
Rough Sets - a New Way of Data Analysis

Zdzis�law Pawlak
Institute of Computer Science

Warsaw University of Technology

00-665 Warsaw, ul Nowowiejska 15/19

e-mali: zpw@ii.pw.edu.pl

Abstract

Rough set theory is a new mathematical approach to data analysis. In this
paper basic concepts of rough set theory will be defined and the methodology of
applications briefly discussed. A tutorial illustrative example will be used to make
the introduced notions more intuitive.

1 Introduction

Rough set theory is a new mathematical approach to data analysis.
Rough set philosophy is founded on the assumption that with every object of the

universe of discourse some information is associated Objects characterized by the same
information are indiscernible. The indiscernibility relation is the mathematical basis of
rough set theory. Any set of all indiscernible (similar) objects is called an elementary
set, and forms a basic granule (atom) of knowledge about the universe. Any union of
some elementary sets is referred to as a crisp (precise) set - otherwise the set is rough
(imprecise, vague). Each rough set has boundary-line cases, i.e., objects which cannot be
with certainty classified, by employing the available knowledge, as members of the set or
its complement. Obviously rough sets, in contrast to precise sets, cannot be characterized
in terms of information about their elements.

In the proposed approach with any rough set a pair of precise sets - called the lower and
the upper approximation of the rough set is associated. The lower approximation consists
of all objects which surely belong to the set and the upper approximation contains all
objects which possibly belong to the set. The difference between the upper and the lower
approximation constitutes the boundary region of the rough set. Approximations are two
basic operations in the rough set theory and are employed to define dependencies (total
or partial) between attributes, reduction of attributes, decision rule generation and other.

Rough set theory has found many interesting applications. The rough set approach
seems to be of fundamental importance to AI and cognitive sciences, especially in the
areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery
from databases, expert systems, inductive reasoning and pattern recognition. It seems of
particular importance to decision support systems and data mining.

Rough set theory has been successfully applied to many real-life problems in medicine,
pharmacology, engineering, banking, financial and market analysis and others. The rough

1

set approach seems also important for various engineering applications, like machine di-
agnosis, process control, material sciences etc..

Rough set approach to data analysis has many important advantages. Some of them
are listed below.

- Provides efficient algorithms for finding hidden patterns in data.

- Finds minimal sets of data (data reduction).

- Evaluates significance of data.

- Generates sets of decision rules from data.

- It is easy to understand.

- Offers straightforward interpretation of obtained results.

- Most algorithms based on the rough set theory are particularly suited for parallel
processing.

This paper gives rudiments of rough set theory. The basic concepts of the theory are
illustrated by a simple tutorial example. In order to tackle many sophisticated real life
problems the theory has been generalized in various ways but we will not discuss these
generalizations here. More about rough set theory and its applications can be found in
the references.

2 Information systems

Starting point of rough set based data analysis is a data set, called an information system.
An information system is a data table, whose columns are labeled by attributes, rows

are labeled by objects of interest and entries of the table are attribute values.
Formally, by an information system we will understand a pair S = (U, A), where U

and A, are finite, nonempty sets called the universe, and the set of attributes, respectively.
With every attribute a ∈ A we associate a set Va, of its values, called the domain of a.
Any subset B of A determines a binary relation I(B) on U , which will be called an
indiscernibility relation, and defined as follows: (x, y) ∈ I(B) if and only if a(x) = a(y)
for every a ∈ A, where a(x) denotes the value of attribute a for element x. Obviously I(B)
is an equivalence relation. The family of all equivalence classes of I(B), i.e., a partition
determined by B, will be denoted by U/I(B), or simply by U/B; an equivalence class of
I(B), i.e., block of the partition U/B, containing x will be denoted by B(x).

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible (indiscernible
with respect to B). Equivalence classes of the relation I(B) (or blocks of the partition
U/B) are referred to as B-elementary sets or B-granules.

If we distinguish in an information system two disjoint classes of attributes, called
condition and decision attributes, respectively, then the system will be called a decision
table and will be denoted by S = (U, C, D), where C and D are disjoint sets of condition
and decision attributes, respectively.

2

3 Approximation

Suppose we are given an information system S = (U, A), X ⊆ U , and B ⊆ A. Our task
is to describe the set X in terms of attribute values from B. To this end we define two
operations assigning to every X ⊆ U two sets B∗(X) and B∗(X) called the B-lower and
the B-upper approximation of X, respectively, and defined as follows:

B∗(X) =
⋃

x∈U

{B(x) : B(x) ⊆ X},

B∗(X) =
⋃

x∈U

{B(x) : B(x) ∩ X �= ∅}.

