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1 Introduction

The problem of imperfect knowledge has been tackled for a long time by philosophers,
logicians and mathematicians. Recently it became also a crucial issue in the area of
artificial intelligence. There are many approaches to the problem of how to understand
and manipulate imperfect knowledge. The most popular one is, no doubt, fuzzy set theory
[7].

Rough set theory [1] is still another attempt to this problem.

The theory has attracted attention of many researchers and practitioners all over the
world, who contributed essentially to its development and applications.

Rough set theory overlaps to a certain degree many other mathematical theories.
Despite of the relationships rough set theory can be viewed in its own rights, as the
independent discipline.

The theory seems to be of fundamental importance to Al and cognitive sciences, espe-
cially in the areas of machine learning, knowledge acquisition, decision analysis, knowledge
discovery from databases, expert systems, inductive reasoning and pattern recognition and
data mining.

Rough set theory has been successfully applied in many real-life problems in medicine,
pharmacology, engineering, banking, financial and market analysis and others.

The theory has many important advantages for data mining. Some of them are listed
below.

e Provides efficient algorithms for finding hidden patterns in data.
e Finds minimal sets of data (data reduction).

e Evaluates significance of data.

e Generates sets of decision rules from data.

e [t is easy to understand.

e Offers straightforward interpretation of obtained results.

e Most algorithms based on the rough set theory are particularly suited for parallel
processing.



The aim of this paper is to give rudiments of rough set theory.
More about basics of the theory can be found in the referencies and the internet
(http://www.roughsets.org).

2 Basic Philosophy

The rough set concept is a new mathematical approach to vagueness and uncertainty.
The rough set philosophy is founded on the assumption that with every object of the
universe of discourse we associate some information (data, knowledge). E.g., if objects
are patients suffering from a certain disease, symptoms of the disease form information
about patients. Objects characterized by the same information are indiscernible (similar)
in view of the available information about them. The indiscernibility relation generated
in this way is the mathematical basis of rough set theory.

Any set of all indiscernible (similar) objects is called an elementary set, and forms a
basic granule (atom) of knowledge about the universe. Any union of some elementary sets
is referred to as crisp (precise) set — otherwise the set is rough (imprecise, vague).

Consequently each rough set has boundary-line cases, i.e., objects which cannot be
with certainty classified as members of the set or of its complement. Obviously crisp sets
have no boundary-line elements at all. That means that boundary-line cases cannot be
properly classified by employing the available knowledge.

Thus, the assumption that objects can be ”seen” only through the information avail-
able about them leads to the view that knowledge has granular structure. Due to the
granularity of knowledge some objects of interest cannot be discerned and appear as the
same (or similar). As, a consequence vague concepts, in contrast to precise concepts,
cannot be characterized in terms of information about their elements. Therefore in the
proposed approach we assume that any vague concept is replaced by a pair of precise
concepts — called the lower and the upper approximation of the vague concept. The lower
approximation consists of all objects which surely belong to the concept and the upper
approximation contains all objects which possibly belong to the concept. Obviously, the
difference between the upper and the lower approximation constitute the boundary region
of the vague concept. Approximations are two basic operations in the rough set theory.

3 An Example

For the sake of simplicity we first explain the above ideas intuitively, by means of a simple
example.

Data are often presented as a table, columns of which are labeled by attributes, rows
by objects of interest and entries of the table are attribute values. For example, in a
table containing information about patients suffering from a certain disease objects are
patients (strictly speaking their ID’s), attributes can be, for example, blood pressure, body
temperature etc., whereas the entry corresponding to object Smith and the attribute blood
preasure can be normal. Such tables are known as information systems, attribute-value
tables or information tables. We will use here the term information table.

Below an example of information table is presented.

Suppose we are given data about 6 patients, as shown in Table 1.



Patient | Headache | Muscle-pain | Temperature | Flu
pl no yes high yes
p2 yes no high yes
p3 yes yes very high yes
p4 no yes normal no
pd yes no high no
pb6 no yes very high yes

Table 1

Columns of the table are labelled by attributes (symptoms) and rows — by objects
(patients), whereas entries of the table are attribute values. Thus each row of the table
can be seen as information about specific patient. For example, patient p2 is characterized
in the table by the following attribute-value set

(Headache, yes), (Muscle-pain, no), (Temperature, high), (Flu, yes),

which form the information about the patient.

