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Abstract

Inference rules, like e.g. modus ponens, play an essential role in logical reasoning
and are fundamental in deductive logic, whereas decision rules are basic tools of
reasoning in many branches of AI, particularly in data mining, machine learning
decision support and others.

Both inference rules and decision rules are implication, but there are essential
differences between these two concepts described by premisses and by conclusions of
implication. Inference rules are used to draw true conclusions from true premises,
whereas decision rules are prescription of decisions (actions) that must be made
when some condition are satisfied. Therefore some probabilistic, fuzzy or rough
measures must be associated

with decision rules, to measure the closenes of concepts – in contrast to inference
rules where truth values are propagated from from premisses to conclusions. The
rough set approach bridges somehow both concepts – inference and decision rules.

With every implication two conditional probabilities are associated, called cred-
ibility and coverage factors respectively. The credibility factor may be considered
as partial truth value of the implication and was first introduced by �Lukasiewicz
in 1913 – whereas the covering factor, introduced recently by Tsumoto, shows how
strongly a decision rule covers decision of the decision rule.

It can be shown that the relationship between this two factors is disclosed by
the Bayes’ Theorem. However, the meaning of Bayes’ Theorem in this case differs
from that postulated in statistical inference. In statistical data analysis based on
Bayes’ Theorem, we assume that prior probability about some parameters without
knowledge about the data is given. The posterior probability is computed next,
which tells us what can be said about prior probability in view of the data. In the
rough set approach the meaning of Bayes’ Theorem is different. It reveals some rela-
tionships in the database, without referring to prior and posterior probabilities, and
it can be used to reason about data in terms of approximate (rough) implications.
Thus, the proposed approach can be seen as a new model for Bayes’ Theorem.

Thus the rough set approach combines together both logical and probabilistic
aspects of implications. This idea is due to Lukasiewicz who first pointed out the
relationship between implications and Bayes’ Theorem. In the lecture the above
ideas will be formulated precisely and discussed from the rough set perspective.
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1 Introduction

Classical deductive reasoning is based on Modus Ponens inference rule, which states that
if a formula Φ is true and the implication Φ → Ψ is true then the formula Ψ is also true.
�Lukasiewicz first proposed to extend Modus Ponens to the case when instead of true
values probabilities are associated with Φ, Φ → Ψ and Ψ [3, 5]. Later, independently,
various probabilistic logics have been proposed and investigated by many logicians and
philosophers [1, 6].

Recently the generalization of Modus Ponens become a very important issue in con-
nection with knowledge based systems. Particularly interesting in this context is the
Generalized Modus Ponens, introduced by Zadeh in the setting of fuzzy sets [16, 17],
which next has been investigated by various authors [2, 7, 14].

Skowron has proposed generalization of Modus Ponens in the framework of rough
set theory [13]. In this paper we also propose a generalization of Modus Ponens within
rough set theory, called a Rough Modus Ponens (RMP), however different to that given
in [13], and refering to �Lukasiewcz’s ideas. The essence of �Lukasiewcz’s idea consists in
association with the implication Φ → Ψ a conditional probability, whereas with Φ and
Ψ unconditional probabilities are associated. The assumption that the probability of
implication Φ → Ψ is a conditional probability is due to Ramsey [1] but similar ideas
can be also found in �Lukasiewicz, however, not expressed explicitly [3]. Association of
conditional probability with decision rules in the context of rough sets has been proposed
also by other authors (cf. [15[, [18]) but our aim is entirely different. We try to set this
issue rather in the frame work of logical research, establish sound logical foundations for
this kind of research and show that decision rules used in the rough set approach play
different role as MP inference rule in logical reasoning, and thus they cannot be in fact
treated as a simple generalization of MP. Although association of conditional probabilities
to implications is quite obvious it leeds to logical and philosophical difficulties. Extensive
discussion of this problem can be found in [1].

Implication is strongly related to inclusion, i.e., if Φ → Ψ is true then every x satisfying
Φ satisfies also Ψ, or in other words |Φ| ⊆ |Ψ|, where |Φ| denotes the set of all x satisfying
Φ i.e., the meaning of Φ. To define RMP we will need partial (rough) inclusion of sets
and to this aim we will adopt the idea of rough mereology proposed by Polkowski and
Skowron [11, 12]. Thus the proposed RMP has also connection with rough mereology,
which can be understood as a natural theory of rough inclusion, and consequently – rough
implication.

This paper contains extended version of some ideas presented in [8, 9].

