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Abstract

Inference rules, like e.g. modus ponens, play an essential role in logical reasoning
and are fundamental in deductive logic, whereas decision rules are basic tools of
reasoning in many branches of Al, particularly in data mining, machine learning
decision support and others.

Both inference rules and decision rules are implication, but there are essential
differences between these two concepts described by premisses and by conclusions of
implication. Inference rules are used to draw true conclusions from true premises,
whereas decision rules are prescription of decisions (actions) that must be made
when some condition are satisfied. Therefore some probabilistic, fuzzy or rough
measures must be associated with decision rules, to measure the closenes of con-
cepts — in contrast to inference rules where truth values are propagated from from
premisses to conclusions. The rough set approach bridges somehow both concepts
— inference and decision rules.

With every implication two conditional probabilities are associated, called cred-
1bility and coverage factors respectively. The credibility factor may be considered
as partial truth value of the implication and was first introduced by Lukasiewicz
in 1913 — whereas the covering factor, introduced recently by Tsumoto, shows how
strongly a decision rule covers decision of the decision rule.

It can be shown that the relationship between this two factors is disclosed by
the Bayes” Theorem. However, the meaning of Bayes’ Theorem in this case differs
from that postulated in statistical inference. In statistical data analysis based on
Bayes’ Theorem, we assume that prior probability about some parameters without
knowledge about the data is given. The posterior probability is computed next,
which tells us what can be said about prior probability in view of the data. In the
rough set approach the meaning of Bayes’ Theorem is different. It reveals some rela-
tionships in the database, without referring to prior and posterior probabilities, and
it can be used to reason about data in terms of approximate (rough) implications.
Thus, the proposed approach can be seen as a new model for Bayes’ Theorem.

Thus the rough set approach combines together both logical and probabilistic
aspects of implications. This idea is due to Lukasiewicz who first pointed out the
relationship between implications and Bayes’ Theorem. In the lecture the above
ideas will be formulated precisely and discussed from the rough set perspective.
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1 Introduction

Classical deductive reasoning is based on Modus Ponens inference rule, which states that
if a formula @ is true and the implication ® — W is true then the formula W is also true.
Lukasiewicz first proposed to extend Modus Ponens to the case when instead of true
values probabilities are associated with ®, & — ¥ and ¥ [3, 5]. Later, independently,
various probabilistic logics have been proposed and investigated by many logicians and
philosophers [1, 6].

Recently the generalization of Modus Ponens become a very important issue in con-
nection with knowledge based systems. Particularly interesting in this context is the
Generalized Modus Ponens, introduced by Zadeh in the setting of fuzzy sets [16, 17],
which next has been investigated by various authors [2, 7, 14].

Skowron has proposed generalization of Modus Ponens in the framework of rough
set theory [13]. In this paper we also propose a generalization of Modus Ponens within
rough set theory, called a Rough Modus Ponens (RMP), however different to that given
in [13], and refering to Lukasiewcz’s ideas. The essence of Lukasiewcz’s idea consists in
association with the implication ® — W a conditional probability, whereas with ® and
¥ unconditional probabilities are associated. The assumption that the probability of
implication ® — V¥ is a conditional probability is due to Ramsey [1] but similar ideas
can be also found in Lukasiewicz, however, not expressed explicitly [3]. Association of
conditional probability with decision rules in the context of rough sets has been proposed
also by other authors (cf. [15], [18]) but our aim is entirely different. We try to set this
issue rather in the frame work of logical research, establish sound logical foundations for
this kind of research and show that decision rules used in the rough set approach play
different role as MP inference rule in logical reasoning, and thus they cannot be in fact
treated as a simple generalization of MP. Although association of conditional probabilities
to implications is quite obvious it leeds to logical and philosophical difficulties. Extensive
discussion of this problem can be found in [1].

Implication is strongly related to inclusion, i.e., if ® — W is true then every x satisfying
® satisfies also W, or in other words |®| C |¥|, where |®| denotes the set of all = satisfying
® i.e., the meaning of ®. To define RMP we will need partial (rough) inclusion of sets
and to this aim we will adopt the idea of rough mereology proposed by Polkowski and
Skowron [11, 12]. Thus the proposed RMP has also connection with rough mereology,
which can be understood as a natural theory of rough inclusion, and consequently — rough
implication.

