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Motto: “Apart from the known and the unknown, what else is
there?”
Harold Pinter in The Homecoming

In this paper I would like to make some remarks on the concept of a set
in the context of some recent developments concerning vagueness, imprecision
and uncertainty.

It is well know that the concept of a set in the Cantor’s setting has several
disadvantages. The most important ones are antinomies. Besides, Cantor’s
approach is not taking into account neither the uncertainiy of being an element
of a given set nor the multiplicilies of elements.

One of the most discussed and attracting attention of logicians and philoso-
phers questions is the problem of antinomies. The antinomies problem is con-
nected with the concept of the “set of all sets”, which is inherently embedded
in the Cantor’s concept of a infinite set. There are at least two well known so-
lutions to this problem, the axiomatic set theory of Zermelo and Fraenkel and
the class theory of Whithead and Russell, It is worthwhile to mention in this
context the mereology developed by Lesniewski and the alternative set theory
created by Vopenka, both meant as escapes from the Cantor’s set theory. I
will refrain from the discussion of these problems here since there are rather of
philosophical than practical significance.

The two remaining problems, i.e. multiplicity and uncertainty of elements,
concern not only infinite but also finite sets. They have not been studied very
extensively by mathematicians since they are not of essential significance to
mathematical problems tackled by the set theory, and are addressed rather by
researches wrestling with applications. We are going to give some remarks on
these problems here, for they are of greatest importance to many applications,
in particular in Artificial Intelligence. Both, the uncertainty and the multiplic-
ity problems refer to membership of elements in multiset and fuzzy set theory,
respectively. '

In Cantor’s theory, set is defined uniquely by its elements, i.e. in order to
define a set we have to point out its elements. In other words, any element of
the universe is either in or outside the set under consideration, i.e. the mem-
bership function of the set can assume exactly one of two values 0 or 1, for
non-member and member of the set respectively.
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Many applications require multisets. In a multiset, i.e. set having mul-
tiple elements, elements may occur more then once. This is, however, not
allowed in the “ordinary” set theory. For example the collection of elements
{1,1,1,2,2,3,4, 4} is not a set according to Cantor’s set theory, since every ele-
ment in this theory may occur in the set only once. Consequently the member-
ship (characteristic) function of a multiset assumes non negative integer values.

Another aspect of membership problem was considered by Zadeh[11], who
proposed that the characteristic function may assume values from the closed
interval [0, 1], thus introducing partial membership of elements in the set. In
this setting, an element may belong in the set upto a certain degree, which is
supposed to capture our uncertainty about its membership. This is, of course
again in contradiction with the Cantor’s set theory, which requires full mem-
bership.

Both, the multiset and fuzzy set theory were recently axiomatized in an
elegant, unified way by Blizard[1].

Let us note that both membership problems address various questions, The
multi-membership concerns multiplicities of elements in a set, whereas fuzzy-
membership refers to the uncertainty of being a member of the set.

The membership problem can be generally formulated by defining for each
kind of sets proper membership function p(x)(z). For the classical sets the
range of the membership function is the set {0, 1}; for fuzzy sets the range is
the closed interval [0,1], and for the multisets the range is the set of nonnegative
integers {0,1,2,...}.

One can also consider sets with characteristic function having the range
[0, 4+00), i.e. all nonnegative reals. This kind of sets, considered by Blizard cf.
[2] may be called multi-fuzzy sets. We can give the following interpretation of
this kind of membership function: the integer part E(ux(z)) of px(z) denotes
the multiplicity of z in X, whereas ux(2) — E(px (z)) means the value of fuzzy
membership of z, e.g. px(z) = 2.3 means that there are two elements z in the
set X, belonging to X in the degree 0.3.

Some authors considered multisets with negative multiplicity[3], which leads
to membership function with integers as its range. Let us call this kind of sets
Blizard’s sets. A motivation for negative membership can be the following{9].
Suppose there are n experts who vote, whether an element z belongs to the set
X, or not. One can define a membership function, which represents result of

voting, as shown below:

px(2) =3 pic(a)/n,
' =1 :
where pi(2) € {-1,+1}

meaning that if % (z) = —1, then = does not belong to X according to expert
i and if pd () = +1, then z does belong to X according to expert i. Obviously
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1< px(e) < 1.

Finally, from the formal point of view it seems natural to consider quite
general concept of a set for which the whole real axis (—00,+00) can be as-
sumed to be the range of .the membership function.

The above considerations can be summarized as follows:
i) px(z) € {0,1} - Cantor’s sets
i) px(z) € [0,1] - fuzzy sets
ii1) pux(x) € {0,1,2,...} - multisets
i) px(z) € [0,+00) - multi-fuzzy sets
v) px(z) € Z - Blizard’s sets
vi) px(z) € (—oo0,+co) - general sets,
where Z denotes the set of integers.