2 Multivalued logics as probability logics – a �Lukasie-

wicz’s approach

In this section we present briefly basic ideas of �Lukasiewicz’s approach to multivalued
logics as probability logics.

�Lukasiewicz associates with every so called indefinite proposition of one variable x,
Φ(x) a true value π(Φ(x)), which is the ratio of the number of all values of x which
satify Φ(x), to the number of all possible values of x. For example, the true value of the
proposition ”x is greater than 3” for x = 1, 2, . . . , 5 is 2/5. It turns out that assuming the
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following three axioms

1) Φ is false if and only if π(Φ) = 0;

2) Φ is true if and anly if π(Φ) = 1;

3) if π(Φ → Ψ) = 1 then π(Φ) + π(∼ Φ ∧ Ψ) = π(Ψ);

one can show that

4) if π(Φ ≡ Ψ) = 1 then π(Φ) = π(Ψ);

5) π(Φ) + π(∼ Φ) = 1;

6) π(Φ ∨ Ψ) = π(Φ) + π(Ψ) − π(Φ ∧ Ψ);

7) π(Φ ∧ Ψ) = 0 iff π(Φ ∨ Ψ) = π(Φ) + π(Ψ).

Obviously, the above properties have probabilistic flavour. With every implication Φ → Ψ
one can associate conditional probability π(Ψ|Φ) = π(Φ∧Ψ)

π(Φ)
. In what follows the above ideas

will be used to define the Rough Modus Ponens. Let us mention that in applications we
are aften interested in properties more specific than (1)-(7)s related to properties of π
defined by data tables.

3 Decision tables and decision rules

Usually we start considerartions on rough sets from the concept of a data table. An
example of a simple data table is shown in Table 1.

In the table H, M, T and F are abbreviations of Headache, Muscle-pain, Temperature
and Flu respectively.

Table 1: Exemplary data table

Patient Headache (H) Muscle-pain (M) Temperature (T) Flu (F)

p1 no yes high yes
p2 yes no high yes
p3 yes yes very high yes
p4 no yes normal no
p5 yes no high no
p6 no yes very high yes

Columns of the table are labelled by attributes (symptoms) and rows – by objects
(patients), whereas entries of the table are attribute values.

Such tables are known as information systems, attribute-value tables or information
tables. We will use here the term information table.

Often we distinguish in an information table two classes of attributes, called condition
and decision (action) attributes. For example in Table 1 attributes Headache, Muscle-pain
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and Temperature can be considered as condition attributes, whereas the attribute Flu –
as a decision attribute.

Each row of a decision table determines a decision rule, which specifies decisions
(actions) that should be taken when conditions pointed out by condition attributes are
satisfied. For example in Table 1 the condition (H,no), (M,yes), (T,high) determines
uniquely the decision (F,yes). Objects in a decision table are used as labels of decision
rules. Decision rules 2) and 5) in Table 1 have the same conditions by different decisions.
Such rules are called inconsistent (nondeterministic, conflicting); otherwise the rules are
referred to as consistent (certain, deterministic, nonconflicting). Sometimes consistent
decision rules are called sure rules, and inconsistent rules are called possible rules. Decision
tables containing inconsistent decision rules are called inconsistent (nondeterministic,
conflicting); otherwise the table is consistent (deterministic, non conflicting).

The number of consistent rules to all rules in a decision table can be used as consistency
factor of the decision table, and will be denoted by γ(C, D), where C and D are condition
and decision attributes respectively. Thus if γ(C, D) = 1 the decision table is consistent
and if γ(C, D) �= 1 the decision table is inconsistent. For example for Table 1 γ(C, D) =
4/6.

Decision rules are often presented as implications and are called ”if... then...” rules.
For example, Table 1 determines the following set of implications:

1) if (H,no) and (M,yes) and (T,high) then (F,yes),

2) if (H,yes) and (M,no) and (T,high) then (F,yes),

3) if (H,yes) and (M,yes) and (T,very high) then (F,yes),

4) if (H,no) and (M,yes) and (T,normal) then (F,no),

5) if (H,yes) and (M,no) and (T,high) then (F,no),

6) if (H,no) and (M,yes) and (T,very high) then (F,yes),

From logical point of view decision rules are implications built up form elementary
formulas of the from (attribute name, attribute value) and combined together by means
of propositional connectives ”and”, ”or” and ”implication” in a usual way.

