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1 Introduction

Theory of knowledge has been studied by philosophers and logicians for many years [2,
12, 44]. Besides, epistemology became a very important issue for researchers involved in
AI and cognitive sciences, who contributed essentially to this domain [1, 3, 4, 5, 6, 7, 11,
25, 26, 30]. Nevertheless many issues pertinent to theory of knowledge, particularly in
the context of AI, seem to be far from being fully understood. Especially the problem
of imperfect knowledge requires due attention. Main flaws of imperfect knowledge are
vagueness and uncertainty. Rough set theory, besides fuzzy set theory and the theory
of evidence, contributed essentially to better understanding knowledge based systems,
especially if vagueness and uncertainty are concerned. Many papers have been published
on various aspects of knowledge and rough set theory [8, 9, 10, 13, 14, 15, 16, 17, 18, 27,
28, 35, 37, 40, 42, 43, 45, 46, 47, 48, 49, 54, 55, 59, 60, 61, 62, 64, 67, 68, 69, 70, 71,
72, 73, 75, 77, 79, 80]. This paper concerns basic concepts of rough set theory with the
emphasis on its relationship to knowledge. The references also include basic literature on
rough sets and their applications [19, 20, 21, 22, 23, 24, 29, 34, 36, 37, 38, 39, 41, 51, 52,
53, 56, 57, 65, 66, 74, 76].

2 Basic concepts of rough set theory - approxima-

tions

Rough set theory is based on the assumption, widely shared in cognitive sciences, that
the fundamental mechanism of reasoning is founded on the ability to classify elements of
the universe of discourse. Classification means that small differences between elements
are ignored and consequently those elements are indiscernible. Hence classification leads
to clustering of elements of interest into granules, classes, clumps, groups, etc. of in-
discernible (similar) objects. In rough set theory these granules, called elementary sets
(concepts) form basic building blocks (concepts) of knowledge about the universe.

Every union of elementary concepts is referred to as a crisp or precise concept (set)
otherwise a concept (set) is called rough, vague or imprecise. Thus rough concepts cannot
be expressed in terms of elementary concepts. However, they can be expressed approx-
imately by means of elementary concepts by employing the idea of the lower and the
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upper approximation of a concept. The lower approximation of a concept is the union of
all elementary concepts which are included in the concept, whereas the upper approxima-
tion is the union of all elementary concepts which have nonempty intersection with the
concept. The difference between the lower and the upper approximation of the concept is
its boundary region. Now it can easily be seen that a concept is rough if it has nonempty
boundary region, i.e. its lower and upper approximation are nonidentical. Obviously, if
the lower and the upper approximations of the concept are the same, i.e. its boundary
region is empty – the concept is crisp.

Thus the basic flaw of imperfect knowledge, vagueness, can be remedied by replacing
vague concepts by two precise concepts – its lower and upper approximation. These
approximations are key ideas of rough set theory.

In what follows we shall formalize the above considerations and define more precisely
basic concepts of rough set theory. Let us first discuss briefly the concept of a database.
By a database we will understand a pair S = (U, A), where U and A, are finite, nonempty
sets called the universe, and a set attributes respectively. With every attribute a ∈ A we
associate a set Va, of its values, called the domain of a. Any subset B of A determines a
binary relation I(B) on U , which will be called an indiscernibility relation, and is defined
as follows:

(x, y) ∈ I(B) if and only if a(x) = a(y) for every a ∈ A, where a(x) denotes the value
of attribute a for element x.

It can easily be seen that I(B) is an equivalence relation. The family of all equivalence
classes of I(B), i.e. partition determined by B, will be denoted by U/I(B), or simple U/B;
an equivalence class of I(B), i.e. block of the partition U/B, containing x will be denoted
by B(x).

If (x, y) belongs to I(B) we will say that x and y are B-indiscernible. Equivalence
classes of the relation I(B) (or blocks of the partition U/B) are refereed to as B-elementary
sets.

