beta},$$

so vereinfacht sie sich folgendermaßen:

(24)
$$\frac{dx'}{dt} = \frac{k \cdot \varrho}{\beta} (m + x') (1 - x').$$

Ihr Integral lautet dann (für t = 0 auch x' = 0 angenommen)

(25)
$$k\varrho = \frac{\beta}{t (1+m)} \ln \frac{x'+m}{m (1-x')},$$

und falls noch

 (25^{a})

 $k\varrho = k_3$

gesetzt wird,

(26)
$$k_{3} = \frac{2 \cdot 302 \beta}{(1+m) t} \log \frac{m+x'}{m(1-x')}.$$

Zur experimentellen Prüfung dieser letzten Gleichung verfügten wir über neun Messungsreihen (Versuche Nr. 23 bis Nr. 31), deren Ergebnisse in Fig. 7 und Fig. 8 bildlich dargestellt sind.

Wie aus diesen Figuren zu ersehen ist, weisen nur noch die ersten Kurven derselben (Nr. 23 und Nr. 28) das Auftreten eines Wendepunktes auf. Aus allen übrigen ist derselbe spurlos verschwunden.

Differenziert man die Differentialgleichung (24) nochmals nach x' und setzt die rechte Seite des erhaltenen Ausdruckes gleich Null, so ergibt sich für die Ordinate des Wendepunktes (x'_m)

(27)
$$x'_m = \frac{1-m}{2},$$

woraus zu entnehmen ist, daß der Wendepunkt mit wachsendem mimmer mehr nach dem Koordinatenanfangspunkt verschoben wird. Für m = 1 fällt er schließlich mit demselben zusammen.

Demnach folgt aus der bloßen Betrachtung obiger Reaktionskurven, daß nur in den Versuchsreihen Nr. 23 und Nr. 28 die Größe m kleiner als eins sein muß, wogegen sie in allen übrigen Versuchsreihen im allgemeinen größer als eins ist.

Die abgebildeten Reaktionskurven zeigen zugleich, daß die Verseifungsgeschwindigkeit des methylschwefelsauren Kaliums durch

J. Zawidzki u. J. Zaykowski.

wachsende Zusätze der Schwefelsäure stark vergrößert wird. Um nun die Art der Abbängigkeit der Reaktionsgeschwindigkeit von der Konzentration der zugesetzten Schwefelsäure wenigstens approximativ festzustellen, haben wir für die ersten fünf Versuchsreihen (23 bis 27) auf graphischem Wege die Zeiten ϑ ermittelt, in denen die Hälfte des Estersalzes (x' = 0.5) verseift wurde. Das Reziproke dieser Zeiten kann als Maß der betreffenden Verseifungsgeschwindigkeit ($v = \frac{1}{\vartheta}$) betrachtet werden.

Wie aus folgender Zusammenstellung diesbezüglicher Zahlendaten erhellt, ist die von der Schwefelsäure ausgeübte Beschleunigung der Reaktionsgeschwindigkeit ($w = v - v_0$) direkt proportional ihrer Konzentration, und zwar ist $w = 0.0550 C_{0.SO_1}$.

Vørsuch Nr.	CCH₃KSO₄	$C_{\mathrm{H}_{2}\mathrm{SO}_{4}}$	ъγ	$v = \frac{1}{\vartheta}$	$w = (v - v_0) \cdot 10^5$	$\frac{w}{C_{H_2}SO_4}$
4	1.0	0.0	470	0.00213		-
23	1.0	0.02	200	0.00200	287	0.0574
24	1.0	0.10	127	0.00282	574	0.0574
25	1.0	0.20	76	0.01316	1103	0.0551
26	1.0	0.22	68	0.01471	1258	0 0503
27	1.0	0.20	34	0 02941	2728	0.0546
	1.0			(_	0.0550

ΤA	BEI	ЛE	26.

Eine exakte quantitative Prüfung der Geschwindigkeitsgleichung (26) wäre nur dann ausführbar, falls die Dissoziationskonstante o des Hydrosulfations (HSO₄) für die betreffende Versuchstemperatur von 115° bekannt wäre. Da dieses aber nicht der Fall war und eine spezielle Bestimmung jener Größe außerhalb des Planes unserer Untersuchung lag, so mußte man sich mit einem Näherungsverfahren begnügen.

Zur Prüfung der Geschwindigkeitsgleichung (26) war nämlich die Kenntnis des konstanten Faktors m notwendig. Wir versuchten also, diese Größe auf dem Wege des allmählichen Probierens zu ermitteln, und zwar folgendermaßen. Wie bereits erwähnt wurde, trat in der Reaktionskurve Nr. 23 noch deutlich ein Wendepunkt auf. Das heißt, daß für die betreffende Versuchsreihe der Faktor m kleiner als eins sein muß. Demnach erteilte man m, der Reihe nach, verschiedene Zahlenwerte von 0.1 bis 0.9 und sah nach, für welche von ihnen die nach Gleichung (26) berechneten Geschwindigkeitskoeffizienten k_3 der Forderung der Konstanz am meisten entsprachen. Es war dies der Fall für m = 0.85.

Setzt man diesen Wert in die Gleichung

$$\varrho = \frac{a\beta^2}{m-\beta}$$

ein, so ergibt sich für die Dissoziationskonstante des Hydrosulfations bei 115° der Zahlenwert $\rho = 0.00312$.

Luther¹) berechnete diese Größe für Zimmertemperatur zu 0.013, und Drucker²) zu 0.017. Die erste dieser Zahlen ist etwa 4.26-, die zweite 5.45-mal größer als die unsrige. Man darf aber nicht vergessen, daß die angeführten Zahlenwerte für Zimmertemperatur und für sehr verdünnte Lösungen (etwa 0.1 molar) berechnet wurden. Nun hat aber Trevor³) nach der Inversionsmethode für wässerige Lösungen des NaHSO₁ bei 100° Wasserstoffionenkonzentrationen nachgewiesen, die etwa viermal kleiner als diejenigen waren, die sich aus dem Drucker'schen Werte der Dissoziationskonstante des Hydrosulfations ergeben würden.

In Anbetracht dessen darf man den von uus berechneten Zahlenwert dieser Dissoziationskonstante als ziemlich wahrscheinlich und jedenfalls seiner Größenordnung nach als der Wirklichkeit naheliegend betrachten.

Mit Hilfe dieses $\varrho = 0.00312$ wurden dann die *m*-Werte für die übrigen Versuchsreihen nach der Gleichung (28) ermittelt und zur Berechnung des Geschwindigkeitskoeffizienten k_s verwendet.

Die Ergebnisse dieser Berechnungen sind in folgenden Tabellen 27 bis 35 zusammengestellt worden.

- ¹) R. Luther, Zeitschr. f. Elektrochem., 13, 294 (1907).
- ²) K. Drucker, Zeitschr. f. Elektrochem., 17, 398 (1911).

3) J. Trevor, Zeitschr. f. physikal. Chem, 10, 342 (1892).

TABELLE 27.

t	x'	1-x'	x'+m	$k_{ m _3}$, 10^6
60	0.1220	0 8430	1.0070	153
90	0 2335	0.7665	1.0835	153
105	0.2719	0.7281	1.1219	153
120	0.3136	0.6864	1.1636	155
135	0.3535	0.6465	1.5035	157
150	0.3902	0.6098	1.5105	156
210	0.5226	0.4774	1.3726	157
240	0 5579	0 4421	1.4079	149
255	0 6067	0.3933	1.4567	156
270	0 6314	0.3686	1.4814	155
300	0.6764	0.3236	1.5264	154
330	0.7114	0.2886	1.5614	152
39 0	0.7852	0.2148	1.6352	152
450	0.8331	0.1669	1.6831	149
570	0.9128	0.0872	1.7628	150
69 0	0.9553	0.0447	1.8053	151
00	1.0	0.0		163

(Versuchsreihe Nr. 23).

1 5°.

TABELLE 28.

(Versuchsreihe Nr. 24). 1.0 Mol $CH_{g}KSO_{1} + 0.1$ Mol $H_{2}SO_{4}$; $\beta = 0.1$; m = 3.305; Temp. 115°.

t _{corr} .	x'	1 - x'	x'+m	$k_{\rm s} . 10^{6}$
10 [.] 5	0 0523	0.9477	3.357	154
25	0.1172	0.8858	3 422	155
40	0.1825	0.8175	3.487	148
55	0.2488	0.7512	3.554	152
85	0.3696	0.6304	3.675	155
130	0.2122	0.4823	3.823	156
160	0.5798	0.4205	3.882	149
220	0.7244	0.2756	4.029	157
280	0.8089	0.1911	4.114	155
340	0.8797	0 1203	4·185	161
400	0.9078	0.0955	4·213	152
460	0.9320	0.0680	4.237	148
550	0.9642	0.0328	4·269	158
oo	1.0	0.0	_	154

TABELLE 29.

(Versuchsreihe Nr. 25).

1.0 Mol $CH_3KSO_4 + 0.2$ Mol $H_2 < O_4$; $\beta = 0.2$; m = 13.02; Temp. 115°.

t _{corr} .	x'	1-x'	x'+m	$k_{ m _3}$, 10^6
9	0.0807	0.9193	13.10	144
24	0 2062	0.7938	13-23	147
39	0.3139	0.6861	13.33	147
54	0 4126	0.5874	13.43	149
69	0.4933	0 5067	13 51	148
84	0.5650	0.4350	13 [.] 58	149
114	0.6637	0.3363	13.68	143
144	0.7444	0 2556	13.76	141
174	0.8008	0 1992	13.82	137
234	0.8834	0.1166	13.90	135
294	0.9148	0.0852	13 93	(123)
354	0.9375	0.0658	13-96	(114)
414	0.9417	0 0583	13·96	(100)
00	10	0.0		144

TABELLE 30.

(Versuchsreihe Nr. 26).

t _{corr} .	x'	1-x'	x'+m	$k_{3} . 10^{6}$
10	0.1190	0.8810 .	20.40	155
24	0.5246	0.7454	20.53	150
39	0.3844	0.0156	20.66	152
54	0.4735	0.5265	20.75	144
84	0.6314	0.3686	20.91	144
99	0.7123	0.2877	20.99	152
129	0.8000	0.5000	21.08	150
159	0.8560	0.1440	21.14	146
219	0.9329	0.0671	21.21	147
279 .	0-9660	0.0340	21.25	144
80	1.0	0.0	-	148

1.0 Mol $GH_{s}KSO_{4} + 0.25$ Mol $H_{s}SO_{4}; \beta = 0.25; m = 20.28;$ Temp. 115%

TABELLE 31.