In the table patients p2, p3 and pb are indiscernible with respect to the attribute
Headache, patients p3 and p6 are indiscernible with respect to attributes Muscle-pain
and Flu, and patients p2 and p5 are indiscernible with respect to attributes Headache,
Muscle-pain and Temperature. Hence, for example, the attribute Headache generates
two elementary sets {p2, p3, p5} and {pl, p4, p6}, whereas the attributes Headache
and Muscle-pain form the following elementary sets: {pl, p4, p6}, {p2, p5} and {p3}.
Similarly one can define elementary sets generated by any subset of attributes.

Patient p2 has flu, whereas patient p5 does not, and they are indiscernible with respect
to the attributes Headache, Muscle-pain and Temperature, hence flu cannot be charac-
terized in terms of attributes Headache, Muscle-pain and Temperature. Hence p2 and p5
are the boundary-line cases, which cannot be properly classified in view of the available
knowledge. The remaining patients pl, p3 and p6 display symptoms which enable us to
classify them with certainty as having flu, patients p2 and p5 cannot be excluded as hav-
ing flu and patient p4 for sure does not have flu, in view of the displayed symptoms. Thus
the lower approximation of the set of patients having flu is the set {pl, p3, p6} and the
upper approximation of this set is the set {pl, p2, p3, p5, p6}, whereas the boundary-line
cases are patients p2 and p5. Similarly p4 does not have flu and p2, p5 cannot be exclude
as having flu, thus the lower approximation of this concept is the set {p4} whereas — the
upper approximation — is the set {p2, p4, p5} and the boundary region of the concept
"not flu” is the set {p2, p5}, the same as in the previous case.

4 Rough Sets and Approximations

As mentioned in the introduction, the starting point of rough set theory is the indiscerni-
bility relation, generated by information about objects of interest. The indiscernibility
relation is intended to express the fact that due to the lack of knowledge we are unable to
discern some objects employing the available information. That means that, in general,
we are unable to deal with single objects but we have to consider clusters of indiscernible
objects, as fundamental concepts of our theory.



Now we present above considerations more precisely.

Suppose we are given two finite, non-empty sets U and A, where U is the universe,
and A — a set of attributes. With every attribute a € A we associate a set V,, of its values,
called the domain of a. Any subset B of A determines a binary relation I(B) on U, which
will be called an indiscernibility relation, and is defined as follows:

zI(B)y if and only if a(x) = a(y) for every a € A,
where a(z) denotes the value of attribute a for element x.

Obviously I(B) is an equivalence relation. The family of all equivalence classes of
I(B), i.e., partition determined by B, will be denoted by U/I(B), or simple U/B; an
equivalence class of I(B), i.e., block of the partition U/B, containing x will be denoted
by B(z).

If (z,y) belongs to I(B) we will say that x and y are B-indiscernible. Equivalence
classes of the relation I(B) (or blocks of the partition U/ B) are refereed to as B-elementary
sets. In the rough set approach the elementary sets are the basic building blocks (concepts)
of our knowledge about reality.

The indiscernibility relation will be used next to define approximations, basic concepts
of rough set theory.

Let us define now the following two operations on sets

B.(X)={reU:B(z) C X},

B*(X)={z€U:B(z)NnX # 0},

assigning to every subset X of the universe U two sets B.(X) and B*(X) called the
B-lower and the B-upper approzimation of X, respectively. The set

BNp(X) = B*(X) - B.(X)

will be referred to as the B-boundary region of X.

If the boundary region of X is the empty set, i.e., BNg(X) = (), then the set X is
crisp (eract) with respect to B; in the opposite case, i.e., if BNg(X) # 0, the set X is to
as rough (inexact) with respect to B.

One can show the following properties of approximations:
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(9) B*(=X) = —B.(X),
(10) B.(B.(X)) = B*(B.(X))
(11) B*(B*(X)) = B.(B*(X))

where —X denotes U — X.

It is easily seen that the lower and the upper approximations of a set are interior and
closure operations in a topology generated by the indiscernibility relation.