Hence, the B-lower approximation of a set is the union of all B-granules that are included
in the set, whereas the B-upper approximation of a set is the union of all B-granules that
have a nonempty intersection with the set. The set

BNB(X) = B∗(X) − B∗(X)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then X is crisp

(exact) with respect to B; in the opposite case, i.e., if BNB(X) �= ∅, X is referred to as
rough (inexact) with respect to B.

4 Dependency of attributes and reducts

Next important concept in rough set theory is the dependency between attributes. Intu-
itively, a set of attributes D depends totally on a set of attributes C, denoted C ⇒ D, if
all values of attributes from D are uniquely determined by values of attributes from C.
In other words, D depends totally on C, if there exists a functional dependency between
values of C and D.

Formally dependency can be defined in the following way. Let D and C be subsets of
A.

We will say that D depends on C in a degree k (0 ≤ k ≤ 1), denoted C ⇒k D, if

k = γ(C, D) =
card(POSC(D))

card(U)
,

where
POSC(D) =

⋃

X∈U/D

C∗(X),

called a positive region of the partition U/D with respect to C, is the set of all elements
of U that can be uniquely classified to blocks of the partition U/D, by means of C.

Obviously

γ(C, D) =
∑

X∈U/D

card(C∗(X))

card(U)
.

If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends partially
(in a degree k) on C. The degree of dependency γ(C, D) can be also understood as a
consistency measure of the decision table S = (U, C, D).

3

The coefficient k expresses the ratio of all elements of the universe, which can be
properly classified to blocks of the partition U/D, employing attributes C and will be
called the degree of the dependency.

Observe that if D depends totally on C then I(C) ⊆ I(D). That means that the
partition generated by C is finer than the partition generated by D.

Next important task in rough set based data analysis is data reduction.
To this end we remove from the data table superfluous attributes.
Let C, D ⊆ A, be sets of condition and decision attributes respectively. We will say

that C ′ ⊆ C is a D-reduct (reduct with respect to D) of C, if C ′ is a minimal subset of C
such that

γ(C, D) = γ(C ′, D).

There are also other concepts of reducts but we will not discuss them hare.
The intersection of all D-reducts is called a D-core (core with respect to D).
Because the core is the intersection of all reducts, it is included in every reduct, i.e.,

each element of the core belongs to some reduct. Thus, the non-empty core consists of
the most important subset of attributes, for none of its elements can be removed without
affecting the classification power of attributes.

5 Decision rules

Let S = (U, A) be an information system. With every B ⊆ A we associate a formal
language, i.e., a set of formulas For(B). Formulas of For(B) are built up from attribute-
value pairs (a, v) where a ∈ B and v ∈ Va by means of logical connectives ∧ (and), ∨ (or),
∼ (not) in the standard way.

For any Φ ∈ For(B) by ||Φ||S we denote the set of all objects x ∈ U satisfying Φ in
S and refer to as the meaning of Φ in S.

The meaning ||Φ||S of Φ in S is defined inductively as follows: ||(a, v)||S = {x ∈ U :
a(v) = x} for all a ∈ B and v ∈ Va, ||Φ∨Ψ||S = ||Φ||S∪||Ψ||S, ||Φ∧Ψ||S = ||Φ||S∩||Ψ||S,
|| ∼ Φ||S = U − ||Φ||S.

A formula Φ is true in S if ||Φ||S = U.
A decision rule in S is an expression Φ → Ψ, read if Φ then Ψ, where Φ ∈ For(C),

Ψ ∈ For(D) and C, D are condition and decision attributes, respectively; Φ and Ψ are
referred to as conditions and decisions of the rule, respectively.

A decision rule Φ → Ψ is true in S if ||Φ||S ⊆ ||Ψ||S.
We consider a probability distribution pU(x) = 1/card(U) for x ∈ U where U is the

(non-empty) universe of objects of S; we have pU(X) = card(X)/card(U) for X ⊆ U .
For any formula Φ we associate its probability in S defined by

πS(Φ) = pU(||Φ||S).