(Versuchsreihe Nr. 27).

1.0	Mol	CH_KSO_	+0.5	Mol	$H_2SO_4;$	$\beta = 0.5$:	m = 80) 61;	Temp.	1150
-----	-----	---------	------	-----	------------	-----------------	--------	-------	-------	------

t _{corr} .	x'	1-x'	m + x'	$k_{ m g}$, 10^{6}
10	0.2152	0.7848	80.82	150
25	0.4664	0.2336	81.08	155
30	0.5157	0.4843	81.13	149
40	0.6233	0.3767	81.23	151
55	0.7265	0.2735	81.34	145
70	0.8022	0.1973	81.41	143
85	0.8653	0.1347	81.47	145
115	0.9148	0.0852	81.52	132
145	0.9418	0.0582	81.55	(120)
175	0.9641	0.0359	81.57	(117)
235	0.9776	0.0224	81.59	(100)
80	1.0	0.0		146

TABELLE 32.

(Versuchsreihe Nr. 28).

1. 50	Mol	CH, KSO,	+0.05	Mol	H_SO,;	$\beta = 0.03334;$	m = 0.5675;	Temp. 115º
--------------	-----	----------	-------	-----	--------	--------------------	-------------	------------

t	x'	1-x'	m + x'	$k_{ m g}$, 10^6
30	0.0752	0.9248	0.6427	143
60	0.1851	0.8149	0.7526	173
90	0.2646	0.7354	0.8321	163
120	0.3703	0.6297	0.9378	171
150	0.4393	0.5607	1.0068	163
180	0.2099	0.4901	1:0774	160
240	0.6395	0.3605	1.2070	157
330	0.7816	0.2184	1.3491	154
360	0.8192	0.1808	1.3867	154
480	0.8986	0.1014	1.4661	143
600	0.9404	0.0296	1.5079	135
780	0.9655	0.0345	1.5330	(119)
80	1.0	0.0		156

TABELLE 33.

(Versuchsreihe Nr. 29).

t	x'	1-x'	m + x'	$k_{_3}$. 10^8
15	0.0227	0.9273	2.2764	150
30	0.1238	0.8462	2 3575	163
45	0.5538	0.7762	2.4275	162
60	0.2967	0 7033	2 5004	166
90	0.4179	0.5821	2.6216	165
120	0.2308	0.4692	2.7345	169
180	0.6896	0.3104	2.8933	167
240	0.8022	0.1975	3.0062	168
300	0.8689	0 [.] 1311	3·0726	164
360	0.9069	0.0931	3.1106	157
48 0	0.9529	0 0471	3 [.] 1566	148
ŝ	1.0	0.0		162

1.50 Mol CH, KSO, $+0.1$ Mol H, SO, ; $\beta = 0.06667$; $m = 2.20$	37; 1	Temp.	. 1150.
--	-------	-------	---------

TABELLE 34.

(Versuchsreihe Nr. 30).

1.50 Mol $CH_3KSO_4 + 0.25$ Mol H_2SO_4 ; $\beta = 0.1666$; m = 13.516; Temp. 115%.

t	x'	1-x'	m + x'	$k_{\rm g}$. 106
15	0.1663	0.8337	13.682	149
30	0.3197	0.6803	13.836	156
60	0.2433	0.4567	14.059	157
90	0.6980	0.3020	14.214	159
120	0.7920	0.5080	14·308	156
180	0.8919	0 1081	14.408	146
240	0.9337	0.0663	14.450	133
360	0.9592	0.0408	14.475	(104)
540	0.9802	0.0198	14.496	(85)
00	1.0	0.0	-	151

TABELLE 35.

(Versuchsreihe Nr. 31).

t	. x'	1-x'	m + x'	$k_{_{\rm B}}$. 10 ³
15	0.2717	0.7283	54·022	131
30	0.2583	0.4717	54.278	154
45	0.6726	0 3274	54.423	153
60	0.7536	0.2164	54.204	143
75	0.8302	0 1695	54.280	145
90	0.8750	0.1250	54.625	142
135	0.9354	0.0646	54 685	(124)
180	0.9920	0.0450	54.705	(105)
270	0.9905	0.0098	54 740	(105)
80	1.0	0.0		145

1.50 Mol $CH_8KSO_4 + 0.5$ Mol H_2SO_4 ; $\beta = 0.3334$; m = 53.75; Temp. 115°.

Betrachtet man die letzte Kolonne obiger Tabellen, die die berechneten Zahlenwerte für k_3 angibt, so sieht man, daß dieselben im allgemeinen eine befriedigende Konstanz aufweisen. Nur in den Versuchsreihen mit größeren Zusätzen freier Schwefelsäure nehmen

Nr.	a CH3KSO4	- b H2SO4	β	m	k ₃ . 104
23	1.0	0.02	0.02	0 85	153
24	1.0	0 1 0	0.10	3.302	154
25	1.0	0.50	0.50	13.03	144
26	1.0	0.25	0.22	20.28	148
27	1.0	0.20	0.20	80.61	146
28	1.5	0.02	0.0333	0.5675	156
29	1.2	0.10	0.0667	2.304	162
30	1.2	0.52	0.1666	13.516	151
31	1.2	0.20	0.3334	53.75	145
			_		151

ΤA	BEL	LE	36.
----	-----	----	-----

die Zahlenwerte dieser Konstanten gegen Ende der Reaktion merklich ab.

Werden noch die in den einzelnen Versuchsreihen erhaltenen Mittelwerte der Geschwindigkeitskoeffizienten zusammengestellt, so ergibt sich, daß sie miteinander übereinstimmen, ohne einen ausgesprochenen Gang aufzuweisen.

Der Gesamtmittelwert von k_s beträgt demnach 0.000151. In Anbetracht dessen darf behauptet werden, daß die Geschwindigkeitsgleichung (26) den zeitlichen Verlauf der Verseifung des methylschwefelsauren Kaliums in Gegenwart von freier Schwefelsäure ziemlich genau wiedergibt. Die molekular-kinetischen Annahmen, die bei ihrer Ableitung vorausgesetzt wurden, müssen also im allgemeinen richtig sein und unabhängig davon, ob der von uns approximativ ermittelte Wert der Dissoziationskonstante des Hydrosulfations ($\varrho = 0.00313$) der Wahrheit vollkommen entspricht oder durch einen anderen, ihm naheliegenden ersetzt wird.

10. Einfluß des HCl auf die Verseifungsgeschwindigkeit des CH_8KSO_4 .

Außer der Schwefelsäure wurde von starken Säuren noch der Einfluß von Salzsäure auf den zeitlichen Verlauf des studierten Prozesses untersucht. Es wurden in dieser Richtung zwei Versuchsreihen mit Zusätzen von 0.2 resp. 0.5 Molen HCl pro 1 Mol CH_8KSO_4 ausgeführt, deren Ergebnisse Fig. 9 illustriert.

Die beiden nach den unkorrigierten Daten aufgezeichneten Reaktionskurven dieser Figur weisen in der Nähe des Koordinatenanfangs das Zustandekommen von Wendepunkten auf, die in ihnen gar nicht vorkommen sollten. Diese sind dadurch künstlich zustandegekommen, daß man die Reaktionszeiten von dem Augenblicke an rechnete, in welchem die Reaktionsgefäße in den Thermostat eingesetzt wurden. Wird nun aber die zum Erwärmen der Versuchslösungen auf die Thermostattemperatur erforderliche Zeit von netto 5 bis 6 Minuten in Abrechnung gebracht und dementsprechend der Koordinatenanfangspunkt etwas nach rechts verschoben, so verschwinden zugleich auch jene scheinbaren Wendepunkte aus den betreffenden Reaktionskurven (siehe die gestrichelten Kurvenstücke).

Was die mathematische Behandlung dieser beiden Fälle anbetrifft, so gelten für dieselben andere Geschwindigkeitsgleichungen

als diejenigen, die für den Reaktionsverlauf in Gegenwart von Schwefelsäure abgeleitet wurden. Denn setzt man dem Estersalz eine bestimmte Menge b freier Salzsäure hinzu, so wird infolge der fast vollständigen Dissoziation dieser Säure die Konzentration der

in der Lösung vorhandenen Wasserstoffionen um b vermehrt. Für das Dissoziationsgleichgewicht des Hydrosulfations gilt dann:

(29)

$$HSO'_{4} \rightleftharpoons H' + SO'_{4}$$

$$(x-y) \quad (y+b) \quad y$$

$$\frac{(y+b) \quad y}{x-y} = \varrho.$$

Hieraus ergibt sich die Konzentration des $\mathrm{SO}_4^{\prime\prime}$ -Ions näherungsweise zu

und diejenige des Wasserstoffions zu

$$(31) C_{\mathrm{H}} = y + b = b + \varrho \, \frac{x}{b}.$$

Dementsprechend lautet die Geschwindigkeitsgleichung:

(32)
$$\frac{dx}{dt} = k \left(b + \varrho \, \frac{x}{b} \right) (a - x),$$

oder

$$\frac{dx}{dt} = \frac{k}{b} (b^2 + \varrho x) (a - x),$$

und falls x = ax' und $b^2 = a \rho n$ gesetzt wird,

(33)
$$\frac{dx'}{dt} = k \cdot \frac{a\varrho}{b} (n+x') (1-x').$$

Für den Fall, daß für t = 0 auch x' = 0 wird, lautet das Integral dieser letzten Gleichungen:

(34)
$$k_3 = k \cdot \varrho = \frac{2 \cdot 302 \cdot b}{a (1+n) t} \log \frac{n+x'}{n (1-x')}.$$

Die letzten Kolonnen der beiden folgenden Tabellen geben die nach dieser Gleichung berechneten Zahlenwerte des Geschwindigkeitskoeffizienten k_3 an.

Wie man sieht, sind die berechneten k_3 -Werte in den beiden Versuchsreihen genügend konstant, obwohl gegen Ende der letzten Reaktion ein regelmäßiges Fallen derselben nicht zu verkennen ist. Der Mittelwert beider Konstantenwerte beträgt 0.000154, stimmt also mit demjenigen überein, der in den Versuchsreihen mit Schwefelsäure ($k_3 = 0.000151$) erhalten wurde.

Für die Geschwindigkeitskonstante k_2 der Verseifung der Lösungen des Estersalzes für sich allein, ebenso wie in Gegenwart von CH₈OH, KNO₈, KCl und KHSO₄ wurde aus den Versuchsreihen 1 bis 22 der Gesamtmittelwert 0.00380 erhalten, dagegen

TABELLE 37.