One can define the following four basic classes of rough sets, i.e., four categories of
vagueness:

B.(X),
B* (X)’

a) B.(X) # 0 and B*(X) # U, iff X is roughly B-definable,
b) B.(X) =0 and B*(X) # U, iff X is internally B-indefinable,
¢) B.(X) # 0 and B.(X) =U, iff X is externally B-definable,
d) B.(X) =0 and B*(X) =U, iff X is totally B-indefinable.

The intuitive meaning of this classification is the following.

If X is roughly B-definable, this means that we are able to decide for some elements
of U whether they belong to X or — X, using B.

If X is internally B-indefinable, this means that we are able to decide whether some
elements of U belong to —X, but we are unable to decide for any element of U, whether
it belongs to X or not, using B.

If X is externally B-indefinable, this means that we are able to decide for some elements
of U whether they belong to X, but we are unable to decide, for any element of U whether
it belongs to —X or not, using B.

If X is totally B-indefinable, we are unable to decide for any element of U whether it
belongs to X or —X, using B.

Rough set can be also characterized numerically by the following coefficient

| B.(X))]
= 5]
called accuracy of approximation, where |X| denotes the cardinality of X. Obviously
0 <ap(X) <1 If ag(X) =1, X is crisp with respect to B (X is precise with respect to
B), and otherwise, if ap(X) < 1, X is rough with respect to B (X is vague with respect
to B).

Let us depict above definitions by examples referring to Table 1. Consider the con-
cept "flu”; i.e., the set X = {pl,p2,p3,p6} and the set of attributes B = {Headache,
Muscle-pain, Temperature}. Concept ”"flu” is roughly B-definable, because B.(X) =
{p1,p3,p6} # 0 and B*(X) = {pl,p2, p3,p5,p6} # U. For this case we get ag(” flu") =
3/5. It means that the concept "flu” can be characterized partially employing symptoms,
Headache, Muscle-pain and Temperature. Taking only one symptom B = {Headache} we
get B,(X) =0 and B*(X) = U, which means that the concept "flu” is totally indefinable
in terms of attribute Headache, i.e., this attribute is not characteristic for flu whatso-
ever. However, taking single attribute B = {Temperature} we get B.(X) = {p3,p6} and
B*(X) = {p1, p2, p3, p5, p6}, thus the concept "flu” is again roughly definable, but in this
case we obtain ap(X) = 2/5, which means that the single symptom Temperature is less
characteristic for flu, than the whole set of symptoms, and patient pl cannot be now
classified as having flu in this case.




5 Rough Sets and Membership Function

Rough sets can be also defined using a rough membership function [3], defined as

B _ [ XN B(x)
Obviously
px(x) €10, 1].

Value of the membership function px(x) is a kind of conditional probability, and can
be interpreted as a degree of certainty to which = belongs to X (or 1 — ux(x), as a degree
of uncertainty).

The rough membership function, can be used to define approximations and the bound-
ary region of a set, as shown below:

B.X)={z € U: p(x) =1},

B(X) = {z e U pu(x) > 0},
BNp(X)={z €U :0< pf(x) <1}.
The rough membership function has the following properties [3]:

(z) = 1iff = € B,(X),

=1—uf(x) for any z € U,

B

)
g) pxuy () > max(p¥ (z), py(z)) for any € U,
) < min(p¥ (), i (2)) for any « € U,

If X is a family of pair wise disjoint sets of U, then uSx(z) = 3 xex n5(z) for any
relU,

The above properties show clearly the difference between fuzzy and rough membership. In
particular properties g) and h) show that the rough membership formally can be regarded
as a generalization of fuzzy membership. Let us recall that the "rough membership”, in
contrast to the "fuzzy membership”, has probabilistic flavor.

It can be easily seen that there exists a strict connection between vagueness and
uncertainty. As we mentioned above vagueness is related to sets (concepts), whereas
uncertainty is related to elements of sets. Rough set approach shows clear connection
between these two concepts.



6 Decision Tables and Decision Algorithms

Sometimes we distinguish in an information table two classes of attributes, called condition
and decision (action) attributes. For example, in Table 1 attributes Headache, Muscle-
pain and Temperature can be considered as condition attributes, whereas the attribute
Flu — as a decision attribute.