With every decision rule Φ → Ψ we associate a conditional probability

πS(Ψ|Φ) = pU(‖Ψ‖S| ‖Φ‖S)

that Ψ is true in S given Φ is true in S called the certainty factor to estimate the proba-
bility of implications. We have

πS(Ψ|Φ) =
card(||Φ ∧ Ψ||S)

card(||Φ||S)

4

where ||Φ||S �= ∅.
This coefficient is now widely used in data mining and is called confidence coefficient.
Obviously, πS(Ψ|Φ) = 1 if and only if Φ → Ψ is true in S.
If πS(Ψ|Φ) = 1, then Φ → Ψ will be called a certain decision rule; if 0 < πS(Ψ|Φ) < 1

the decision rule will be referred to as a possible decision rule.
Besides, we will also use a coverage factor defined by

πS(Φ|Ψ) = pU(‖Φ‖S| ‖Ψ‖S).

which is the conditional probability that Φ is true in S, given Ψ is true in S with the
probability πS(Ψ). Obviously we have

πS(Φ|Ψ) =
card(||Φ ∧ Ψ||S)

card(||Ψ||S)
.

The certainty factors in S can be also interpreted as the frequency of objects having
the property Ψ in the set of objects having the property Φ and the coverage factor – as
the frequency of objects having the property Φ in the set of objects having the property
Ψ.

Let us observe that the certain decision rules are associated with the lower approxi-
mation, whereas the possible decision rules correspond to the boundary region of a set.
Thus instead of approximations we can use decision rules, which form convenient formal
language for descriptions of properties of sets.

6 Decision algorithm

Let Dec(S) = {Φi → Ψi}m
i=1, m ≥ 2, be a set of decision rules in a decision table

S = (U, C, D).

1) If for every Φ → Ψ, Φ′ → Ψ′ ∈ Dec(S) we have Φ = Φ′ or ||Φ ∧ Φ′||S = ∅, and
Ψ = Ψ′ or ||Ψ ∧ Ψ′||S = ∅, then we will say that Dec(S) is the set of mutually
disjoint (independent) decision rules in S.

2) If || m∨
i=1

Φi||S = U and || m∨
i=1

Ψi||S = U we will say that the set of decision rules Dec(S)

covers U.

3) If Φ → Ψ ∈ Dec(S) and ||Φ ∧ Ψ||S �= ∅ we will say that the decision rule Φ → Ψ is
admissible in S. card(||Φ∧Ψ||S) will be called the support of the rule in S and will
be denoted by suppS(Φ, Ψ) or in short supp(Φ, Ψ).

4) If
⋃

X∈U/D
C∗(X) = || ∨

Φ∈Dec+(S)
Φ||S where Dec+(S) is the set of all certain decision

rules from Dec(S), we will say that the set of decision rules Dec(S) preserves the
consistency of the decision table S = (U, C, D).

The set of decision rules Dec(S) that satisfies 1), 2) 3) and 4), i.e., is independent,
covers U , preserves the consistency of S and all decision rules Φ → Ψ ∈ Dec(S) are
admissible in S – will be called a decision algorithm in S.

5

Hence, if Dec(S) is a decision algorithm in S then the conditions of rules from Dec(S)
define in S a partition of U . Moreover, the positive region of D with respect to C, i.e., the
set ⋃

X∈U/D

C∗(X)

is partitioned by the conditions of some of these rules, which are certain in S.
If Φ → Ψ is a decision rule then the decision rule Ψ → Φ will be called an inverse

decision rule of Φ → Ψ.
Let Dec∗(S) denote the set of all inverse decision rules of Dec(S).
It can be shown that Dec∗(S) satisfies 1), 2), 3) and 4), i.e., it is an decision algorithm

in S.
If Dec(S) is any decision algorithm then Dec∗(S) will be called an inverse decision

algorithm of Dec(S).
Let Dec(S) be a decision algorithm in S. The number

σS(Φ, Ψ) =
suppS(Φ, Ψ)

card(U)
= πS(Ψ|Φ) · πS(Φ)

will be called the strength of the decision rule Φ → Ψ in S and

η(Dec(S)) =
∑

Φ→Ψ∈Dec(S)

max{σS(Φ, Ψ)}Ψ∈D(Φ)

where D(Φ) = {Ψ : Φ → Ψ ∈ Dec(S)} will be referred to as the efficiency of the decision
algorithm Dec(S) in S, where the sum is stretched over all decision rules in the algorithm.

The efficiency of a decision algorithm is the probability (ratio) of all objects of the
universe, that are classified to decision classes, by means of the decision rule Φ → Ψ
with maximal strength σS(Φ, Ψ) among rules Φ → Ψ ∈ Dec(S) with satisfied Φ on these
objects.

7 Illustrative example

Now we will illustrate the concepts introduced previously by means of a simple example
shown in Table 1.