(Versuchsreihe Nr. 32).

1.0 Mol CH ₃ KSO ₄ + 0.2 Mol HCl; $n = 12.82$; Temp.	1150.
---	-------

t _{corr} .	x'	1 - x'	n + x'	$k_{ m g}$, $10^{ m s}$
9	0.0897	0.9103	12.91	163
25	0.2242	0.7758	13.04	157
40	0.3498	0.6205	13.12	166
55	0.4320	0.2620	13.22	159
7Ú	0.5157	0.4843	13.34	158
100	0.6637	0.3363	13.48	165
130	0.7444	0.2556	13·56	158
160	0.8251	0 1749	13.64	163
220	0.9327	0.0623	13.75	160
360	0.9796	0.0204	13.80	159
œ	1.0	0.0		161

TABELLE 38.

(Versuchsreihe Nr. 33).

1.0 Mol $CH_{8}KSO_{4} + 0.5$ Mol HCI; n = 80.11: Temp. 115°.

t _{corr} .	x'	1-x'	n + x'	$k_{_{\rm B}}$. 10 ⁶
5	0.1031	0.8969	80.21	136
15	0.3085	U·6915	80.42	153
25	0.4664	0.2336	80 [.] ō8	156
35	0.9486	0.4214	80.69	154
45	0.6682	0.3318	80.78	152
55	0.7336	0.2664	80.84	149
75	0.8180	0.1820	80.93	141
95	0.8762	0.1238	80.99	136
135	0.9166	0 0834	81.03	(114)
175	0.9498	0.0202	81.06	(105)
00	10	1.0		147

für die Geschwindigkeitskonstante k_a ergab sich aus den Versuchen 23 bis 33, in denen die Verseifung des Estersalzes in Gegenwart von starken Säuren verlief, der bedeutend kleinere Mittelwert von 0.000152.

Die Geschwindigkeitskoeffizienten k2 wurden nach den Geschwindigkeitsgleichungen (11) resp. (18) berechnet, und gemäß unserer Definition sollten sie das Produkt aus der eigentlichen Geschwindigkeitskonstante k und der Quadratwurzel aus der Dissoziationskonstante o des Hydrosulfations darstellen, also

$$k_2 = k \cdot | q$$

sein. Dagegen in der zweiten Serie von Versuchen sollten die laut Gleichung (26) und (34) berechneten Konstanten k_3 das Produkt aus der eigentlichen Geschwindigkeitskonstante k und der Dissoziationskonstante e des Hydrosulfations bilden, also:

$$k_3 = k\varrho.$$

Aus den erhaltenen Mittelwerten für k_2 und k_3 müßte also für die eigentliche Geschwindigkeitskonstante k derselbe Zahlenwert folgen, nämlich:

$$k = \frac{k_2}{\sqrt{\rho}} = \frac{0.00380}{\sqrt{0.00312}} = 0.0680$$
$$k = \frac{k_3}{\rho} = \frac{0.000152}{0.00312} = 0.0487.$$

Wie man sicht, ist dies nicht ganz genau• der Fall, denn die beiden erhaltenen Zahlen unterscheiden sich ziemlich stark voneinander.

Der Grund hiefür liegt wahrscheinlich darin, daß der von uns angenommene Zahlenwert der Dissoziationskonstante des Hydrosulfations ($\rho = 0.00312$) nicht ganz richtig war.

Wir haben deshalb nachträglich $\rho = 0.010$ gesetzt und mit Hilfe dieses Zahlenwertes die Ergebnisse der Versuchsreihen 23 bis 31 von neuem durchgerechnet. Die auf solche Weise erhaltenen neuen Zahlenwerte der Geschwindigkeitskoeffizienten ks zeigten in jeder einzelnen Versuchsreihe einen ganz ausgesprochenen Gang, sie

nahmen nämlich mit dem Fortschreiten der studierten Reaktion meistenteils stark ab. Trotzdem stimmten ihre Mittelwerte ziemlich gut miteinander, wie aus folgender Zusammenstellung zu erschen ist:

Versuchsreihe:	23	31	25	26	27	28	29	30	31
$k_{ m 3}$, $10^{ m 6}$	312	370	384	399	383	304	400	445	414
					379				

Ihr Gesamtmittelwert betrug $k_3 = 0.000379$. Nimmt man diesen Mittelwert an und setzt $\varrho = 0.01$, so folgt aus der ersten Serie von Versuchen (1 - 22)

$$k = \frac{k_2}{|\varrho|} = \frac{0.00381}{|\varrho|0.01} = 0.0381$$

und aus der zweiten

$$k = \frac{k_3}{\varrho} = \frac{0.000379}{0.01} = 0.0379,$$

also man bekommt vollkommen identische Zahlenwerte.

Sowohl das erste Ergebuis wie auch dieses zweite sprechen ganz unzweideutig für die Richtigkeit der theoretischen Annahmen, die man bei der Aufstellung der Geschwindigkeitsgleichungen (11), (18), (26) und (34) gemacht hat. Da aber bei jenen Ableitungen noch andere Voraussetzungen angenommen wurden, die nur näherungsweise zutrafen, so ist es ganz natürlich, daß die Ergebnisse der Rechnungen nicht genau den Forderungen der Theorie entsprachen und die benutzten Geschwindigkeitsgleichungen den zeitlichen Verlauf des betrachteten Vorganges nur angenähert wiedergaben.

Einfluß schwacher Säuren auf die Verseifungsgeschwindigkeit des CH₃KSO₄.

Übereinstimmend mit den bisherigen Ergebnissen, daß die Verseifungsgeschwindigkeit des methylschwefelsauren Kaliums durch Wasserstoffionen katalytisch beschleunigt wird, erwies sich auch der Einfluß von Zusätzen schwacher organischer Säuren auf das Tempo dieser Reaktion. Untenstehende Fig. 10 veranschaulicht in dieser Hinsicht den Einfluß von Zusätzen der Essigsäure, der im allgemeinen sehr gering ist. Eine meßbare Beschleunigung wird nur ganz am Anfange der Reaktion beobachtet, wogegen auf den weiteren Verlauf dieses Vorganges die Essigsäure nicht nur keinen beschleunigenden, sondern im Gegenteil sogar einen schwach verzögernden Einfluß auszuüben scheint. Dieses ganz merkwürdige Verhalten der

Essigsäure kann nur durch irgend eine Wechselwirkung zwischen ihr und dem Kaliumhydrosulfat erklärt werden.

Noch deutlicher kommen diese Verhältnisse zum Vorschein bei der rechnerischen Behandlung der betreffenden Reaktionsverläufe, wie aus den beiden Tabellen 39 und 40 zu ersehen ist.

Die Ergebnisse obiger Versuche mit der Essigsäure wurden nach der ursprünglichen Geschwindigkeitsgleichung (11) berechnet, und es folgt aus diesen Berechnungen, daß die genannte Gleichung den mittleren Verlauf der Reaktionskurven (von x' = 0.2 bis x' = 0.9) genau wiedergibt. Der in der ersten Versuchsreihe (Nr. 34) erhaltene Mittelwert des Geschwindigkeitskoeffizienten (0.00382) erwies sich identisch mit demjenigen für Lösungen des reinen Estersalzes

TABELLE 39.

(Versuchsreihe Nr. 34).

1.0 Mol $CH_{g}KSO_{4} + 0.1$ Mol $CH_{3}COOH$; Temp. 115°.

t	x'	$1 + \sqrt{x'}$	$1 - \sqrt{x'}$	k_2 , 10 ⁵
60	0.0167	1.1292	0.8708	(433)
180	0.1229	1.3505	0.6495	(407)
300	0.2738	1.5252	0.4768	387
360	0.3687	1.6071	0.3929	391
420	0.4256	1.6726	0.3274	388
480	0.2308	1.7286	0.2714	386
600	0.6648	1.8153	0.1847	381
720	0.7709	1.8780	0.1220	380
840	0.8492	1.9215	0.0285	- 381
960	0.8995	1.9484	0.0216	378
1140	0.9387	1.9687	0.0313	364
1380	0.9610	1.9802	0.0198	(334)
8	1.0		<u>_</u>	382

TABELLE 40.

(Versuchsreihe Nr. 35).

1.0 Mol CH_aKSO₃ + 0.5 Mol CH_aCOOH; Temp. 115°.

t	œ'	1 + ¥x	$1 - \sqrt{x'}$	$k_{2} . 10^{5}$	
60	0.0223	1.1493	0:8507	501	a sig
180	0.1341	1.3662	0.6338	427	n natiki
300	0.8073	1.5543	0.4457	1416	
360	0.3967	1.6298	0.3702	412	Nonodua.
420	0.4749	1.6892	0.3108	403	2 makes d
480	0.5588	1.7474	0.2526	403	el a
600	0.6873	1.8290	0.1210	-595	CILLS FELLAD
720	0.7743	1.8798	0.1202	382	N: 2012
840	0.8604	1.9274	0.0726	390	en deite
960	0.8939	1.9454	0.0546	872	(15.767
1140	0.9274	1.9629	0.0371	848	Levi Marshills
1380	0.9475	1.9731	0.0269	311	1000
80	1.0	and the state	elestrations.	397	45 1151

J. Zawidzki u. J. Zaykowski.

129

õ

(0.00381). In Gegenwart eines größeren Zusatzes von Essigsäure (0.50 Mole) erhielt man dagegen auch einen größeren Wert der Konstante (0.00397).

Analog der Essigsaure wirkte auch Ameisensaure nur schwach beschleunigend auf den zeitlichen Verlauf des studierten Vorgan-

ges, wie aus der nebenstehenden Fig. 11 und den folgenden Tabellen 41 und 42 (S. 131 u. 132) zu entnehmen ist.

Entsprechend dem größeren Dissoziationsgrade der Ameisensäure ist auch die von ihr ausgeübte beschleunigende Wirkung bedeutend stärker als diejenige der Essigsäure. Bei geringer Konzentration dieser Säure tritt sie nur am Anfange der Reaktion zum Vorschein. Der mittlere Teil der Reaktionskurve unterscheidet sich sehr wenig von demjenigen des reinen Estersalzes, und nurgegen Ende der Reaktion tritt, ebenso wie bei Essigsäure, eine deutliche Verzögerung zum Vorschein. Durch einen größeren Zusatz der Ameisensäure (0.5 Mol) wird die Verseifungsgeschwindigkeit des Estersalzes auch stärker beschleunigt, aber die berechneten

(Versuchsreihe Nr. 36).