Each row of a decision table deteremines a decision rule, which specifies decisions
(actions) that should be taken when conditions pointed out by condition attributes are
satisfied. For example, in Table 1 the condition (Headache, no), (Muscle-pain, yes),
(Temperature, high) determines uniquely the decision (Flu, yes). Objects in a decision
table are used as labels of decision rules.

Decision rules 2) and 5) in Table 1 have the same conditions but different decisions.
Such rules are called inconsistent (nondeterministic, conflicting); otherwise the rules are
referred to as consistent (certain, deterministic, nonconflicting). Sometimes consistent
decision rules are called sure rules, and inconsistent rules are called possible rules. Decision
tables containing inconsistent decision rules are called inconsistent (nondeterministic,
conflicting); otherwise the table is consistent (deterministic, nonconflicting).

The number of consistent rules to all rules in a decision table can be used as consistency
factor of the decision table, and will be denoted by ~(C, D), where C' and D are condition
and decision attributes respectively. Thus if v(C, D) = 1 the decision table is consistent
and if v(C, D) # 1 the decision table is inconsistent. For example, for Table 1, we have
v(C, D) = 4/6.

Decision rules are often presented as implications called "if... then...” rules. For
example, rule 1) in Table 1 can be presented as implication

if (Headache, no) and (Muscle-pain, yes) and (Temperature, high) then (Flu, yes).

A set of decision rules is called a decision algorithm. Thus with each decision table we
can associate a decision algorithm consisting of all decision rules occurring in the decision
tables.

We must however, make distinction between decision tables and decision algorithms.
A decision table is a collection of data, whereas a decision algorithm is a collection of
implications, e.g., logical expressions. To deal with data we use various mathematical
methods, e.g., statistics but to analyze implications we must employ logical tools. Thus
these two approaches are not equivalent, however for simplicity we will often present here
decision rules in form of implications, without referring deeper to their logical nature, as
it is often practiced in Al

7 Dependency of Attributes

Another important issue in data analysis is discovering dependencies between attributes.
Intuitively, a set of attributes D depends totally on a set of attributes C', denoted C' = D,
if all values of attributes from D are uniquely determined by values of attributes from C'.
In other words, D depends totally on C| if there exists a functional dependency between
values of D and C'. For example, in Table 1 there are not total dependencies whatsoever.
If in Table 1, the value of the attribute Temperature for patient p5 were "no” instead
of high”, there would be a total dependency {Temperature} = {Flu}, because to each



value of the attribute Temperature there would correspond unique value of the attribute
Flu.

We would need also a more general concept of dependency of attributes, called a partial
dependency of attributes.

Let us depict the idea by example, referring to Table 1. In this table, for example, the
attribute Temperature determines uniquely only some values of the attribute Flu. That
is, (Temperature, very high) implies (Flu, yes), similarly (Temperature, normal) implies
(Flu, no), but (Temperature, high) does not imply always (Flu, yes). Thus the partial
dependency means that only some values of D are determined by values of C.

Formally dependency can be defined in the following way. Let D and C be subsets of
A.

We will say that D depends on Cin a degree k (0 < k < 1), denoted C' = D, if
k=~(C,D).

If £ =1 we say that D depends totally on C, and if k < 1, we say that D depends
partially (in a degree k) on C.

The coefficient k expresses the ratio of all elements of the universe, which can be
properly classified to blocks of the partition U/D, employing attributes C.

Thus the concept of dependency of attributes is strictly connected with that of con-
sistency of the decision table.

For example, for dependency {Headache, Muscle-pain, Temperature} = {Flu} we get
k =4/6 = 2/3, because four out of six patients can be uniquely classified as having flu or
not, employing attributes Headache, Muscle-pain and Temperature.

If we were interested in how exactly patients can be diagnosed using only the attribute
Temperature, that is —in the degree of the dependence { Temperature} = {Flu}, we would
get k = 3/6 = 1/2, since in this case only three patients p3,p4 and p6 out of six can be
uniquely classified as having flu. In contrast to the previous case patient p4 cannot be
classified now as having flu or not. Hence the single attribute Temperature offers worse
classification than the whole set of attributes Headache, Muscle-pain and Temperature. It
is interesting to observe that neither Headache nor Muscle-pain can be used to recognize
flu, because for both dependencies {Headache} = {Flu} and {Muscle-pain} = {Flu} we
have k = 0.