This paper contains extended version of some ideas presented in [8, 9].

2 Multivalued logics as probability logics — a Lukasie-
wicz’s approach

In this section we present briefly basic ideas of Lukasiewicz’s approach to multivalued
logics as probability logics.

Lukasiewicz associates with every so called indefinite proposition of one variable x,
®(z) a true value 7(P(x)), which is the ratio of the number of all values of x which
satify ®(z), to the number of all possible values of z. For example, the true value of the
proposition "z is greater than 3” for x = 1,2,...,5is 2/5. It turns out that assuming the



following three axioms

1) @ is false if and only if 7(®) = 0;

2) @ is true if and anly if 7(®) = 1;

3) if 7(® — W) =1 then 7(®) + w(~ & A V) = 7(¥);
one can show that
4) if m1(® = ¥) = 1 then 7(P) = 7(¥);

5) m(®) +m(~ @) =1;

)
)
6) 7(®VVU)=7(P)+7(V) —7m(PAT);

) m1(PATD)=0iff 7(®V V) =7(P) + 7(T).

Obviously, the above properties have probabilistic flavour. With every implication & — ¥
one can associate conditional probability = (¥|®) = (7:12/\;1/) In what follows the above ideas
will be used to define the Rough Modus Ponens. Let us mention that in applications we
are aften interested in properties more specific than (1)-(7)s related to properties of 7

defined by data tables.

3 Information system and decision table

Starting point of rough set based data analysis is a data set, called an information system.

An information system is a data table, whose columns are labelled by attributes, rows
are labelled by objects of interest and entries of the table are attribute values.

Formally by an information system we will understand a pair S = (U, A), where U
and A, are finite, nonempty sets called the universe, and the set of attributes, respectively.
With every attribute a € A we associate a set V,, of its values, called the domain of a.
Any subset B of A determines a binary relation I(B) on U, which will be called an
indiscernibility relation, and is defined as follows: (z,y) € I(B) if and only if a(z) = a(y)
for every a € A, where a(z) denotes the value of attribute a for element x. Obviously
I(B) is an equivalence relation. The family of all equivalence classes of I(B), i.e., partition
determined by B, will be denoted by U/I(B), or simple U/B; an equivalence class of I(B),
i.e., block of the partition U/B, containing x will be denoted by B(x).

If (x,y) belongs to I(B) we will say that = and y are B-indiscernible or indiscernible
with respect to B. Equivalence classes of the relation I(B) (or blocks of the partition
U/B) are referred to as B-elementary sets or B-granules.

If we distinguish in an information system two classes of attributes, called condition
and decision attributes, respectively, then the system will be called a decision table.

A simple, tutorial example of an information system (a decision table) is shown in
Table 1.



Table 1: An example of a decision table

Car| F P S M
med. | med. | med. | poor
high | med. | large | poor
med. | low | large | poor
low | med. | med. | good
high | low | small | poor
med. | low | large | good

SO W N

The table contains data about six cars, where F, P, S and M denote fuel consumption,
selling price, size and marketability, respectively.

Attributes F, P and S are condition attributes, whereas M is the decision attribute.
Each row of the decision table determines a decision obeyed when specified conditions are
satisfied.

4 Approximations

Suppose we are given an information system (a datat set) S = (U, A), a subset X of
the universe U, and subset of attributes B. Our task is to describe the set X in terms
of attribute values from B. To this end we define two operations assigning to every
X C U two sets B,(X) and B*(X) called the B-lower and the B-upper approzimation of
X, respectively, and defined as follows:

B.(X) = U{B(x): B(z) € X},

zeU

B*(X) = U {B(z) : B(x) N X # 0}.
zeU
Hence, the B-lower approximation of a set is the union of all B-granules that are included
in the set, whereas the B-upper approximation of a set is the union of all B-granules that
have a nonempty intersection with the set. The set

BN,(X) = B(X) - B.(X)

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, i.e., BNg(X) = (), then X is crisp
(ezact) with respect to B; in the opposite case, i.e., if BNg(X) # 0, X is referred to as
rough (inexact) with respect to B.