There are several comments in order regarding the introduced definitions. The concept
of a database used here is in fact a data table whose columns are labeled by attributes and
rows – by elements of the universe. Such tables are also known as information systems.
Thus database is simple a set of data about some elements of interest, e.g. patients in a
hospital, cars, states of a process etc. An important point to note is that elements of the
universe are described in the database by some features expressed by attribute values.
It is rather straightforward to observe that this assumption leads to the indiscernibilty
relation, which results that some elements of the universe are clustered into granules,
classes, blocks, atoms, etc. of indiscernible (similar) elements. These granules are treated
as a whole, and they form the basic building blocks of our knowledge.

Now we defined two operations on sets:

B∗(X) = {x ∈ U : B(x) ⊆ X},
B∗(X) = {x ∈ U : B(x) ∩ X �= ∅},

which assign to every subset X of the universe U two sets B∗(X) and B∗(X) called the
B-lower and the B-upper approximation of X, respectively.

The set
BNB(X) = B∗(X) − B∗(X)
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will be called the B-boundary region of X.
If the boundary region of X is the empty set, i.e. BNB(X) = ∅, then the set X is

crisp (exact) with respect to B; in the opposite case, i.e. if BNB(X) �= ∅, the set X is
rough (inexact) with respect to B.

It is important to emphasize that approximations are meant to substitute a pair of
precise concepts for the imprecise concept.

Sets usually are defined by employing a membership function.
Rough sets can also be defined by using a rough membership function, defined as

µB
X(x) =

card(B(x) ∩ X)

card(B(x))
.

Obviously
µB

X(x) ∈ [0, 1].

The value of the membership function µB
X(x) is a kind of conditional probability, and

can be interpreted as a degree of certainty that x can be classified as X employing set of
attributes B.

The rough membership function can be used to define approximations and the bound-
ary region of a set, as shown below:

B∗(X) = {x ∈ U : µB
X(x) = 1},

B∗(X) = {x ∈ U : µB
X(x) > 0},

BNB(X) = {x ∈ U : 0 < µB
X(x) < 1}.

It might seem that the rough membership function is identical with that used in fuzzy
set theory, but this is not the case. For details the reader is referred to [39]. Thus we
have two ways of defining rough sets: the first one uses approximations, whereas the
second one employs the rough membership function. It is important to observe that these
two approaches are not equivalent [39]. Approximations are in fact some topological
operations on sets whereas the rough membership function, as mentioned before, is a
kind of conditional probability. Approximations refer to vagueness of a concept (set), but
rough membership refers to uncertainty whether some elements of the universe belong to
a concept or not. Hence in rough set theory vagueness and uncertainty are clearly defined
and understood and one can easily see the relationship between these concepts.

The rough membership function can be generalized as follows [41, 42]:

µ(X, Y ) =
card(X ∩ Y )

card X
,

where X, Y ⊆ U, X �= ∅.
Function µ(X, Y ) is an example of a rough inclusion and expresses the degree to which

X is included in Y . Obviously, if µ(X, Y ) = 1, then X ⊆ Y.
If X is included to a degree k we will write X ⊆k Y.
The rough inclusion function can be interpreted as a generalization of the mereological

relation ”part of”, and reads as ”part to a degree” [41, 42]. We will use this construction
in Section 5.
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3 Dependency of Attributes

Instead of using approximations of sets we can use the concept of dependency of attributes.
Intuitively, a set of attributes D (called decision attributes) depends totally on a set of

attributes C (called condition attributes), denoted C ⇒ D, if all values of attributes from
D are uniquely determined by values of attributes from C. In other words, D depends
totally on C, if there exists a functional dependency between values of D and C.

Formally, dependency can be defined in the following way.
Let D and C be subsets of A. We say that D depends totally on C, if and only if

I(C) ⊆ I(D). That means that the partition generated by C is finer than the partition
generated by D.

We would also need a more general concept of dependency of attributes, called a partial
dependency of attributes. Thus the partial dependency means that only some values of
D are determined by values of C.

Formally, the above idea can be formulated as follows.
Let D and C be subsets of A. We say that D depends to a degree k, 0 ≤ k ≤ 1, on C,

denoted C ⇒k D, if

k = γ(C, D) =
card(POSC(D))

card(U)
=

∑
x∈U/D card(C∗(X))

card(U)
,

where
POSC(D) =

⋃

X∈U/I(D)

C∗(X).