It can be easily seen that if D depends totally on C' then I(C) C I(D). That means
that the partition generated by C'is finer than the partition generated by D. Notice, that
the concept of dependency discussed above corresponds to that considered in relational
databases.

If D depends in degree k,0 < k <1, on C', then

_ [POSc(D))

Y(C, D) = U

where
POSc(D)= | C.(X).
XeU/I(D)

The expression POSc(D), called a positive region of the partition U/D with respect to
C, is the set of all elements of U that can be uniquely classified to blocks of the partition
U/D, by means of C.

Summing up: D is totally (partially) dependent on C| if all (some) elements of the
universe U can be uniquely classified to blocks of the partition U/D, employing C.
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8 Reduction of Attributes

We often face a question whether we can remove some data from a data-table preserving
its basic properties, that is — whether a table contains some superfluous data.

For example, it is easily seen that if we drop in Table 1 either the attribute Headache
or Muscle-pain we get the data set which is equivalent to the original one, in regard
to approximations and dependencies. That is we get in this case the same accuracy of
approximation and degree of dependencies as in the original table, however using smaller
set of attributes.

In order to express the above idea more precisely we need some auxiliary notions. Let
B be a subset of A and let a belong to B.

e We say that a is dispensable in B if I(B) = I(B — {a}); otherwise a is indispensable
in B.

e Set B is independent if all its attributes are indispensable.
e Subset B’ of B is a reduct of B if B’ is independent and I(B’) = I(B).

Thus a reduct is a set of attributes that preserves partition. It means that a reduct
is a minimal subset of attributes that enables the same classification of elements of the
universe as the whole set of attributes. In other words, attributes that do not belong to
a reduct are superfluous with regard to classification of elements of the universe.
Reducts have several important properties. In what follows we will present two of
them.
First, we define a notion of a core of attributes.
Let B be a subset of A. The core of B is the set off all indispensable attributes of B.
The following is an important property, connecting the notion of the core and reducts

Core(B) = (\Red(B),

where Red(B) is the set off all reducts of B.

Because the core is the intersection of all reducts, it is included in every reduct, i.e.,
each element of the core belongs to some reduct. Thus, in a sense, the core is the most
important subset of attributes, for none of its elements can be removed without affecting
the classification power of attributes.

To further simplification of an information table can eliminate some values of attribute
from the table in such a way that we are still able to discern objects in the table as the
original one. To this end we can apply similar procedure as to eliminate superfluous
attributes, which is defined next.

e We will say that the value of attribute a € B, is dispensable for x, if
[2]1(B)y = [2]1(B—{a}); Otherwise the value of attribute a is indispensable for x.

e If for every attribute a € B the value of a is indispensable for z, then B will be
called orthogonal for x.

e Subset B’ C B is a value reduct of B for x, iff B’ is orthogonal for x and
[l’][(B) = [l’][(B/).



The set of all indispensable values of attributes in B for x will be called the value core of
B for z, and will be denoted CORE®(B).

Also in this case we have
CORE*(B) = ﬂRed“”(B),

where Red”(B) is the family of all reducts of B for z.

Suppose we are given a dependency C' = D. It may happen that the set D depends
not on the whole set C' but on its subset C’ and therefore we might be interested to find
this subset. In order to solve this problem we need the notion of a relative reduct, which
will be defined and discussed next.

Let C, D C A. Obviously if C" C C'is a D-reduct of C, then C’ is a minimal subset of
C such that

v(C. D) = 7(0/7 D).

e We will say that attribute a € C'is D-dispensablein C, if POS¢(D) = POSc—ap)(D);
otherwise the attribute a is D-indispensable in C.

e [f all attributes a € C are C-indispensable in C, then C' will be called D-independent.

e Subset €' C C'is a D-reduct of C, iff C" is D-independent and
POSc(D) = POSe/(D).

The set of all D-indispensable attributes in C' will be called D-core of C, and will be
denoted by COREpR(C). In this case we have also the property

COREp(C) = (| Redp(C),

where Redp(C) is the family of all D-reducts of C.

If D = C we will get the previous definitions.