For example, let C' = {F, P, S} be the set of all condition attributes. Then for the
set X = {1,2,3,5} of cars with poor marketability we have C,(X) = {1,2,5}, C*(X) =
{1,2,3,5,6} and BNq(X) = {3,6}.



5 Decision rules

With every information system S = (U, A) we associate a formal language L(S), written L
when S is understood. Expressions of the language L are logical formulas denoted by ®, ¥
etc. built up from attributes and attribute-value pairs by means of logical connectives A
(and), V (or), ~ (not) in the standard way. We will denote by ||®||s the set of all objects
x € U satisfying ® in S and refer to as the meaning of & in S.

The meaning of ® in S is defined inductively as follows:

1) |[(a,v)||s={veU:a(v)=U}foralaec Aandvel,

)
2) ||V ¥ls = ||®]s U [[¥]]s,
)

3) |®ATls = ||@]s N [[W]]s,

4) ||~ 2[s =U —[|2]]s.

A formula @ is true in S if ||®||s = U.

A decision rule in L is an expression & — U, read if ¢ then ¥; ® and ¥ are referred
to as conditions and decisions of the rule, respectively.

An example of a decision rule is given below

(F,med.) A (P,low) A (S, large) — (M, poor).

Obviously a decision rule ® — V¥ is true in S if ||®||s C [|¥|]s.

With every decision rule ® — ¥ we associate a conditional probability 7¢(¥|®) that
V¥ is true in S given ® is true in S with the probability 7r5(<1>)%‘(‘1;]”)5), called the certainty
factor and defined as follows:

card(||® A ¥||s)
card(||®]s)

s(V|P) =

where ||®||s # 0.
This coefficient is widly used in data mining and is called ”confidence coefficient”.
Obviously, 7g(¥|®) = 1 if and only if ® — W is true in S.
If 7g(¥|P) =1, then & — ¥ will be called a certain decision rule; if 0 < mg(¥|P) < 1
the decision rule will be referred to as a possible decision rule.
Besides, we will also need a coverage factor

card(||® A ¥||s)

ms () = — Ty

which is the conditional probability that & is true in S, given ¥ is true in S with the
probability 7g ().

Certainty and coverage factors for decision rules associated with Table 1 are given in
Table 2.



Table 2: Certainty and coverage factors

Car| F P S M | Cert. | Cov.
1 | med. | med. | med. | poor 1 1/4
2 | high | med. | large | poor 1 1/4
3 | med. | low | large | poor | 1/2 1/4
4 | low | med. | med. | good 1 1/2
5 | high | low | small| poor 1 1/4
6 | med. | low | large | good | 1/2 1/2

6 Decision rules and approximations

Let {®; — U}, be a set of decision rules such that:

all conditions ®; are pairwise mutally exclusive, i.e., [|®; A ®;||s = 0, for any

1 <i,j<mn, i#j, and (1)
3 g (B3] W) = 1.
=1

Let C' and D be condition and decision attributes, respectively, and let {®; — ¥},, be
a set of decision rules satisfying (1).
Then the following relationships are valid:

a) Cull¥lls)=1 'V @ills,
(W] ®;)=1

by ¢*(lells) =1V s,
0<m(W|d;)<1

o) BNc(l¥lls) =1l V  @ills=1V l®ils
0<m(W|d;)<1 i=1

The above properties enable us to introduce the following definitions:

i) If ||@]|s = Ci(||¥]]s), then formula ® will be called the C-lower approzimation of
the formula U and will be denoted by C,(¥);

ii) If ||®||s = C*(]|¥||s), then the formula ® will be called the C-upper approzimation
of the formula ® and will be denoted by C*(¥);

iii) If ||®||s = BN¢(]|¥]]s), then @ will be called the C-boundary of the formula ¥ and
will be denoted by BN¢ (V).

Let us consider the following example.
The C-lower approximation of (M, poor) is the formula

Ci«(M,poor) = ((F,med.) N (P,med.) A (S, med.)) V
((F, high) A (P,med.) A (S, large)) V
((F, high) A (P,low) A (S, small)).
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The C-upper approximation of (M, poor) is the formula
C* (M, poor) (F,med.) A\ (P, med.) A (S, med.
(F, high) A\ (P, med.) A (S, large
(F,med.) A (P,low) A (S, large)
((F, high) A (P,low) A (S, small)
The C-boundary of (M, poor) is the formula
BN¢ (M, poor) = ((F,med.) A (P,low) V (S, large)).
After simplification we get the following approximations
Ci«(M,poor) = ((F,med.) A (P,med.))V (F,high),
C*(M,poor) = (F,med.)V (F,high).

