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1 Introduction

Rough set theory is a new mathematical approach to data analysis. Basic idea of this
method is hinges on classification of objects of interest into similarity classes (clusters)
containing objects which are indiscernible with respects to some features, e.g., colour,
temperature etc., which form basic building blocks of knowledge about reality, and are
employed next to find out hidden patterns in data. Basis of rough set theory can be found
in [29, 32, 38, 46].

Rough set theory has some overlaps with other methods of data analysis, e.g., statistics,
cluster analysis, fuzzy sets, evidence theory and other but it can be viewed in its own rights
as an independent discipline.

The rough set approach seems to be of fundamental importance to Al and cogni-
tive sciences, especially in the areas of machine learning, knowledge acquisition, decision
analysis, knowledge discovery from databases, expert systems, inductive reasoning and
pattern recognition. It seems of particular importance to decision support systems and
data mining.

Rough set theory has been successfully applied in many real-life problems in medicine,
pharmacology, engineering, banking, financial and market analysis and others. More about
applications of rough set theory can be found in [15, 16, 37, 45, 49, 53] and others.

Very promising new areas of application of the rough set concept seems to emerge in
the near future. They include rough control, rough data bases, rough information retrieval,
rough neural network and others.

2 An example

Starting point of rough set theory is a set of data (information) about some objects of
interest. Data are usually organized in a form of a table called information system or
information table.

A very simple, fictitious example of an information table is shown in Table 1. The
table describes six cars in terms of their (attributes) features such as fuel consumption
(F), perceived quality (Q), selling price (P) and marketability (M).



Table 1: An example of information system

Car F Q P M
1 high fair med. poor
2 v. high good med. poor
3 high good low poor
4 med. fair med. good
5 v. high fair low poor
6 high good low good

Our main problem can be characterized as determining the nature of the relationship
between selected features of the cars and their marketability. In particular, we would like
to identify the main factors affecting the market acceptance of the cars.

Information systems with distinguished decision and condition attributes are called
decison tables.

Each row of a decision table determines a decision rule, which specifies decisions (ac-
tions) that should be taken when conditions pointed out by condition attributes are satis-
fied. For example in Table 1 the condition (F,high), (Q,fair), (P,med) determines uniquely
the decision (M,poor). Decision rules 3) and 6) in Table 1 have the same conditions but
different decisions. Such rules are called inconsistent (nondeterministic, conflicting, possi-
ble); otherwise the rules are referred to as consistent (certain, deterministic, nonconflict-
ing, sure). Decision tables containing inconsistent decision rules are called inconsistent
(nondeterministic, etc); otherwise the table is consistent (deterministic, etc).

The number of consistent rules to all rules in a decision table can be used as consistency
factor of the decision table, and will be denoted by ~(C, D), where C' and D are condition
and decision attributes respectively. Thus if v(C, D) < 1 the decision table is consistent
and if y(C, D) # 1 the decision table is inconsistent. For example for Table 1 v(C, D) =
4/6.

In what follows information systems will be denoted by S = (U, A), where U — is
universe, A is a set attributes, such that for every « € U and a € A, a(x) € V,, and V, is
the domain (set of values of ) of a.

3 Approximations of sets

Now the indiscernibility relation will be used to define basic operations in rough set theory,
which are defined as follows:

B.(X)={xeU:B(z) C X},

B(X)={zeU:B(x)NX # 0},

assigning to every X C U two sets B.(X) and B*(X) called the B-lower and the B-upper
approximation of X, respectively.

Hence, the B-lower approximation of a concept is the union of all B-granules that are
included in the concept, whereas the B-upper approximation of a concept is the union of



all B-granules that have a nonempty intersection with the concept. The set
BNg(X) = B"(X) - B.(X)

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, i.e., BNg(X) = 0, then X is erisp
(exact) with respect to B; in the opposite case, i.e., if BNB( ) £ 0, X is referred to as
rough (inexact) with respect to B.

Rough sets can be also defined using a rough membership function [25], defined as

card(B(x) N X)
card(B(z))

prx(x) =

Obviously
0 < px(z) < L.

Value of the membership function u%(z) is a conditional probability 7(X|B(z)), and can
be interpreted as a degree of certainty to which z belongs to X (or 1 — u& (), as a degree
of uncertainty).

The rough membership function can be generalized as follows [31]:

card(X NY)

X.Y) =
M Y) card X

where X, Y C U, X # 0.

The function u(X,Y") expresses the degree to which X is included in Y. Obviously, if
w(X,Y) =1, then X C Y.

It X is included to a degree k in X we will write X Cj Y, and say that X is roughly
included in Y.

The rough inclusion can be also used to more general definition of approximations,

which are defined below:

Bk(X): U {J?EUB(J}) ng},

k<i<1

BNX)= |J {x € U:B(x) S X},
0<i<1
where k£ (0 < k <1) is a treshold — and are called k-lower and k-upper B-approximation

of X, respectively.
The k-boundary B-region of X is defined as

BNE(X)=B"X)—-By(X)= |J {x €U : B(z) < X},

0<i<k

For k = 1 we obtain the previous definitions.
This generalization is a variety of variable precision rough set model proposed by

Ziarko [68].



4 Dependency of attributes

Another important issue in data analysis is discovering dependencies between attributes.
Suppose that the set of attributes A in a database S = (U, A) is divided into two subsets
C and D, called condition and decision attributes respectively, such that C U D = A and
C' N D = (). Such databases are called decision tables.