1.0 Mol C	CH,KSO, -	- 0.5	Mol	HCOOH;	Temp.	115°.
-----------	-----------	-------	-----	--------	-------	-------

t	x'	$1 + \sqrt{x'}$	$1 - \sqrt{x'}$	k_{2} . 10 ⁵
60	0.0224	1.1496	0.8504	501
90	0.0493	1.2220	0.7780	501
120	0.0762	1.2761	0.7239	472
180	0.1435	1.3787	0.6213	443
240	0.2202	1-4692	0.5308	424
360	0.3812	1.6173	0.3827	401
4 20	0.4663	1.6828	0.3172	397
480	0.5516	1.7427	0.2573	398
540	0.6233	1.7894	0.2106	396
600	0.6771	1.8228	0.1772	388
660	0.7309	1.8549	0.1451	385
780	0.8206	1.9057	0.0943	385
960	0.8869	1.9417	0.0583	365
1080	0.9238	1.9612	0.0388	363
1200	0.9552	1.9772	0.0228	372
1380	0.9640	1.9817	0.0183	340
1560	0.9686	1.9842	0.0128	310
ຈ໌	1.0		-	385

Geschwindigkeitskoeffizienten nehmen mit dem Fortschreiten dieses Prozesses stetig ab.

12. Einfluß des K_2SO_4 auf die Verseifungsgeschwindigkeit des CH_3KSO_4 .

In Ergänzung der Serie von Versuchen über den Einfluß von KHSO, und H_2SO_4 auf die Verseifungsgeschwindigkeit des Estersalzes wurden noch einige Messungsreihen mit Zusätzen des neutralen Kaliumsulfats ausgeführt. Es war vorauszusehen, daß dieses Salz verzögernd auf die Geschwindigkeit des betrachteten Vorgan-

131

5*

TABELLE 42.

(Versuchsreihe Nr. 37).

1.() Me	ol (CH ³ 1	KSO4	+0.90) Mol	нсоон,	Temp.	115º.
-----	------	------	-------------------	------	-------	-------	--------	-------	-------

t	x'	$1 + \sqrt{x^2}$	$1 - \sqrt{x'}$	$k_{2}.10^{5}$
60	0.0358	1.1892	0.8108	639
90	0.0675	1.2592	0.7408	587
120	0.0986	1.3139	0.6861	541
180	0.1749	1.4181	0.5819	495
240	0.2644	1.51 11	0.4829	473
360	0.4170	1.6457	0.3243	427
420	0.5202	1.7213	0.2787	433
480	0.5964	1.7721	0.2279	427
540	0.6592	1 8119	0.1881	419
600	0.7191	1.8480	0.1520	416
660	0.7489	1.8654	0.1346	398
780	0.8206	1.9057	0.0943	385
960	0.8744	1.9350	0.0620	353
1080	0.9193	1.9588	0.0412	358
1200	0.932	1.9681	0.0319	344
1380	0.9451	1.9721	0.0279	308
1560	0.9507	1.9750	0.0250	280
8	1.0	-		-

ges wirken wird, da durch seine Gegenwart die Dissoziation des Hydrosulfations stark zurückgedrängt wird.

Dies ist auch tätsachlich der Fall, wie uns ein Blick auf die nebenstehenden Figuren 12 und 13 überzeugt. Kaliumsulfat übt einen stark verzögernden Einfluß aus, der mit seiner Konzentration wächst, aber nicht direkt proportional derselben.

Um die Art und Größe dieses verzögernden Einflusses wenigstens angenähert festzustellen, wurden für die angeführten 6 Versuchsreihen auf graphischem Wege die Zeiten für den Umwandlungsbetrag x' = 0.4 ermittelt und hieraus die relativen Geschwin-

Fig. 13.

digkeiten berechnet. Die erhaltenen Zahlenwerte sind in folgender Tabelle 43 schematisch zusammengestellt worden.

Nr.	CH _a KSO ₄ a	K ₂ SO ₄ b	$ \begin{array}{c} \text{für} \\ x' = 0.4 \\ t \end{array} $	$v = \frac{1}{t}$	$\Delta = v_0 - v$	$\frac{\Delta}{3}$
4	1.0	0.0	412	0.002428	_	
38	1.0	0.02	836	1196	0.001232	0.00334
39	1.0	0.10	1140	0877	1551	334
40	1.0	0.25	1780	0562	1866	- 296
_	-	-	-	_	ы _{ша} с	0.00321
5	1.5	0.0	342	0.002924		-
41	1.5	0.02	640	1563	0.001361	0.00369
42	1.5	0.10	852	1174	1750	377
43	1.2	0.25	1356	0737	2187	347
_	_	-			-	0.00364

TABELLE 43.

Aus dieser Zusammenstellung folgt nun, daß die durch Kaliumsulfat ausgeübte Verzögerung ($\Delta = v_0 - v$) der kubischen Wurzel aus dessen Konzentration angenähert proportional ist, und zwar beträgt sie: $\Delta = 0.00321 \sqrt[3]{b}$, resp. $= 0.00364 \sqrt[3]{b}$.

Da diese Verzögerung unzweifelhaft durch die von Kaliumsulfat abgespaltenen SO₄⁻-Ionen bedingt wurde, so deutete obiges Ergebnis darauf hin, daß die Konzentration jener Ionen der kubischen Wurzel aus der Gesamtkonzentration des Kaliumsulfats proportional wäre, also

$$C_{\mathrm{SO}_4''} = r_1 \cdot \sqrt[3]{C_{\mathrm{K}_2\mathrm{SO}_4}}.$$

Das heißt aber nichts anderes, als daß in den wässerigen Lösungen des K₂SO₄ das Dissoziationsgleichgewicht

$$K_2SO_4 \rightleftharpoons K' + K' + SO''_4$$
$$(b-z) \qquad z \qquad z \qquad z$$
$$\frac{z^3}{b-z} = r$$

besteht, woraus näherungsweise folgt

$$z = r_1 \bigvee^3 \overline{b}.$$

Wir benutzten dieses Ergebnis dazu, um für die Verseifung des $CH_{s}KSO_{4}$ in Gegenwart von $K_{2}SO_{4}$ eine rationelle Geschwindigkeitsgleichung aufzustellen. Denn ist einmal die Konzentration der $SO_{4}^{\prime\prime}$ -Ionen in Lösungen von $K_{2}SO_{4}$ der kubischen Wurzel aus der Konzentration dieses Salzes proportional, so folgt für das Dissoziationsgleichgewicht des Hydrosulfations die Beziehung

$$HSO'_{4} \rightleftharpoons H' + SO''_{4}$$
$$x - y \quad y \quad y + r_{1} \sqrt[y]{b}$$
$$\frac{y \quad (y + r_{1} \sqrt[y]{b})}{x - y} = \varrho,$$

und hieraus näherungsweise

$$C_{\mathrm{H}} = y = \varrho \, \frac{x}{r_1 / b} = \varrho \, \frac{x}{\overline{M}}.$$

Dem entsprechend müßte die Geschwindigkeitsgleichung lauten

(35)
$$\frac{dx}{dt} = k \cdot \varrho \, \frac{x}{M} (a - x),$$

oder

(36)
$$\frac{dx'}{dt} = k\varrho \frac{a}{M} \cdot x' (1-x'),$$

und ihr Integral

(37)
$$k\varrho = \frac{M}{at} \ln \frac{x'}{1-x'}.$$

Die Gültigkeit dieser Geschwindigkeitsgleichung wurde auf graphischem Wege geprüft, indem man in einem rechtwinkeligen Koordinatensystem die beobachteten Zeiten als Abszissen und die aus den korrespondierenden x'-Werten berechneten Logarithmen des Verhältnisses $\frac{x'}{1-x'}$ als Ordinaten auftrug. Würde die Gleichung (37) den zeitlichen Verlauf der studierten Reaktion ausdrücken, dann müßte die resultierende Kurve eine Gerade darstellen, die die Abszissenachse unter einem bestimmten Winkel α in dem Zeitpunkte $t = t_{ija}$ schneidet, in welchem gerade die Hälfte des Estersalzes (x' = 0.5) verseift wurde. Dies war aber nicht der Fall, und man bekam statt einer Geraden eine Kurve, deren zweite Hälfte von x' = 0.4 beginnend, einigermaßen geradlinig verlief.

Wir versuchten, noch andere Annahmen über die Art der Dissoziation des K_2SO_4 in wässerigen Lösungen zu machen, um mit deren Hilfe zu einfachen Formen der Geschwindigkeitsgleichung zu gelangen. Man bekam aber im allgemeinen sehr komplizierte Differenzialgleichungen, die sich nur unter Voraussetzung gewisser Vereinfachungen 'integrieren ließen. Diese vereinfachten Integral ausdrücke entsprachen aber keinesfalls der Erfahrung.

Die besten Resultate wurden noch mit der ursprünglichen Geschwindigkeitsgleichung

(38)
$$\frac{dx'}{dt} = k_2 \sqrt[3]{a} \sqrt[3]{x'} (1 - x')$$

erzielt, wie aus folgenden Zahlentabellen 44-49 zu ersehen ist.

Auch die Geschwindigkeitsgleichung (38) gibt die Ergebnisse der Messungen nur in ganz groben Zügen wieder. Insbesondere versagt sie ihre guten Dienste für den Reaktionsanfang, was jedoch durch die Versuchsbedingungen selbst einigermaßen zu erklären ist. Denn in Gegenwart von K₂SO₄ ist das Reaktionstempo der Verseifung des Estersalzes so langsam, daß auch die geringsten Spuren von KHSO,, die dem Estersalz beigemengt sind, einen großen Einfluß auf die Anfangsgeschwindigkeit dieses Prozesses ausüben können. Die Richtigkeit dieser Deutung der abnormen Werte der Geschwindigkeitskoeffizienten am Anfange der Reaktion beweisen am besten die Zahlenwerte der letzten Kolonne der Tabellen 46 und 49. Dieselben wurden nämlich auf solche Weise erhalten, daß man zunächst aus dem Verlaufe der betreffenden Reaktionskurven den vermutlichen Anfangsgehalt des Estersalzes an KHSO, auf dem Wege der graphischen Extrapolation näherungsweise ermittelte und ihn gleich $x'_0 = 0.0050$ resp. $x'_0 = 0.0020$ feststellte.

t	x'	$1 + \sqrt{x'}$	$1 - \sqrt[]{x'}$	k_{2} . 105
60	0.0021	1.0714	0.9286	239
120	0.0160	1.1265	0.8735	212
180	0.0287	1.1693	0.8307	190
300	0.0613	1.3476	0.7524	169
540	0 [.] 1781	1.4220	0.5780	167
660	0.2611	1.5110	0.4890	171
720	0.3122	1.5588	0.4412	175
840	0.3996	1.6322	0 3678	177
960	0.5001	1.7073	0.2927	1.84
1080	0.5745	1.7578	0.2422	183
1200	0.6582	1.8112	0.1882	188
1350	0.7348	1.8572	0.1428	190
1500	0.8118	1.9010	0.0990	197
1620	0.8593	1.9270	0.0730	202
1740	0.8874	1.9419	0.0581	202
1920	0.9257	1.9620	0.0380	205
2100	0.9525	1.9759	0.0241	210
2340	0.9738	1.9868	0.0132	214
80	1.0		<u> </u>	193

TABELLE 44.(Versuchsreihe Nr. 38).1.0 Mol $CH_s KSO_4 + 0.05$ Mol $K_2 SO_4$; Temp. 115°.