In our approach partial dependencies and approximations are used to express vague-
ness. If we want to deal with the global picture of vague patterns in a database the use
of dependencies is in order, because they show possible ”cause-effect” relations, or ap-
proximate dependencies, occurring in the database. However, if we are interested in local
properties of a database and want to know how some concepts can be expressed in terms
of elementary concepts, approximations are the answer to this problem.

4 Reduction of Attributes

Another important issue in our approach is data reduction.
This concept can be formulated as follows. Let C ⇒k D. A minimal subset C ′ of C,

such that γ(C, D) = γ(C ′, D) is called a reduct of C.
Thus a reduct is a set of condition attributes that preserves the degree of dependency.

It means that a reduct is a minimal subset of condition attributes that enables the same
decisions as the whole set of condition attributes.

Obviously a set of condition attributes may have more then one reduct. Intersection
of all reducts is called the core. The core is the set of attributes that cannot be eliminated
from the information table without changing its dependencies and approximations.

In other words, attribute reduction shows how data can be reduced from a database
without affecting its basic properties. This is the fundamental issue in rough set theory.
Many effective methods of attribute reduction have been proposed and implemented.
Nevertheless effective methods of reducts computation are still badly needed, particularly
when very large databases are concerned.
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5 Dependencies, Decision Rules and Knowledge Base

Each dependency C ⇒k D in a database induce a set of decision rules of the form ”if...
then...”, called a knowledge base. In other words every dependency C ⇒k D can be rep-
resented by a set of decision rules:

if C1 then D1

if C2 then D2

. . .

if Cn then Dn

where Ci and Di are sets of conditions and decisions, respectively.
Each decision rule corresponds to a row in a database and represents decisions that

should be made when conditions specified by the rule are satisfied. Thus knowledge base is
understood here as a set of decision rules. This view is widely shared in the AI community.

Decision rules are implications, therefore with every database S = (U, A) we associate
a formal language. The language is defined in the standard way and we assume that the
reader is familiar with the construction.

Given x ∈ U and B ⊆ A by ΦB
x =

∧
a∈B(a, v) we mean a formula such that a(x) = v

and v ∈ Va.
Every dependency C ⇒k D determines a set of decision rules (knowledge base)

{ΦC
x → ΦD

x }x∈U .

We say that a decision rule ΦC
x → ΦD

x is true in S, if |ΦC
x |S ⊆ |ΦD

x |S, where |ΦC
x |S denotes

the meaning of ΦC
x in S, i.e. the set of all y ∈ U that satisfy ΦC

x in S.
Let CS(x) = |ΦC

x |S. Hence the decision rule ΦC
x → ΦD

x is true in S if CS(x) ⊆ DS(x).
A decision rule ΦC

x → ΦD
x is true to a degree l in S, if l = µ(CS(x), DS(x)) > 0, i.e.

CS(x) ⊆l DS(x).
Rough inclusion in this case boils down to rough membership function. As a conse-

quence rough membership can be interpreted as a generalized truth value.
The degree of truth of a decision rule can also be interpreted as a certainty factor of

the rule.
Let us observe that the rough membership can be interpreted both as conditional

probability and at the same time as partial truth value.
The above considerations lead to a inference rule, called the rough modus ponens and

is defined as below:
π(ΦC

x ); µ(ΦC
x , ΨD

x )

π(ΨC
x )

,

where

π(ΦC
x ) =

card(|ΦC
x |S)

card U
,

µ(ΦC
x , ΨD

x ) =
card(|ΦC

x ∧ ΨD
x |S)

card |ΦC
x |S
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and
π(ΨD

x ) =
∑

y∈D(x)

(π(ΦC
y ) · µ(ΦC

y , ΨD
y )).

The number π(ΦC
x ) can be interpretated as the probability, that x has the property ΦC

x ,
and the number µ(ΦC

x , ΨD
x ) – as certainty factor of the decision rule ΦC

x → ΨD
x .