For example, in Table 1 there are two relative reducts with respect to Flu, {Headache,
Temperature} and {Muscle-pain, Temperature} of the set of condition attributes { Headache,
Muscle-pain, Temperature}. That means that either the attribute Headache or Muscle-
pain can be eliminated from the table and consequently instead of Table 1 we can use
either Table 3

Patient | Headache | Temperature | Flu
pl no high yes
p2 yes high yes
p3 yes very high yes
p4 no normal no
pd yes high no
pb6 no very high yes

Table 3

or Table 4
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Patient | Muscle-pain | Temperature | Flu
pl yes high yes
p2 no high yes
p3 yes very high yes
p4 yes normal no
po no high no
pb6 yes very high yes

Table 4

For Table 1 the relative core of with respect to the set {Headache, Muscle-pain,
Temperature} is the Temperature. This confirms our previous considerations showing
that Temperature is the only symptom that enables, at least, partial diagnosis of pa-
tients.

We will need also a concept of a value reduct and value core. Suppose we are given
a dependency C' = D where C' is relative D-reduct of C. To further investigation of
the dependency we might be interested to know exactly how values of attributes from
D depend on values of attributes from C. To this end we need a procedure eliminating
values of attributes form C' which does not influence on values of attributes from D.

e We say that value of attribute a € C, is D-dispensable for x € U, if
[z 1cy € []1(py implies [z]7(c—1a}) € [#]1(D);
otherwise the value of attribute a is D-indispensable for x.

e If for every attribute a € C' value of a is D-indispensable for x, then C' will be called
D-independent (orthogonal) for x.

e Subset C' C C is a D-reduct of C for = (a value reduct), iff C" is D-independent for
x and
[#lre) & [#li(p) implies [z]1cn)  [2]1p)-

The set of all D-indispensable for x values of attributes in C' will be called the D-core of
C for x (the vlaue core), and will be denoted CORE},(C').
We have also the following property

CORE}(C) = (| Red%(C),

where Red%,(C) is the family of all D-reducts of C for x.
Using the concept of a value reduct, Table 3 and Table 4 can be simplified as follow

Patient | Headache | Temperature | Flu
pl no high yes
p2 yes high yes
p3 - very high yes
p4 — normal no
po yes high no
pb6 - very high yes
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Table 5

Patient | Muscle-pain | Temperature | Flu
pl yes high yes
p2 no high yes
p3 - very high yes
p4 — normal no
po no high no
pb6 - very high yes

Table 6

We can also present the obtained results in a form of a decision algorithm.
For Table 5 we get

if (Headache, no) and (Temperature, high) then (Flu, yes),
if (Headache, yes) and (Temperature, high) then (Flu, yes),
if (Temperature, very high) then (Flu, yes),

if (Temperature, normal) then (Flu, no),

if (Headache, yes) and (Temperature, high) then (Flu, no),
if (Temperature, very high) then (Flu, yes).

and for Table 6 we have

if (Muscle-pain, yes) and (Temperature, high) then (Flu, yes),
if (Muscle-pain, no) and (Temperature, high) then (Flu, yes),
if (Temperature, very high) then (Flu, yes),

if (Temperature, normal) then (Flu, no),

if (Muscle-pain, no) and (Temperature, high) then (Flu, no),

if (Temperature, very high) then (Flu, yes).

The following important property
a) B'= B — B', where B’ is a reduct of B,

connects reducts and dependency.
Besides, we have:

b) If B = C, then B = ", for every ¢’ C C,
in particular

c) If B = C, then B = {a}, for every a € C.
Moreover, we have:

d) If B' is a reduct of B, then neither {a} = {b} nor {b} = {a} holds, for every
a,b € B, i.e., all attributes in a reduct are pairwise independent.

12



9 Indiscernibility Matrices and Functions

To compute easily reducts and the core we will use discernibility matrix [4], which is
defined next.
By an discernibility matrix of B C A denoted M (B) we will mean n x n matrix defined
as:
(cij) ={a € B:a(z;) #a(z;)} fori,j=1,2,...,n.

Thus entry c¢;; is the set of all attributes which discern objects x; and x;.
The discernibility matrix M (B) assigns to each pair of objects x and y a subset of
attributes 6(x,y) C B, with the following properties:

i) 0(x,x) =10,
i) d(z,y) = d(y, ),
iii) 0(x, z) Co(x,y)Ud(y, 2).