4 Dependency of attributes and decision rules

Intuitively, a set of attributes D depends totally on a set of attributes C, denoted C ⇒ D,
if all values of attributes from D are uniquely determined by values of attributes from C.
In other words, D depends totally on C, if there exists a functional dependency between
values of D and C. In Table 1 there are no total dependencies whatsoever. If in Table
1, the value of the attribute Temperature for patient p5 were normal instead of high,
there would be a total dependency {T} ⇒ {F}, because to each value of the attribute
Temperature there would correspond an unique value of the attribute Flu.

We would need also a more general concept of dependency of attributes, called a
partial dependency of attributes. Let us depict the idea by example, referring to Table
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1. In this table, for example, the attribute Temperature determines uniquely only some
values of the attribute Flu. That is, (T,very high) implies (F,yes), similarly (T,normal)
implies (F,no), but (T,high) does not imply always (F,yes). Thus the partial dependency
means that only some values of D are determined by values of C.

Formally dependency can be defined in the following way. Let D and C be subsets of
A.

We will say that D depends on C in a degree k (0 ≤ k ≤ 1), denoted C ⇒k D, if
k = γ(C, D).

If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends
partially (in a degree k) on C.

For dependency {H, M, T} ⇒ {F} we get k = 4/6 = 2/3, because four out of six
patients can be uniquely classified as having flu or not, employing attributes Headache,
Muscle-pain and Temperature.

The set of decision rules associated with a decision table S = (U, C, D) can be viewed
as a description of the dependency C ⇒ D.

For example the set of decision rules 1), . . . , 6) associated with Table 1 can be under-
stood as a description of the dependency {H, M, T} ⇒ {F}.

5 Decision rules

Let S be a database and let C and D be condition and decision attributes, respectively.
By Φ, Ψ etc. we will denote logicals formulas built up from attributes, attribute-values

and logical connectives (and, or, not) in a standard way. We will denote by |Φ|S the set
of all object x ∈ U satisfying Φ in S and refer to as the meaning of Φ in S.

The expression πS(Φ) = card(|Φ|S)
card(U)

can be interpreted the probability that the formula
Φ is true in S.

A decision rule is an expression in the form ”if...then...”, written Φ → Ψ; Φ and Ψ
are refered to as condition and decision of the rule respectively.

A decision rule Φ → Ψ is admissible in S if |Φ|S is the union of some C-elementary
sets, |Ψ|S is the union of some D-elementary sets and |Φ ∧ Ψ|S �= ∅. In what follows we
will consider admissible decision rules only.

With every decision rule Φ → Ψ we associate the conditional probability that Ψ is
true in S given Φ is true in S with the probability πS(Φ), a called certainty factor

πS(Ψ|Φ) =
card(|Φ ∧ Ψ|S)

card(|Φ|S)
,

where |Φ|S denotes the set of all objects satisfying Φ in S.
Besides, we will also need a coverage factor [46]

πS(Φ|Ψ) =
card(|Φ ∧ Ψ|S)

card(|Φ|S)
,

which is the conditional probability that Φ is true in S given Ψ is true in S with the
probability πS(Ψ).

For example, (F,low) and (C,black) and (P,med.) → (M,good) is an admissible rule in
Table 1 and the certainty and coverage factors for this rule are 1/2 and 1/4 respectively.
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Let {Φi → Ψ}n be a set of decision rules such that all conditions Φi are pairwise
mutally exclusive, i.e., |Φi ∧ Φj |S, for any 1 ≤ i, j ≤ n, i �= j, and

n∑

i=1

πS(Φi|Ψ) = 1. (∗)

Then the following property holds:

πS(Ψ) =
n∑

i=1

πS(Ψ|Φi) · πS(Φi). (∗∗)

For any decision rule Φ → Ψ the following formula is valid:

πS(Φ|Ψ) =
πS(Ψ|Φ) · πS(Φ)

∑n
i=1 πS(Ψ|Φi) · πS(Φi)

. (∗ ∗ ∗)

Formula (***) can be seen as generalization of ........... 3) in �Lukasiewicz’s probabilistic
logic.

This means that any database, with distinguished condition and decision attributes
(a decision table) or any set of implications satisfying condition (*) satisfies the Bayes’
Theorem. Thus databases and set of decision rules can be perceived as a new model for
the Bayes’ Theorem. Let us note that in both cases we do not refer to prior or posterior
probabilities and the Bayes’ Theorem simple reveals some patterns in data. This property
can be used to reason about data, by inverting implications valid in the database.

6 Conclusions
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