TABELLE 45. (Versuchsreihe Nr. 39). 10 Mol CH₃KSO₄ + 0.1 Mól K₂SO₄; Temp. 115°.

t	x'	$1 + \sqrt{x'}$	$1 - \sqrt[]{x'}$	$k_{2} \cdot 10^{6}$
120	0.0160	1.1265	0.8735	212
300	0.0447	1.2113	0.7887	143
480	0.0868	1.2945	0.7055	126
600	0.1257	1.3545	0.6455	124
780	0.1947	1.4413	0.5587	123
960	0.2815	1.2306	0.4694	123
1200	0.4265	1.6530	0.3470	130
1440	0.5662	1.7525	0.2475	136
1620	0.6742	1.8212	0.1788	143
1920	0.7948	1.8915	0.1085	149
2700	0.9480	1.9736	0.0264	. 160
3120	0.9736	1.9868	0.0132	161
00	1.0		-	144

TABELLE 46.

(Versuchsreihe Nr. 40).

ź	x'	1 + V x	1 — \ / x '	$k_{2}.10^{5}$	$tx'_0 = 0.005$ $k_1' \cdot 10^6$
60	0.0115	1.1073	0.8927	(358)	(122)
120	0.0179	1.1338	0.8662	(224)	-106
180	0.0255	1.1597	0.8403	(179)	100
240	0.0319	1.1786	0.8214	(151)	91
300	0.0402	1.2004	0.7996	(135)	88
390	0.0459	1.2142	0.7858	112	75
5 10	0.0734	1.2709	0.7291	109	81
600	0 [.] 0913	1.3021	0.6929	105	81
750	0 [.] 1181	1.3437	0.6563	95 [.] 5	76
840	0.1366	1.3696	0.6304	92 [.] 5	75
960	0.1589	1.3987	0.6013	87.9	73
1140	0.2100	1.4582	0.5418	86.9	74
1320	0.2611	1.5109	0.4891	85.4	75
1440	0.2994	1.5471	0.4529	85.3	75
1800	0.4060	1.6371	0.3629	83.7	76
2040	0 [.] 47 9 1	1.6921	0.3079	83 [.] 6	77
2 38 0	0.5662	1.7525	0.2475	82.2	76
2460	0 [.] 6263	1.7914	0.2086	87.5	82
2760	0·7099	1.8426	0.1574	89 [.] 1	84
3540	0.8708	1.9330	0.0670	95.0	91
3960	0 [.] 9161	1.9572	0.0428	96·5	93
8	1.0		_	92	80.2

1.0 Mol $CH_{0}KSO_{4} + 0.25$ Mol $K_{2}SO_{4}$; Temp. 115°.

TADELLE 47.	ABELLE 47	7.
-------------	-----------	----

t	x'	$1 + \sqrt{x'}$	$1 - \sqrt{x'}$	$k_{2}.10^{5}$
120	0.0158	1.1257	0.8743	172
180	0.0334	1.1827	0.8173	168
360	0 1229	1.3505	0.6495	166
420	0.1667	1.4083	0 [.] 5917	169
5 40	0.3001	1.5478	0.4522	186
600	0.3565	1 5970	0.4030	187
720	0.4865	1.6974	0.3026	191
900	0.6813	1.8252	0.1748	213
1080	0.8171	1.9038	0.0962	226
1200	0.8798	1.9380	0.0650	234
1500	0.9488	1.9740	0.0260	236
1620	0.9634	1.9815	0.0185	236
00	1.0		-	200

(Versuchsreibe Nr. 41). 1.50 Mol CH_KSO, + 0.05 Mol K.SO.; Temp. 115%.

TABELLE	48.
---------	-----

(Versuchsreihe Nr. 42).

1.50 Mol CH₃KSO₄ + 0.1 Mol K₂SO₄; Temp. 115°.

t	x'	$1 + \sqrt[]{x'}$	$1 - \sqrt{x'}$	$k_{ m 2}$, $10^{ m 5}$
240	0.0397	1.1993	0.8002	137
360	0.0290	1.2810	0.7190	131
480	0.1254	1.3541	0.6459	126
600	0.1981	1.4450	0.2920	130
720	0.2876	1.5363	0.4637	136
840	0.3812	1.6173	0.3827	147
960	0.4823	1.6944	0.3056	146
1080	0 5997	1.7743	0.2257	156
1260	0.7331	1.8563	0.1437	166
440	0.8259	1.9088	0.0915	173
8	1.0	-	-	145

$1.30 \text{ Mol CH}_3 \text{KSO}_4 + 0.25 \text{ Mol K}_2 \text{SO}_4; \text{ Temp. 115}^\circ.$					
t	x'	$1 + \sqrt{x'}$	1 - v x'	$k_{2}.10^{6}$	$ \begin{array}{c} x'_{0} = 0.002 \\ k_{2}' \cdot 10^{5} \end{array} $
60	0.0084	1.0916	0.9084	(250)	(125)
120	0.0125	1.1118	0.8882	(153)	90
180	0.0508	$1^{\cdot}1445$	0.8555	(132)	90
240	0.0292	1.1709	0.8291	117	86
360	0.0459	1.2142	0.7858	98·7	78
480	0.0727	1.2696	0.7304	94-1	78
600	0.1000	1.3162	0.6838	89.1	77
780	0.1200	1.3873	0.6127	85.6	76
960	0.2131	1.4616	0.5384	85	77
1080	0.2646	1.5144	0.4856	85 9	79
1200	0.3084	1.5554	0.4446	85.2	79
1320	0.3736	1.6112	0.3888	87.9	82
1440	0.4200	1.6480	0.3520	87 [.] 5	82
1560	0.4806	1.6931	0.3069	89.4	85
00	1.0		-	91	81

(Versuchsreihe Nr. 43). 1.50 Mol $CH_4KSO_4 + 0.25$ Mol K_2SO_4 ; Temp. 115°.

TABELLE 49.

Unter Berücksichtigung dieser vermutlichen Verunreinigungen des Reaktionssubstrats nahm dann die Gleichung (38) die Gestalt

(39)
$$k_2 = \frac{2 \cdot 302}{t \sqrt[3]{a}} \log \left(\frac{1 + \sqrt[3]{x'}}{1 - \sqrt[3]{x'}} \cdot \frac{1 - \sqrt[3]{x_0}}{1 + \sqrt[3]{x_0}} \right)$$

an, in der sie zu einer Neuberechnung der Messungsergebnisse der Versuchsreihen 40 und 43 verwendet wurde.

Man sieht, daß durch Einführung dieser Korrektion das starke Ansteigen der Geschwindigkeitskoeffizienten gegen den Anfang der Reaktion fast vollständig zum Verschwinden gebracht wurde. Trotzdem läßt sich nicht behaupten, daß auch Gleichung (39) die Messungsergebnisse exakt wiedergibt.

Bleibt man also vorläufig bei der ursprünglichen Geschwindigkeitsgleichung (38) und stellt die erhaltenen Mittelwerte der Geschwindigkeitskoeffizienten zusammen, um einen Aufschluß über die Art des funktionellen Zusammenhanges zwischen den beobachteten Reaktionsverzögerungen und der Konzentration des K₂SO₄ zu gewinnen, so ergibt sich folgende Tabelle:

Nr.	CH ₃ KSO ₄ a	K ₂ SO ₄ · b	k_{2}	$k_{2}^{0} - k_{2} = \Delta^{0}$	$\frac{\Delta}{\sqrt[3]{b}}$
4	1.0	<u>u_</u>	0.00380	_	
38	1.0	0.02	193	0.00187	0.00208
39	1.0	0.10	144	236	ō 09
40	1.0	0.22	092	288	457
õ	1.2		380	-	
41	1.2	0.02	200	180	489
42	1.2	0.10	145	235	506
43	1·ō	0.52	091	289	4 59
	-		-	- 1	0.00488

TABELLE 50.

Aus derselben folgt nun, daß man auch bei dieser Art der Berechnung der Versuchsergebnisse zu dem früheren Resultat gelangt, daß nämlich die verzögernde Wirkung von K_2SO_4 auf die Verseifungsgeschwindigkeit des CH_3KSO_4 der kubischen Wurzel aus dessen Konzentration proportional sei.

Einfluß basischer Verbindungen auf die Verseifungsgeschwindigkeit des CH₃KSO₄.

In Fortsetzung der Versuche über den Einfluß schwacher Säuren auf die Verseifungsgeschwindigkeit des CH₂KSO₄ wurden gelegentlich auch deren Alkalisalze auf ihre Wirksamkeit hin geprüft. Man beobachtete dabei gauz eigentümliche Verhältnisse, die aus umstehender Fig. 14 zu ersehen sind, die den Einfluß von ameisensaurem Kalium veranschaulicht.

Wie man sicht, verläuft die Reaktion im allgemeinen bedeutend langsamer als in Lösungen des reinen Estersalzes. Sie beginnt zuerst mit einer fast konstanten Geschwindigkeit, die allmählich abnimmt, dann aber wieder zunimmt und ebenso wie in Lösungen des reinen Estersalzes durch ein Maximum geht. Da es aussichtslos erschien, eine Geschwindigkeitsgleichung aufzustellen, die diesen komplizierten Reaktionsverlauf genau wiedergeben würde, so haben wir uns darauf beschränkt, die Ergebnisse der Messungen nach

der früheren Geschwindigkeitsgleichung (11) zu berechnen und das Resultat dieser Rechnungen in den folgenden Tabellen 51 und 52 schematisch zusammenzustellen.