These properties resemble properties of semi-distance, and therefore the function § may
be regarded as qualitative semi-matriz and §(x,y) — qualitative semi-distance. Thus the
discernibility matrix can be seen as a semi-distance (qualitative) matrix.

Let us also note that for every z,y, 2z € U we have
iv) |0(z,z)| =0,

v) 0@z, y)[ = [6(y, ©)],
vi) |0(z, 2)| < |6z, y) +16(y, 2)]-

It is easily seen that the core is the set of all single element entries of the discernibility
matrix M(B), i.e.,

CORE(B) ={a € B : ¢;; = {a}, for some i,j}.

Obviously B’ C B is a reduct of B, if B’ is the minimal (with respect to inclusion) subset
of B such that

BN ¢ # § for any nonempty entry ¢ (¢ # () in M(B).

In other words reduct is the minimal subset of attributes that discerns all objects dis-
cernible by the whole set of attributes.

Every discernibility matrix M (B) defines uniquely a discernibility (boolean) function
f(B) defined as follows.

Let us assign to each attribute a € B a binary boolean variable @, and let ¥d(x,y)
denote boolean sum of all boolean variables assigned to the set of attributes d(x,y). Then
the discernibility function can be defined by the formula

fB)= ]I {Zd(z,y): (z,y) € U* and d(x,y) # 0}.

(z,y)eU?

The following property establishes the relationship between disjunctive normal form of
the function f(B) and the set of all reducts of B.
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All constituents in the minimal disjunctive normal form of the function f(B) are all
reducts of B.

In order to compute the value core and value reducts for x we can also use the dis-
cernibility matrix as defined before and the discernibility function, which must be slightly
modified:

fo(B) = [1{2(z,y) : y € U and 6(x,y) # 0}.
yelU

Relative reducts and core can be computed also using discernibility matrix, which
needs slight modification

ci; ={a e C:alx;) # a(r;) and w(z;, x;)},

where w(x;, z;) = x; € POSc(D) and x; ¢ POS¢(D) or
z; € POSc(D) and z; € POSe(D) or
z;,x; € POSc(D) and (xj,z;) ¢ I(D)

fori,j =1,2,...,n.

If the partition defined by D is definable by C then the condition w(x;,x;) in the
above definition can be reduced to (x;,z;) & I(D).

Thus entry c¢;; is the set of all attributes which discern objects x; and z; that do not
belong to the same equivalence calss of the relation (D).

The remaining definitions need little changes.

The D-core is the set of all single element entries of the discernibility matrix Mp(C),
ie.,

COREp(C)={a € C:¢; = (a), for some i,j}.

Set C" C C'is the D-reduct of C, if C" is the minimal (with respect to inclusion) subset
of C such that

C' N ¢ # § for any nonempty entry ¢ (c # 0) in Mp(C).

Thus D-reduct is the minimal subset of attributes that discerns all equivalence classes of
the relation (D) discernible by the whole set of attributes.

Every discernibility matrix Mp(C') defines uniquely a discernibility (boolean) function
fp(C) which is defined as before we have also the following property:

All constituents in the disjunctive normal form of the function fp(C') are all D-reducts
of C.

For computing value reducts and the value core for relative reducts we use as a starting
point the discernibility matrix Mp(C') and discernibility function will have the form:

f5(C) = [1{=6(z,y) : y € U and 6(z, y) # 0}.

yeU

Let us illustrate the above considerations by computing relative reducts for the set of
attributes {Headache, Muscle-pain, Temperature } with respect to Flu.
The corresponding discernibility matrix is shown in Table 7.
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H,M M, T

Y| Y | W[ DN —
~
=
=
~

Table 7

In this table H, M, T denote Headache, Muscule-pain and Temperature, respectively.
The discernibility dunction for this table is

T(H+ M)(H + M +T)(M +T),

where + denotes the boolean sum and the boolean multiplication is ommited in the
formula.
After simplication the discernibility function using laws of boolean algebra we abtain
the following expression
TH+TH,

which says that there are two reducts T'H and T'M in the data table and 7' is the core.