Intuitively, a set of attributes D depends totally on a set of attributes ', denoted
C' = D, if all values of attributes from D are uniquely determined by values of attributes
from C'. In other words, D depends totally on (', if there exists a functional dependency
between values of D and C.

We would need also a more general concept of dependency, called a partial dependency
of attributes. Intuitively, the partial dependency means that only some values of D are
determined by values of C.

Formally dependency can be defined in the following way. Let D and C' be subsets of
A.

We will say that D depends on C'to a degree k (0 < k < 1), denoted C = D, if

card(POS¢(D))

k=7(C, D)= card (U) ’

where
POSc(D) = U C(X),

XeU/D

called a positive region of the partition U/ D with respect to ', is the set of all elements

of U that can be uniquely classified to blocks of the partition U/ D, by means of C.
Obviously

card(C. (X))

(D) = card (U)

XeU/D
It £ = 1 we say that D depends totally on C', and it k < 1, we say that D depends partially
(to a degree k) on C, and if k =0, D does not depend on C.

The coefficient &k expresses the ratio of all elements of the universe, which can be
properly classified to blocks of the partition U/D, employing attributes C' and will be
called the degree of the dependency.

For example in Table 1 the degree of dependency between the attribute P and the set
of attributes {£,Q, L} is 2/3.

Obviously if D depends totally on C' then I(C) C I(D). That means that the partition
generated by C' is finer than the partition generated by D.

The function v(C, D) can be regarded as a generalization of the rough inclusion func-
tion p( X, Y), for it expresses to what degree partition generated by C,i.e., U/C isincluded
in the partition generated by D, i.e., U/D.

5 Reduction of attributes

A reduct is a minimal set of condition attributes that preserves the degree of dependency.
It means that a reduct is a minimal subset of condition attributes that enables to make
the same decisions as the whole set of condition attributes.



Formally if C' =4 D then a minimal subset C’ of C', such that y(C, D) = ~(C’, D) is
called a D-reduct of C.

For example, in Table 1 we have two reducts { £, Q} and {F, L} of condition attributes
{F,Q, L}. This means that Table 1 can be replaced either by Table 2 or Table 3.

Store | F Q P Store | K L| P
1 high | good | profit 1 high | no | profit
2 med. | good | loss 2 med. | no | loss
3 med. | good | profit 3 med. | no | profit
4 no avg. | loss 4 no no | loss
5 med. | avg. | loss 5 med. | yes | loss
6 high | avg. | profit 6 high | yes | profit

Table 2 Table 3

It is easy to check that both Table 2 and Table 3 preserve degree of dependency
between attributes P and F, (), L.

Reduction of attributes is the fundamental issue in rough set theory.

6 Decision rules

Let S be a decision table and let C' and D be condition and decision attributes, respec-
tively.

By @,V etc. we will denote logicals formulas built from attributes, attribute-values
and logical connectives (and, or, not) in a standard way. We will denote by |®|s the set
of all object x € U satisfying @ and refer to as the meaning of @ in S.

The expression 7g(®) = %%l will denote the probability that the formula @ is true
in 5.

A decision rule is an expression in the form 7if...then...”, written @ — ¥; @ and ¥ are
refered to as condition and decision of the rule respectively.

A decision rule @ — ¥ is admissible in S if |®|s is the union of some C-elementary
sets, |¥|s is the union of some D-elementary sets and |® A ¥|s # . In what follows we
will consider admissible decision rules only.

Examples of decision rules admissible in Table 1 are given below:

1) if (E, high) and (Q, good) and (L, no) then (P, loss)
2) if (E, med.) and (Q, avg.) then (P, loss)
3) if (Q, avg.) then (P, loss)

With every decision rule @ — ¥ we associate a certainty factor

card(|® ANW|s)
card(|®|s)

Ts(V|P) =

which is the conditional probability that ¥ is true in S given @ is true in S with the
probability ms(®).



Besides, we will also need a coverage factor [60]

card(|® ANW|s)
card(|¥|s)

Ts(PW) =

which is the conditional probability that @ is true in S given ¥ is true in S with the
probability 7s(¥).

Let {®; — W}, be a set of decision rules such that all conditions @; are pairwise
mutally exclusive, i.e., |@; A®@;|s =0, for any 1 <i,j5 <n,i# j, and

n

Zﬂ's(@AW) = 1.

=1

Then the following property holds:
ms(W) =) ws(W] @) - ws(Pi). (%)
i=1

For any decision rule @ — ¥ the following property is true:

7'('5(@|@) . 7'('5(@)
iy Ts(WD;) - ws(Di)

This relationship first was observed by Lukasiewicz [1, 21]. It can be easily seen that

Ts(PW) =

(+)

the relationship between the certainty factor and the coverage factor, expressed by the
formula (**) is the Bayes” Theorem. However, the meaning of Bayes’ Theorem in this
case differs from that postulated in statistical inference. In statistical data analysis based
on Bayes’ Theorem, we assume that prior probability about some parameters without
knowledge about the data is given. The posterior probability is computed next, which
tells us what can be said about prior probability in view of the data. In the rough set
approach the meaning of Bayes” Theorem is unlike. It reveals some relationships in the
database, without referring to prior and posterior probabilities, and it can be used to
reason about data in terms of approximate (rough) implications. Thus, the proposed
approach can be seen as a new model for Bayes’ Theorem, and offers a new approach to
data analysis.
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