Aus den Zahlendaten der letzten Kolonne dieser Tabellen folgt nun, daß die berechneten Geschwindigkeitskoeffizienten mit dem Fortschreiten der Reaktion zunächst sehr schnell abnehmen, dann aber, beginnend von den Umwandlungsbeträgen x' = 0.2 resp. x' = 0.43, ziemlich konstant bleiben.

Die einzige Erklärung für dieses eigentümliche Verhalten des HCOOK kann nur in der teilweisen Hydrolyse dieses Salzes gesucht werden. Da die Ameisensäure eine mittelstarke Säure darstellt, so werden ihre Salze, besonders bei höheren Temperaturen (115°), durch das Wasser nach dem Schema

 $HCOOK + H_2O \rightleftharpoons HCOOH + KOH$
TABELLE 51.

(Versuchsreihe Nr. 44).

1.0 Mol $CH_8KSO_4 + 0.2$ Mol HCOOK; Temp. 115°.

t	<i>x</i> ′	$1 + \sqrt{x'}$	$1 - \sqrt{x'}$	k ₂ . 10 ⁵
120	0.0167	1.1292	0.8708	2 16
240	0.0391	1.1977	0.8023	167
360	0.0620	1.2588	0.7412	147
480	0.0893	1.2988	0.7012	128
600	0.1060	1.3256	0.6744	113
720	0.1285	1.3584	0.6416	10 4
900	0.1208	1:3883	0.6117	91
1020	0.1209	1.4133	0.5867	86
1140	0.1843	1.4292	0.5708	80
1260	0.2011	1.4484	0.5516	77
1440	0.5232	1 4728	0.5272	71
1680	0.2628	1.5126	0.4874	67
1920	0.3072	1.5543	0.4457	65
2100	0.3464	1.5886	0 [.] 4114	64
2340	0.3966	1.6298	0.3202	63
2640	0.4693	1.6850	0.3120	63
3000	0.2232	1.7439	0.2561	64
318 0	0.2872	1.7731	0.5569	65
3420	0.6592	1.8119	0.1881	66
3600	0.7095	1.8422	0.1928	68
8	1.0	-	_	66

 $\sim c_{\rm c} = v$

TABELLE 52.

(Versuchsreihe Nr. 45),

1.0 Mol $CH_3KSO_4 + 0.5$ Mol HCOOK; Temp. 115°.

t	x'	$1 + \sqrt{x'}$	$1 - \sqrt{x'}$	$k_{2} \cdot 10^{6}$
120	0.0329	1 [.] 1670	0.8330	281
240	0.0670	1.2588	0.7412	221
360	0.1117	1.3341	0.6659	193
480	0.1568	1 3959	0 6041	174
600	0.1843	1.4292	0.5708	153
720	0.2123	1.4607	0.2383	138
900	0.2458	1.4958	0.5042	121
1020	0.2675	1.2121	0 [.] 4892	111
1140	0.2902	1.2391	0.4609	106
1260	0.3128	1.5593	0.4407	100
1440	0.3352	1.5789	0.4211	92
1680	0.3743	1 [.] 6117	0.3883	85
1920	0.4028	1.6386	0.3614	79
2100	0.4305	1.6558	0.3442	75
2340	0.4525	1.6726	0 3274	70
2640	0.4860	1.6971	0 3029	65
3000	0.2251	1.7246	0·2754	61
3180	0.5419	1.7360	0·2640	59
8	1.0	. —		66

hydrolysiert, und das in Freiheit gesetzte KOH ist es, das anfänglich die Verseifung des CH₃KSO₄ einleitet. Nachdem sich aber eine genügende Menge von KHSO₄ gebildet hat, wird obiger Verseifungsprozeß wieder nur durch die H-Ionen beschleunigt.

Daß obige Deutung des eigentümlichen Verlaufes der Verseifung des methylschwefelsauren Kaliums in Gegenwart von HCOOK das Wesen dieser Erscheinung trifft, beweisen folgende Versuche, die man mit Zusätzen von reinem KOH angestellt hat, und deren Ergebnisse in der untenstehenden Fig. 15 und den Tabellen 53 und 54 zusammengestellt werden.

TABELLE 53.

(Versuchsreihe Nr. 46). 1.0 Mol $\rm CH_3KSO_4 + 0.1$ Mol $\rm KOH$, Temp. 115°.

t	30	60	90	120	240	300	420	540	720
<i>x'</i> 0	0279	0.0216	0.0675	0.0762	0.1055	0.1111	0.1279	0.1502	0.2006
t	900	1080	1260	1500	1680	1920	2100	2280	œ
x' 0	·2564	0.3179	0.3849	0.4799	0.92526	0.6196	0.6754	0.7310	1.0

TABELLE 54.

(Versuchsreihe Nr. 47).

10 Mol CH₃KSO₄ + 0.5 Mol KOH; Temp. 115°.

t	30	60	90	120	240	300	420	ł
x'	0.2060	0.2704	0.3294	0.3651	0.4616	0.4916	0.5223	

J. Zawidzki u. J. Zaykowski.

145

In Gegenwart von freiem Kaliumhydrat wird also die Verseifung des Estersalzes zunächst nach dem Schema

$$CH_3KSO_4 + KOH = CH_3OH + K_2SO_4$$

eingeleitet, und erst nachdem alles KOH durch diesen Prozeß verbraucht wurde, setzt die eigentliche autokatalytische Reaktion ein. Auf der Kurve 46 der vorstehenden Figur lassen sich diese beiden Stadien des Reaktionsverlaufes sehr gut voneinander unterscheiden. Man ersieht aus derselben, daß der Verseifungsprozeß zunächst mit einer nicht geringen Geschwindigkeit beginnt, die aber bald bis auf Null herabsinkt. Dieser zeitweise Stillstand wird bei etwa x' = 0.1 erreicht, entsprechend dem Verbrauch von 0.1 Mol des zugesetzten KOH. Von diesem Zeitpunkte beginnt dann die eigentliche autokatalytische Reaktion, die selbstverständlich in einem verlangsamten Tempo verläuft, da die betreffende Lösung 0.1 Mol K₂SO₄ enthält.

C. Ergebnisse der Messungen bei 105°. 14. Diskussion der Ergebnisse.

In Ergänzung der bereits ausführlich besprochenen Geschwindigkeitsmessung bei 115° wurde ein Teil der vorherigen Versuche bei einer niedrigen Temperatur von 105° wiederholt. Die Ergebnisse dieser neuen Serie von Messungen sind in folgenden Figuren und Tabellen zusammengestellt worden, denen wir nur kurze Erläuterungen hinzufügen.

a) Mit Lösungen des reinen Estersalzes CH_3KSO_4 wurden bei 105° nur vier Versuchsreihen ausgeführt, in denen die Anfangskonzentration des Estersalzes 3/4, 1, 11/2 und 2 Mole pro Liter betrug. Ihre Ergebnisse sind bildlich in Fig. 16 (S. 149) dargestellt. Das zugehörige Zahlenmaterial nebst den nach Gleichung (11) berechneten Zahlenwerten der Geschwindigkeitskoeffizienten, findet man in folgenden Tabellen 55 bis 58 schematisch zusammengestellt.

Aus diesen Tabellen ergeben sich folgende Mittelwerte der Geschwindigkeitskoeffizienten:

Konz. CH ₃ HSO4	0.75	1.0	1.2	$2 \cdot 0$
$k_{2} . 10^{5}$	134	134	140	146
,		13	9	

t _{corr} .	x'	$1 + \sqrt[]{x'}$	$1 - \sqrt[]{x'}$	k_{2} . 10^{5}
210	0.0150	1.1225	0.8775	135
330	0.0326	1 1939	0.8061	137
450	0.0652	1.2554	0.7445	134
600	0.1150	1.3390	0.6610	136
840	0.1959	1.4426	0.5574	131
960	0.2532	1.5031	0.4969	133
1080	0.3112	1.5578	0.4452	135
1230	0.3262	1.6138	0.3862	134
1410	0.4521	1.6723	0.3277	134
1500	0.4973	1.7060	0.2940	135
1620	0.5425	1.7365	0.2635	134
1800	0.6103	1.7811	0.2189	134
1980	0.6206	1.8189	0.1811	134
2220	0.7309	1 8549	0.1451	132
2400	0.7912	1 8894	0.1106	137
2700	0.8440	1.9185	0.0812	135
2940	0.8741	1.9348	0.0652	133
3360	0.9268	1.9620	0.0380	133
8	1.0	_		134

TABELLE 55. (Versuchsreihe Nr. 48). 0.75 Mol CH₈KSO₄ pro Liter; Temp. 105°.

TABELLE 56. (Versuchsreihe Nr. 49). 10 Mol CH₃KSO₄ pro Liter; Temp. 105°.

t _{corr} .	x'	$1 + \sqrt[]{x'}$	$1 - \sqrt{x'}$	k_2 , 10^5
180	0.0167	1.1292	0.8708	144
300	0.0391	1.1977	0.8023	134
390	0.0620	1.2588	0.7412	136
570	0.1340	1.3660	0.6340	135
800	0.2402	1.4901	0.5099	134
920	0.3016	1.5492	0.4208	134
1040	0.3638	1.6032	0.3968	134
1220	0.4525	1.6726	0.3274	134
1400	0.2302	1.7285	0.2715	132
1520	0.5922	1.7695	0.5302	134
1620	0.6369	1.7980	0.5050	135
1800	0.6983	1.8356	0.1644	134
1980	0.7575	1.8704	0.1296	135
2220	0.8134	1.9018	0.0982	133
2400	0.8490	1.9212	0.0288	133
2700	0.8938	1.9454	0.0546	132
2940	0.9162	1.9572	0.0428	130
3240	0.9441	1.9716	0.0284	131
8	1.0		-	134

6*

t	x'	$1 + \sqrt{x'}$	1 - y'x'	$k_{3}, 10^{5}$
140	0.0149	1.1221	0.8779	143
300	0.0595	1.2439	0.7561	135
420	0.1266	1.3558	0.6442	145
600	0.2235	1.4728	0.5272	140
780	0.3352	1.5789	0 4211	138
960	0.42529	1.6730	0.3270	139
1080	0.5289	1.7271	0.2729	140
1200	0.6034	1.7767	0.5533	141
1380	0.6927	1.8322	0.1678	141
1620	0.7858	1.8863	0.1137	142
1800	0.8380	1.9154	0.0846	142
2100	0.8938	1 9454	0.0246	139
2400	0.9274	1.9629	0.0371	135
00	1.0			140

TABELLE 57.

(Versuchereihe Nr. 50). 1.50 Mol CH_aKSO, pro Liter; Temp. 105°.

TABELLE	58.	
(Versachsreihe	Nr.	ō1).