10 Significance of Attributes and Approximate Re-
ducts

As it follows from considerations concerning reduction of attributes, they cannot be
equally important, and some of them can be eliminated from an information table without
loosing information contained in the table. The idea of attribute reduction can be gener-
alized by introducing a concept of significance of attributes, which enables us evaluation
of attributes not only by two-valued scale, dispensable — indispensable, but by assigning
to an attribute a real number from the closed interval [0,1], expressing how important is
an attribute in an information table.

Significance of an attribute can be evaluated by measuring effect of removing the
attribute from an information table on classification defined by the table. Let us first
start our consideration with decision tables.

Let C' and D be sets of condition and decision attributes respectively and let a be a
condition attribute, i.e., a € C. As shown previously the number (C, D) expresses a de-
gree of consistency of the decision table, or the degree of dependency between attributes C'
and D, or accuracy of approximation of U/D by C. We can ask how the coefficient v(C, D)
changes when removing the attribute a, i.e., what is the difference between v(C, D) and
v((C'—{a}, D). We can normalize the difference and define the significance of the attribute

a as

(1€, D) =4(C —{a}, D)) _ | ~(C—{a}, D)
1(C, D) (¢, D)
and denoted simple by o(a), when C' and D are understood.

o,pyla) =
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Obviously 0 < o(a) < 1. The more important is the attribute a the greater is the
number o(a). For example for condition attributes in Table 1 we have the following results:

o(Headache) = 0,
o(Muscle-pain) = 0,
o(Temperature) = 0.75.

Because the significance of the attribute Temperature or Muscle-pain is zero, removing
either of the attribute from condition attributes does not effect the set of consistent
decision rules, whatsoever. Hence the attribute Temperature is the most significant one
in the table. That means that by removing the attribute Temperature, 75% (three out of
four) of consistent decision rules will disappear from the table, thus lack of the attribute
essentially effects the ”decisive power ” of the decision table.

For a reduct of condition attributes, e.g., Headache, Temperature, we get

o(Headache) = 0.25,
o(Temperature) = 1.00.

In this case, removing the attribute Headache from the reduct, i.e., using only the
attribute Temperature, 25% (one out of four) consistent decision rule will be lost, and
dropping the attribute Temperature, i.e., using only the attribute Headache 100% (all)
consistent decision rules will be lost. That means that in this case making decisions is
impossible at all, whereas by employing only the attribute Temperature some decision
can be made.

Thus the coefficient o(a) can be understood as an error which occurs when attribute
a is dropped. The significance coefficient can be extended to set of attributes as follows:

(¢, D)-v(C-B,D)) _, (C-B D)
(€, D) (v¢.D)

oc,p)(B) =

denoted by £(B), if C' and D are understood, where B is a subset of C.

If B is a reduct of C, then ¢(B) = 1, i.e., removing any reduct from a set of decision
rules unables to make sure decisions, whatsoever.

Any subset B of C will be called an approzimate reduct of C', and the number

_B(OD) —A(B.D) _,_A(B.D)
(e R CTev))

denoted simple as e(B), will be called an error of reduct approzimation. It expresses how
exactly the set of attributes B approximates the set of condition attributes C'. Obviously
e(B)=1—0(B) and ¢(B) = 1 —¢(C — B). For any subset B of C' we have ¢(B) < ¢(C).
If B is a reduct of C', then £(B) = 0.

For example, either of attributes Headache and Temperature can be considered as
approximate reducts of {Headache, Temperature}, and

e(Headache) = 1,
e(Temperature) = 0.25.
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But for the whole set of condition attributes {Headache, Muscle-pain, Temperature}
we have also the following approximate reduct

e(Headache, Muscle-pain) = 0.75.

The concept of an approximate reduct is a generalization of the concept of a reduct
considered previously. A minimal subset B of condition attributes C, such that ~(C, D) =
(B, D), or ¢,py(B) = 0 is a reduct in the previous sense. The idea of an approximate
reduct can be useful in cases when a smaller number of condition attributes is preferred
over accuracy of classification.

11 Conclusions

As mentioned in the introduction the rough set methodology has found many applications
in medical data analysis, finance, voice recognition, image processing and others. However
the approach presented in this paper is too simple to many real-life applications and was
extended in many ways by various authors. The detailed discussion of the above issues
can be found in the references and the internet.
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