Table 1: An example of an information system

F driving conditions consequence Support
weather road time accident

1 misty icy day yes 6
2 foggy icy night yes 8
3 misty not icy night yes 5
4 sunny icy day no 55
5 foggy not icy dusk yes 11
6 misty not icy night no 15

6

In Table 1 six facts concerning a hundred cases of driving a car in various weather
conditions are presented. In the table W (weather), R (road) and T (time), are condi-
tion attributes, represent driving conditions, A (accident), is a decision attribute, giving
information whether an accident has occurred or not. N is the number of similar cases.

Each row of the decision table determines a decision obeyed when specified conditions
are satisfied.

It is easy to compute that there are two reducts {weather, road } and { weather, time
} of condition attributes. Thus the core is the attribute weather.

An example of decision algorithm associated with Table 1 is given below:

1) (W,misty) ∧ (R,icy) → (A,yes)

2) (W,foggy) → (A,yes)

3) (W,misty) ∧ (R,not icy) → (A,yes)

4) (W,sunny) → (A,no)

5) (W,misty) ∧ (R,not icy) → (A,no)

Below the relationship between approximations and decision rules is given.

- Certain rules describing accidents (the lower approximation of the set of facts
{1,2,3,5})

1) (W,misty) ∧ (R,icy) → (A,yes)

2) (W,foggy) → (A,yes)

- Uncertain rule describing accidents (the boundary region {3,6} of the set of facts
{1,2,3,5})

3) (W,misty) ∧ (R,not icy) → (A,yes)

- Certain rule describing lack of accidents (the lower approximation of the set of facts
{4,6})

4) (W,sunny) → (A,no)

- Uncertain rule describing lack of accidents (the boundary region {3,6} of the set of
facts {4,6})

5) (W,misty) ∧ (R,not icy) → (A,no)

The certainty and coverage factors for decision rules 1),...,5) are presented in Table 2.

7

Table 2: Certainty and coverage factors

rule no. certainty coverage support strength
1 1.00 0.20 6 0.06
2 1.00 0.63 19 0.19
3 0.25 0.17 5 0.05
4 1.00 0.79 55 0.55
5 0.75 0.21 15 0.15

The following inverse decision rules can be understood as explanation of car accidents
in terms of weather conditions:

1’) (A,yes) → (R,icy) ∧ (W,misty)

2’) (A,yes) → (W,foggy)

3’) (A,yes) → (R,not icy) ∧ (W,misty)

4’) (A,no) → (W,sunny)

5’) (A,no) → (R,not icy) ∧ (W,misty)

Summing up, the decision algorithm leads to the following conclusions:

- misty weather and icy road or foggy weather surely cause accident,

- misty weather and road not icy most probably does not cause accident,

- sunny weather surely does not causes accident.

The inverse decision algorithm gives the following explanations:

- foggy weather most probably causes accident,

- sunny weather most probably does not cause accident.

Observe that the results are valid for the data given in Table 1 only. Weather the results
are valid for new cases it depends if Table 1 is representative sample of a bigger number
of cases or not.

8 Conclusions

In the paper basic concepts of rough set theory have been presented and briefly discussed.
The theory attracted attension both theoretitions and practioners world wide and proved
to be a valuable new method of data analysis.

8

References

[1] Grzyma�la-Busse J. Managing Uncertainty in Expert Systems. Kluwer Academic Pub-
lishers, Boston, Dordrecht, 1991.

[2] Pawlak, Z. Rough Sets – Theoretical Aspects of Reasoning about Data; Kluwer Aca-
demic Publishers: Boston, Dordrecht, 1991.

[3] L. Polkowski, A. Skowron (eds.): Proceedings of the First International Conference
Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June,
Lecture Notes in Artificial Intelligence 1424, Springer–Verlag, Berlin, 1998.

[4] L. Polkowski, A. Skowron (eds.): Rough Sets in Knowledge Discovery Vol. 1–2,
Physica-Verlag, Heidelberg, 1998.

[5] L. Polkowski, S. Tsumoto, T. Y. Lin (eds) Rough Set Method and Applications.
New Development in Knowledge Discovery in Information Systems. Physica-Verlag,
Heidelberg, (to appear)

[6] N. Zhong, A. Skowron, S. Ohsuga (eds.): Proceedings of 7th International Work-
shop: New Directions in Rough Sets, Data Mining, and Granular –Soft Computing
(RSFDGSC’99), Yamaguchi, Japan, November 1999, Lecture Notes in Artificial Intel-
ligence 1711 Springer–Verlag, Berlin, 1999, 1–9.

MORE INFO ABOUT ROUGH SETS CAN BE FOUND IN:

http://www.cs.uregina.ca/ roughset
http://www.infj.ulst.ac.uk /staff/I.Duentsch
http://www-idss.cs.put.poznan.pl/staff/slowinski/
http://alfa/logic/

9