‘The above discussed concepts of a set share the two following features.
Firstly, the membership is the primitive notion of each set theory and secondly,
the union and intersection of sets are defined for each kind of the above con-
sidered sets by max and min operations on constituent sets, respectively.

Note that in all the above described extensions of Cantor’s set theory, in
order to express the degree of membership, the existence of integers or real
numbers is required before the concept of a set can be defined. This is obvi-
ously not the case for Cantor’s sets, where the concept of a set is prior to the
concept of numbers. ' ‘

Another philosophy of defining sets is offered by the rough set theory[8,7]
where both of the above mentioned features are not valid, Membership is
not the primitive concept for rough sets. Besides, the memberships for union
and intersection of sets cannot be defined by max and min operations on con-
stituents sets, respectively. ' -

" The starting point of the rough set theory is the assumption that we have
initially some information (knowledge) about elements of the universe, which
is not the case in the above discussed concepts of a set. In other words, in
the proposed appreach we “see” elements of the universe in the context of the
available information about them, in contrast to the previously discussed ap-
proaches, where elements of the universe are purely abstract objects, and any
information about them is not necessary. As a consequence, two different ele-
ments can be indiscernible in the context of the information about them, and
“seen” as the same. This view is motivated not by philosophical considerations,
but by practical requirements. :
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In order to express the above ideas more precisely, let us give some formal
definitions. Information about 2 € U is a function 7 : U~ > 2V | such that
¢ € I(z) for every ¢ € U. We will say that every element y € I(z) is indis-
cernible from ¢ with respect to the information I. The introduced definition is
intended to capture the fact that if we “see” elements of the universe through
the information about them then some elements may be “seen” as identical.
This leads to the following membership function definition, which is the basis
for the rough set theory:

ph(2) = card(X N I(z)/cardl(z).
Obviously
wx(z) €[0,1].

The above assumed membership function, is used to define two basic oper-
ations on sets, which are shown below

I(X)={z €U : px(z) =1},
I(X) = {z € U : pi(z) > 0},
and called the I-lower and the I-upper approzimation of a X, respectively. .

This is to mean that if we “see” the set X through the information I, only
the above approximations of X can be “observed”. The difference between
the upper and the lower approximation, called the boundary region of the set,
expresses how exactly we “see” the set X through the information 7. If the
boundary region is the empty set, X can be defined exactly using the informa-
tion I, and in the opposite case the set X can be defined roughly (approzimately)
only - employing the information I. The former sets are crisp (eract), whereas
the later - are rough (inezact), with respect to information I. Consequently,
the definition of a set is related to our information (knowledge) about elements
of the universe. Moreover, information about elements is the primitive concept
necessary to define a set, but not the membership, as in the previous cases.
Thus this approach is rather subjective. |

" The indiscernibility relation can be assumed to be equivalence or tolerance
relation or can be defined by a distance function in any metric space. For prac-
tical reasons, we assume that the information about elements is presented in
the form of an attribute-value table, called also an information system.

Formally an information system can be seen as a system S = (U, 4), where
U is the universe and A is the set of afiributes. Each attribute a € A, defines
an information function f, : U~ > V, , where V; is the set of values of a, called
domain of the attribute a. Obviously any subset of attributes B C A defines

the equivalence (indiscernibility) relation
IND(B) = {(z,y) € Uz : fala) = Ja(¥)}.

In the considered case I(z) = [z]p.
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The membership function can be expressed now as
p2(z) = card(X N [z])/card[z] 5,

where [z]p denotes the equivalence class of the equivalence relation IV D(B)
containing the element @. Let us observe that now the membership depends
upon knowledge about # expressed by the set of attributes B and is no more
a primitive concept. Moreover the union and intersection of rough sets cannot
be, in general case, defined by means of max and min operations on member-
ships of constituent sets, because it would violate the topological properties of
rough sets. This definition is valid only when some conditions are satisfied,
More details about this kind of membership function can be found in [8,10].
(See also[5]).

Obviously, approximations can be expressed now as

BX ={zeU:[z]C X}
§X={mEU:[:c]ﬂX¢@}.

Rough sets can be also seen as a generalization of multisets, in the sense
that we can associate with the element 2 its “multiplicity” in the whole universe
defined as card[z]p, which is the number of elements of the equivalence class
of the equivalence relation generated by the set of attributes B and containing
the element z. Thus, in the rough set approach, instead of identical elements
we allow many indiscernible elements in a set. In other words rough set can
be seen as a classical set with an indiscernibility relation superimposed on its
elements., Hence, multisets can be viewed as a special case of rough sets.

It is also worthwhile to mention in this context that the rough set theory
has been axiomatized by Bryniarski[4].

It seems that the time has come to look at all the escapes from the Can-
tor’s set theory in a more general, unified way, which I believe deserve special
attention from philosophers, logicians and computer scientists and need joint,
general treatment. 1 propose for all this new developments a name ”soft set
theory” in opposite to "hard” Cantor’s theory. Both theoretical and practical
aspects of such an approach should be of equal importance.
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