= )V
( )V
( )V
)

The concepts of the lower and upper approximation of a decision allow us to define the
following decision rules:
Ci(T) = U,
C* (V) —» U,
BN¢(¥) — W,

For example, from the approximations given in the example above we get the following
decision rules:

((F,med.) A\ (P,med.)) V (F,high) — (M, poor),
(F,med.) V (F,high) — (M, poor),
((F,med.) A (P,low) A (S,large)) — (M,poor).

From these definitions it follows that any decision ¥ can be uniquely discribed by the
following two decision rules:
Ci(T) = U,
BN¢c(¥) — W,

From the above calculations we can get two decision rules

F, high) — (M,poor),

((F,med.) N (P,med.)) V (
(S,large)) — (M,poor),

((F,med.) A (P,low.) A

which are associated with the lower approximation and the boudary region of the
decision (M, poor), respectively and describe decision (M, poor).

Obviously we can get similar decision rules for the decision (M, good) which are as
follows:

(F,low) — (M,good),
((F,med.) A (P,low.) A (S,large)) — (M,good).

This coincides with the idea given by Ziarko [14] to represent decision tables by means
of three decision rules corresponding to positive region the boundary region, and the
negative region of a decision.



7 Decision rules and Bayes’ rules

If {&, — ¥}, is a set of decision rules satisfying condition (1), then the well known
formula for total probability holds:

Zzn;ﬂs(‘l’@i) -y (Pi)- (2)

Moreover for any decision rule & — W the following Bayes’ formula is valid:

7?5(‘1’@ ) - 75 (P;)

T = S (U8 (@) @)

That is, any decision table or any set of implications satisfying condition (1) satisfies
the Bayes’ formula, without referring to prior and posterior probablities — fundamental in
Baysian data analysis philosophy. Bayes’ formula in our case says that: if an implication
® — W is true to the degree mg(¥|®) then the implication ¥ — @ is true to the degree
71'5(@|\If)

This idea can be seen as a generalization of a modus tollens inference rule, which says
that if the implication ® — W is true so is the implication ~ ¥ —~ .

For example, for the set of decision rules

((F,med.) N (P,med.)) V (F, high) — (M,poor),
((F,med.) N\ (P,low) A (S,large)) — (M,poor),
(F,low) — (M,good),

((F,med.) N\ (P,low) A (S,large)) — (M,good),

we get, the values of ceratinty and coverage factors shown in Table 3.

Table 3: Initial decision rules

Rule Decision | Certainty | Coverage
certain poor 1 3/4
boundary |  poor 1/2 1/4
certain good 1 1/2
boundary | good 1/2 1/2

The above set of decison rules can be ”reversed” as

(M,poor) — ((F,med.) N\ (P,med.)) V (F, high),
(M,poor) — ((F,med.) N (P,low) A (S,large)),
(M,good) — (F,low),

(M,good) — ((F,med.) N (P,low) A (S,large)).

Due to Bayes’ formula the certainty and coverage factors for inverted decision rules
are mutually exchanged as shown in Table 4 below.



Table 4: Reversed decision rules

Rule Decision | Certainty | Coverage
certain poor 3/4 1
boundary |  poor 1/4 1/2
certain good 1/2 1
boundary | good 1/2 1/2

This property can be used to reason about data in the way similar to that allowed by
modus tollens inference rule in classical logic.

8 Conclusions

It is shown in this paper that any decision table satisfies Bayes’ rule. This enables to
apply Bayes’ rule of inference without referring to prior and posterior probabilities, inher-
ently associated with ”classical” Bayesian inference philosophy. From data tables one can
extract decision rules — implications labelled by certainty factors expressing their degree
of truth. The factors can be computed from data. Moreover, one can compute from data
the coverage degrees expressing the truth degrees of "reverse” implications. This can be
treated as generalization of modus tollens inference rule.
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