20) Mol CH₄KSO₄ pro Mol; Temp. 115°.

t	x'	$1 + \sqrt{x'}$	$1 - \sqrt{x'}$	$k_{2}.10^{5}$
135	0.0195	1.1396	0.8604	147
300	0.0893	1.2988	0.7012	145
420	0.1648	1 4059	0.5941	145
600	0.2989	1.5467	0.4533	145
780	0.4358	1.6601	0.3399	144
960	0.5754	1.7586	0 2414	146
1080	0.6581	1.8112	0.1888	148
1200	0.7290	1.8537	0.1463	150
1380	0.8045	1.8971	0.1029	149
00	1.0			146

die ziemlich gut miteinander übereinstimmen. Ihre Einzelwerte in den betreffenden Versuchsreihen erweisen ebenfalls genügende Konstanz.

b) Den Einfluß von KHSO, auf die Verseifungsgeschwindigkeit des Estersalzes illustriert Fig. 17 (S. 151) und die Tabellen 59 und 60 (S. 150) geben eine Zusammenstellung der Messungsdaten

nebst den aus ihnen nach Gleichung (18) berechneten Werten der betreffenden Geschwindigkeitskoeffizienten.

Der Mittelwert dieser Geschwindigkeitskoeffizienten $(k_2=0.00139)$ ist identisch mit demjenigen, der für die Verseifungsgeschwindigkeit der Lösungen des reinen Estersalzes erhalten wurde.

c) Die beschleunigende Wirkung der Schwefelsaure wird durch Fig. 18 (S. 151) ebenso wie die folgenden Zahlentabellen 61 und 62 (S. 152) illustriert.

Wie aus diesen Tabellen zu ersehen ist, sind die nach Gleichung (26) berechneten Geschwindigkeitskoeffizienten k_s in jeder einzelnen Versuchsreihe genügend konstant, und ihre beiden Mittelwerte 0.0000549 und 0.0000543 stimmen gut miteinander. Dabei wurde für die Berechnung des Faktors m in der Geschwindigkeits-

t _{corr} .	x'	1-x'	0.1 + x'	$k_2 \cdot 10^5$
105	0.0391	0.9309	0.1391	139
270	0.1396	0.8604	0.2396	137
390	0.2067	0.7933	0.3067	135
510	0.2794	0.7206	0.3794	135
660	0.3743	0.6257	0.4243	137
840	0.4802	0.2192	0.5805	139
960	0.5531	0.4469	0.6531	141
1080	0.6089	0.3911	0.7089	137
1260	0.6816	0.3184	0.7816	139
1440	0 7543	0.2457	0.8243	142
1740	0.8247	0 1753	0.92 17	138
2100	0.8939	0 1061	0.9939	139
2400	0.9330	0.0670	1.0330	140
2700	0.9497	0.0203	1.0197	135
~	1.0	0.0	_	138

TABELLE 59. (Versuchsreihe Nr. 52). 1.0 Mol CH_sKSO₄ + 0.1 Mol KHSO₄ pro Litor; Temp. 105°.

TABELLE 60. (Versuchsreihe Nr. 53). 1.0 Mol CH₃KSO₄ + 0.5 Mol KHSO₄ pro Liter; Temp. 105°.

t _{corr} .	x'	1-x'	0.5 + x'	$k_{_{2}}.10^{_{5}}$
25	0.0223	0.9773	0.5223	130
55	0.0541	0.9459	0.0241	139
105	0.0949	0.9051	0.2949	129
165	0.1619	0.8381	0.6619	140
225	0.2179	0.7821	0.7179	140
345	0.3296	0.6204	0.8296	142
435	0.4023	0.2977	0.9023	141
525	0.4636	0.5364	0 9636	138
645	0.2231	0.4469	1.0231	141
840	0.6761	0.3239	1.1761	144
960	0.7364	0.2636	1 2364	146
1260	0.8268	0.1732	1:3268	140
1560	0.8995	0.1002	1.3995	143
1740	0.9274	0.0726	1.4274	144
~	1.0	0.0	-	140

t	x'	1-x'	3.31 + x'	$k_{ m g}$. 10^{7}
30	0.0614	0.9386	3.371	(630)
60	0.1061	0.8939	3.416	556
90	0.1208	0.8492	3.461	537
120	0.2067	0.2933	3.517	565
180	0.2965	0.7035	3.606	564
240	0.3743	0.6257	3 684	557
300	0.4515	0.5485	3.761	563
390	0.5419	0.4581	3.852	555
420	0.5698	0.4305	3.880	554
480	0.6256	0.3744	3.936	558
540	0.6704	0.3296	3.980	556
600	0.7039	0.2961	4 ·014	545
660	0.7487	0.2513	4·059	557
720	0.7764	0.2236	4.086	551
900	0.8433	0 [.] 1567	4.123	536
1080	0.8836	0.1164	4·194	513
1140	0.9051	0.0949	4·215	528
1320	0.9387	0.0613	4.249	535
00	1.0	0.0	1	549

TABELLE 61. (Vorsachsreihe Nr. 54). 1.0 Mol CH₃KSO₄ + 0.1 Mol H₂SO₄ pro Liter; Temp. 105°.

TABELLE 62. (Versuchsreihe Nr. 55). 1.0 Mol CH₃KSO₄ + 0.5 Mol H₂SO₄ pro Liter; Temp. 105°.

t _{corr} .	x'	1-x'	80.6 + x'	$k_{g} . 10^{2}$
18	0.1452	0.8548	80.74	540
33	0.2514	0.7486	80.85	543
57	0.4025	0.2978	81.00	558
87	0.5363	0 4637	81.14	546
117	0.6480	0.3250	81.25	551
140	0.7151	0.2849	81.32	554
170	0.7765	0.2235	81.38	544
210	0.8548	0.1452	81.45	566
270	0.9020	0.0920	81.50	537
330	0.9441	0.0223	81.54	538
400	0.9609	0.0391	81.26	498
00	1.0	0.0		543

gleichung (26) der frühere Zahlenwert 0.00312 für die Dissoziationskonstante ϱ des Hydrosulfations angenommen.

Laut unserer Definition ist die Geschwindigkeitskonstante der Verseifung des reinen Estersalzes $k_2 = k \sqrt[4]{q}$ und diejenige der Verseifung in Gegenwart von Schwefelsäure $k_3 = kq$. Demnach müßte aus den gefundenen Mittelwerten dieser beiden Geschwindigkeitskoeffizienten derselbe Zahlenwert für k folgen. Tatsächlich bekommt man aber etwas verschiedene Werte, und zwar

$$k = \frac{k_2}{\sqrt{\varrho}} = \frac{0.00139}{\sqrt{0.00312}} = 0.0249$$

und

$$k = \frac{k_3}{\varrho} = \frac{0.0000546}{0.00312} = 0.0175,$$

die jedoch von derselben Größenordnung sind.

d) Den Einfluß der Essigsäure auf die Verseifungsge-

Fig. 19.

schwindigkeit des Estersalzes illustriert Fig. 19 und die folgenden Tabellen 63 und 64, in denen auch die nach Gleichung (11) berechneten Geschwindigkeitskoeffizienten angeführt wurden.

TABELLE 63.

(Versuchsreihe Nr. 56).

t	x'	$1 + \sqrt{x'}$	$1 - \sqrt{x'}$	$k_{2}.10^{6}$
60	0.0025	1.0742	0.9258	248
180	0.0223	1.1493	0.8207	167
300	0.0502	1.2241	0.7759	152
4 80	0.1147	1.3386	0.6614	147
600	0.1676	1.4094	0.2906	145
720	0.2179	1.4668	0.5332	141
9 0 0	0.3129	1.5594	0.4406	140
1080	0.4023	1.6342	0.3658	139
1320	0.5196	1.7207	0.2793	138
1500	0.5978	1.7732	0.2268	137
1680	0.6707	1.8191	0.1809	137
1920	0.7487	1.8652	0.1348	137
2160	0.8100	1.8999	0.1001	136
2460	0.8660	1.9305	0.0695	135
2700	0.8995	1.9499	0.0201	136
2940	0.9219	1.9601	0.0399	132
3300	0.9443	1.9716	0 0284	128
30	1.0	_	_	141

1.0 Mol $CH_3KSO_4 + 0.1$ Mol CH_5COOH pro Liter; Temp. 105°.

15. Temperaturkoeffizient der Geschwindigkeitskonstante.

Als Mittelwert der Geschwindigkeitskonstante k_2 der Verseifung des CH_3KSO_4 erhielt man

bei 115°
$$k_2 = 0.00380$$

bei 105° $k'_2 = 0.00139$,

woraus der Temperaturkoeffizient γ dieser Größe

$$\gamma_1 = \frac{k_2}{k_2'} = 2.73$$

folgt.

TABELLE 64.

(Versuchsreihe Nr. 57).

1.0 Mol CH _a KSO, + 0.5 Mol CH _a COOH pro 1	Liter; Tem	p. 105⁰.
---	------------	----------

t	w'	$1 + \sqrt[4]{x'}$	$1 - \sqrt{x'}$	$k_{ m 2}$, 10^5
60	0.0111	1.1053	0.8947	352
180	0.0279	1.1670	0-8330	187
300	0 0614	1.2478	0.7522	169
480	0.1285	1.3584	0.6416	156
600	0.1900	1.4359	0.5641	156
720	0.5405	1.4901	0.2099	149
900	0.3352	1.5789	0.4211	147
1080	0.4246	1.6516	0.3484	144
1320	0.2363	1.7321	0.2679	141
1500	0.6146	1.7839	0.2161	141
1680	0.6816	1.8254	0.1746	140
`192 0	0.7487	1.8652	0 [.] 1348	137
2160	0.8044	1 8969	0.1031	135
2460	0.8604	1.1968	0.0832	128
2700	0.8884	1.9426	0.0574	130
2940	0.9107	1.9541	0.0459	128
3300	0.9274	1.9629	0.0371	120
8	1.0		-	143

Für denselben Prozeß in Gegenwart freier Schwefelsäure wurden folgende Geschwindigkeitskonstanten

> bei 115° $k_3 = 0.000152$ bei 105° $k'_3 = 0.0000546$

erhalten, die den Temperaturkoeffizienten

$$\gamma_2 = \frac{k_3}{k'_3} = 2.78$$

ergeben, der mit dem vorherigen identisch ist.