Hence the inference rule, the rough modus ponens, enables us to calculate the probabil-
ity of conclusion ΨD

x as a function of the probability of the premise ΦC
x and the certainty

factor µ(ΦD
x , ΨD

x ) of the decision rule ΦC
x → ΨD

x .

6 Conclusions

Because knowledge base can be treated as a set of decision rules (implications) basic
concepts of rough set theory can be expressed not only in algebraic terms but also in
logical framework. Many logical systems (rough logics) based on these ideas have been
proposed and investigated, but we have not discussed these issues here. We would only
like to stress that in view of the above considerations rough set theory leads to another
approach to reasoning about knowledge: reasoning in rough set theory can be based on
rough modus ponens. In contrast to modus ponens – which allows to draw true conclusions
from true premises by means of true implications – rough modus ponens enables to evaluate
the probability of conclusions on the basic of probabilities of premises and the certainty
factor of decision rules involved.

References

[1] Aikins, J.S.: Prototypic a knowlegde for expert systems. Artificial Intelligence 20
(1983) 163–210

[2] Black, M.: Reasoning with losse concepts. Dialog 2 (1963) 1–12

[3] Bobrow, D.G.: A panel on knowledge representation. In: Proc. Fifth International
Joint Conference on Artificial Intelligence, Carnegie–Melon University, Pittsburgh,
PA (1977)

[4] Bobrow, D.G., Winograd, T.: An overview of KRL: A knowledge representation lan-
guage. Journal of Cognitive Sciences 1 (1977) 3–46

[5] Brachman, R.J., Smith B.C.: Special issue of knowledge representation. SIGART
Newsletter 70 (1980) 1–138

[6] R.J. Barchman, H.J. Levesque (eds.): Readings in Knowledge Representation. Morgan
Kaufmann Publishers, Inc. (1986)

[7] Davis, R., Lenat, D.: Knowledge–based systems in artificial intelligence. McGraw–Hill
(1982)

[8] Dubois, D., Prade, H.: Twofold fuzzy sets and rough sets – Some issues in knowledge
representation. Fuzzy Sets and Systems 23 (1987) 3–18

6



[9] Grzyma�la-Busse, J.: On the reduction of knowledge representation Systems. In: Proc.
of the 6th International Workshop on Expert Systems and their Applications 1, Avi-
gnon, France, April 28–30 (1986) 463–478

[10] Grzyma�la-Busse, J.: Knowledge acquisition under uncertainty – a rough set ap-
proach. Journal of Intelligent and Robotics Systems 1 (1988) 3–16

[11] J. Halpern (ed.): Theoretical Aspects of Reasoning about Knowledge. In: Proceed-
ings of the 1986 Conference. Morgan Kaufman, Los Altos, California (1986)

[12] Hintika, J.: Knowledge and belief. Cornell University Press, Chicago (1962)

[13] Hu, X., Cercone, N.: Mining knowledge rules from databases: A rough set approach.
In: Proceedings of the 12th International Conference on Data Engineering, New Or-
leans (1995) 96–105

[14] Hu, X., Cercone, N., Ziarko, W.: Generation of multiple knowledge from databases
based on rough set theory. In: T.Y. Lin, N. Cercone (eds.): Rough Sets and Data
Mining. Analysis of Imprecise Data. Kluwer Academic Publishers, Boston, Dordrecht
(1997) 109–121

[15] Hu, X., Shan, N., Cercone, N., Ziarko, W.: DBROUGH: A rough set based knowledge
discovery system. In: Z.W. Ras, M. Zemankova (eds.), Proceedings of the Eighth Inter-
national Symposium on Methodologies for Intelligent Systems (ISMIS’94), Charlotte,
NC, October 16–19, 1994, Lecture Notes in Artificial Intelligence 869, Springer-Verlag
(1994) 386–395

[16] Komorowski, J., Polkowski, L., Skowron, A.: Rough sets for data mining and
knowledge discovery (abstract of tutorial). In: J. Komorowski, J. Żytkow (eds.),
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