Da laut unserer Definition $k_2 = k \sqrt[4]{\rho}$ und $k_3 = k \rho$ sein soll, so kommt in dem erhaltenen Zahlenwerte des Temperaturkoeffizienten γ der Geschwindigkeitskonstante noch der Temperaturkoeffizient der Dissoziationskonstante ρ des Hydrosulfations in Betracht. Solange derselbe unbekannt bleibt, kaun auch der genaue Zahlenwert von γ nicht angegeben werden. Demnach stellt $\gamma = 2.75$ nur einen Näherungswert des Temperaturkoeffizienten der Verseifungsgeschwindigkeit des CH₂KSO₄ dar.

D. Zusammenfassung.

In vorliegender Untersuchung wurde der Versuch gemacht, den molekular-kinetischen Mechanismus einer einfachen autokatalytischen Reaktion, nämlich der spontanen Verseifung des methylschwefelsauren Kaliums in wässerigen Lösungen, aufzuklären. Dies ist uns auch zum größten Teil gelungen, obwohl die angewandte Versuchsmethode noch manche prinzipielle Fehler aufzuweisen hat, auf die wir aber erst nach Abschluß dieser und der folgenden Experimentaluntersuchungen aufmerksam wurden.

Einer von diesen methodischen Hauptfehlern bestand darin, daß man es unterlassen hat, die Reaktionsordnung der Verseifung des CH_3KSO_4 (a) in Gegenwart von zugesetzten Salzen, Säuren und anderen fremden Stoffen (b) auf eine einwandfreie und unabhängige Art und Weise zu bestimmen. Damit eine solche Bestimmung nach der Ostwald'schen Integralmethode ausführbar wäre, müßte das Konzentrationsverhältnis a:b der Komponenten des Reaktionssystems bei allen angewandten Verdünnungen (v) dieses Systems konstant bleiben. Man sollte also vor allem die Reaktionsgeschwindigkeiten folgender Systeme

$v_1 \left(a_1 + b_1 \right)$	$v_1\left(a_1+b_2\right)$	$v_1 \left(a_2 + b_1 \right)$	$v_1 \left(a_2 + b_2 \right)$
$v_2 \left(a_1 + b_1 \right)$	$v_2 \left(a_1 + b_2 \right)$	$v_2 \left(a_2 + b_1 \right)$	$v_2 (a_2 + b_2)$
$v_3 (a_1 + b_1)$	$v_3 (a_1 + b_2)$	$v_3 (a_2 + b_1)$	$v_{3} (a_{2} + b_{2})$

untersuchen, was leider nicht geschehen war.

Trotz dieses methodischen Fehlers, der übrigens durch andere weniger rationelle Versuchskombinationen ausgeglichen wurde, sind wir zu folgenden Schlüssen hinsichtlich der Verseifungsgeschwindigkeit des CH_3KSO_4 in wässerigen Lösungen gekommen: 1. Die spontane Verseifung des CH_3KSO_4 in wässerigen Lösungen stellt ein typisches Beispiel einer einfachen autokatalytischen Reaktion dar.

2. Sie wird von dem als Reaktionsprodukt auftretenden KHSO₄ autokatalytisch beschleunigt.

3. Die beschleunigende Wirkung wird ausschließlich von den Wasserstoffionen ausgeübt.

4. Da das Hydrosulfation eine derart schwache Säure darstellt, daß man die Konzentration der Wasserstoffionen in wässerigen Lösungen der Quadratwurzel aus seiner Konzentration proportional setzen darf, so wird das Zeitgesetz der Verseifung des CH₃KSO₄ durch die Differenzialgleichung

$$\frac{dx'}{dt} = k_2 \not\mid a \mid x' (1 - x')$$

zum Ausdruck gebracht.

5. Neutrale Kalisalze (KNO₃ und KCl) üben auf das Tempo dieses Verseifungsprozesses eine schwach beschleunigende Wirkung aus, hervorgerufen durch die gleichzeitige Erhöhung der elektrolytischen Dissoziation des Hydrosulfations.

6. Dagegen wirkt KSO_4 , infolge einer Verschiebung des Dissoziationsgleichgewichts $HSO'_4 \rightleftharpoons H' + SO''_4$ nach links, stark verzögernd, wobei diese verzögernde Wirkung der kubischen Wurzel aus seiner Konzentration angenähert proportional ist.

7. Schwefelsäure und Salzsäure beschleunigen sehr stark den Verlauf der Verseifung des CH_sKSO₄, zugleich aber ändern sie auch dessen Zeitgesetz, das durch die Differouzialgleichung

$$\frac{dx'}{dt} = \frac{k_3}{\beta} (m + x') (1 - x')$$

ausgedrückt wird, in welcher $\beta = \frac{b}{a}$ die relative Konzentration je-

ner Säuren und m eine neue Konstante bedeutet.

8. Schwache Säuren, wie Essig- und Ameisensäure, erhöhen anfangs sehr schwach die Anfangsgeschwindigkeit dieses Verseifungsprozesses, um dann dieselbe etwas herabzudrücken.

9. Die Salze dieser schwachen Säuren ebenso wie freie Basen (KOH) verändern vollständig den kinetischen Mechanismus des betrachteten Vorganges. In deren Gegenwart beginnt die Verseifungdes CH_sKSO₄ zunächst in einem ziemlich schnellen Tempo, das allmählich verlangsamt wird. Es stellt sich dann ein zeitweiser Reaktionsstillstand ein, nach dessen Überwindung die Verseifung in einem autokatalytischen Tempo ihr Ende erreicht.

10. Der Temperaturkoeffizient der Geschwindigkeitskonstante des Verseifungsprozesses von CH_3KSO_4 beträgt in dem Temperaturintervall von 105—115° etwa 2.75. Es ist aber in diesem Zahlenwert auch der unbekannte Temperaturkoeffizient der Dissoziationskonstante des Hydrosulfations miteinbegriffen.

Chemisches Laboratorium der Landwirtschaftlichen Hochschule Dublany. Im August 1915.

BULLETIN INTERNATIONAL DE L'ACADÉMIE DES SCIENCES DE CRACOVIE CLASSE DES SCIENCES MATHÉMATIQUES ET NATURELLES. SÈRIE A: SCIENCES MATHÉMATIQUES.

DERNIERS MÉMOIRES PARUS.

Les titres des Mémoires sont donnés en abrégé).

M. Wagner. Absorption des Lichtes in Pflanzenblättern Mai	1914
K. Dziewoński, Z Leyko. Umwandlung des Acenaphthylens Mai	1914
St. Dabrowski. Sur le dosage de la thiourochrome Juin	1914
Z. Klemensiewicz. Sur une théorie cinétique des réactions chimiques Juin	1914
H. Piwnikiewicz. Lumineszenz u. Ionisation des Quecksilberdampfes Juin	1914
L. Natanson. Theory of Reflection of Light Juin	1914
A. Joscht. Löslichkeit des Antrachinon Juill.	1914
W. St. Leśniański. Phenonaphthacridonchinon u. Chinacridonchinon Jaill.	1914
L. Godeaux. Surfaces algébriques de divisear supérieur à l'unité . Juill.	1914
J. Dunin-Borkowski. Methode z. Bestimmung d. Polarisation Oct Déc.	1914
J. Dunin-Borkowski, Leitfähigkeit von Elektrolyten OctDee,	1914
K. Dziewoński, C. Paschalski. Z. Kenntnis der Heptacyklene OctDéc.	1914
J. Doliński, K. Dziewoński. Über Biacenaphthyliden OctDec.	1914
K. Kling. Löslichkeit von Chlormethyl JanvMars	1915
K. Dziewoński, J. Podgórska. Abban d. Dekacyklens, II JanvMars	1915
WI. Pawlica. Godrit in der Tatra Janv Mars	1915
W. Jacek. Studien über die Löslichkeit einiger festen Körper JanvMars	1915
J. Doliński, K. Dziewoński. Über Biacenaphthyliden, II . Avril-Mai	1915
W. Pawlica, Nördliche kristallinische Insel in der Tatra . Avril-Mai	1915
K. Zorawski. Differentialinvarianten der Flächenisometrie AvrilMai	1915
WI. Dziewulski. Bestimmang der Sonnenbewegung. II Juin-Juill,	1915
K. Zorawski. Deformationen von Medien Juin-Juill	. 1915
M. Smoluchowski, Mängel in d. Begründung d. Entropiesatzes Juin-Juill	. 1915
WI. Dziewulski. "Motus peculiares" der Sterne Juin-Juill.	1915
WI. Dziewulski. Bewegung einiger Sterngruppen Juin-Juill	. 1915
K. Zorawski. Eigenschaften der Wirbel Juin-Juill	. 1915
S. Niementowski, E. Sucharda, Uber S-Oxychinolincarbon-	
säuren und ihre Derivate OctDec.	1915
L. Bruner, J. Kozak. Photokinetik der Bromaddition, I OctDec.	1915
St. Kreuiz, Reimgenes in pyrachlore et de la beckelite OctDec.	1915
K. Zorawski, Differentialinvarianten gewisser Systeme Oct Dec.	1915
J. Zawidzki, Stadien z. Dynamik autokalalytischer Prozesse. 1. Oct Dec.	1919
J. Zawidzki, W. Stafouka. Studien zur Dynamik autokata-	1015
Vijischer Prozesse II	1015
The many of the new policy of the new policy of the policy	

Avis.

Le «Bulletin International» de l'Académie des Sciences de Cracovie (Classe des Sciences Mathématiques et Naturelles) paraît en deux séries: la première (A) est consacrée aux travaux sur les Mathématiques, l'Astronomie, la Physique, la Chimie, la Minéralogie, la Géologie etc. La seconde série (B) contient les travaux qui se rapportent aux Sciences Biologiques. Les abonnements sont annuels et partent de janvier. Prix pour un an (dix numéros): Série A... 8 K; Série B... 10 K.

Les livraisons du «Bulletin International» se vendeut aussi séparément.

Adresser les demandes à la Librairie «G. Gebethner & Cle» Rynek Gl., Cracovie (Autriche).

Avis.

Le «Bulletin International» de l'Académie des Sciences de Cracovie (Classe des Sciences Mathématiques et Naturelles) paraît en deux séries: la première (A) est consacrée aux travaux sur les Mathématiques, l'Astronomie, la Physique, la Chimie, la Minéralogie, la Géologie etc. La seconde série (B) contient les travaux qui se rapportent aux Sciences Biologiques. Les abonnements sont annuels et partent de janvier. Prix pour un an (dix numéros): Série A... 8 K; Série B... 10 K.

Les livraisons du «Bulletin International» se vendeut aussi séparément.

Adresser les demandes à la Librairie «G. Gebethner & Cle» Rynek Gl., Cracovie (Autriche).