Ewa Orlowska, Zizistaw Pawlak

logical foundations
of knowledge
representation

INSTYTUT POBSTAW INFORMATYKI POLSKIE) AKABEMII NAUX
INSTITUTE OF GOMPUTER SCIEWCE POLISH ACADEMY OF SCIENCES
00-901 WARSAW, P.O. Box 22, POLAND -




Evia Oriowska, Zdzistaw Pawlak

LOGICAL FUUNDATIONS OF KNOWLEDGE REPRESEHTA

Part 1

537

.arsaw, rebruary 124



Rada edakcyjnaea

st f Y .
, Blikie {przewcdniczgcyj. S. 3ylka, 3. Lipski (sekretarz),

b3

tipski, L. cukaszewicz, R. arczynski, A. tiazurkiewicz,

Ve

i Al et L ’
T. Nowicki, Z. Szoda, . warnus {zastepca przewodniczzcego)

Prac¢ zglosil Andrzej B8likle

iiailing address: Ewa CEZouska

Zdzisktaw Pawlak

Institute of Computer science
Folish Aceademy ©f Scilences
P,L. 3ox 22

00-2C1 warszawa PKIN

as = manuscript

Wa prawach rgkopisu

ekrac 500 egz. Ark wiyc. 7,00; ark.. gruk. ©,75.
Fepier offset. kl. 1IIX, 70 g, 70 x 10C. cddano Go

¢ruku 1 ilutym 1€B4 r. w. O, N, Zam. nrl30/84.

2

b 7,

~
a p
e

nr inw. f; QIZLLA/ |

Soern

Abstract -» COXGPESNNES . streszczenie

.In the paper vie attenpt to precize basic notations
of the field of knowledge representation and to Giscdss

properties O knoviledge representation systeas. Th3

special attention 1s drovwn O indiscernibility of cbjeces
in knowilecge representation systems and to definability
and approximate definacility of concepts. in the existing

literature there SEe2GS to be no refersnce to tnesa prop-

erties of knowledge representation.

In part two of this paper e are going to Giscuss aa-

chine learning and incducticn along the sang iines of rza=

sonig, &S used in part one. -

JlorgdecEEe OCHOBH npe AC TABACHAA suammit

B 7amHO} pagoTe NPOR3BOZRTCA MONHTRA ywoﬁaeszn OCHOB~
HHX TOHATH! 3 0o0racTa npenciaxneauﬁ amaEmit, 4 TagKze IMCKY-

TEPYLTCH cBoficTBa CHCTEM Npenc TABNCHRA agaauit. Ocodoe BEE-

MaHRe YACICHO nepoannqaeuocrn 00BeXTCB B cucTeMax npeicras-

Jenud 3xaHuUR, ofpe IeNRENOCTH, a TaK3e npmdnnxesﬂon onpeae~
naewocty nosaTail. B cynecTBYoLEll MMTEPATYPE KaHuHE acleKTH

cueTeu NpeACTABIEHTA 3HAE:L oC 36MEHH HEJOCTATOYHO, \

e ———————EEEEEEE




-4 -

Bo Bropoit wacTy AAHEOH pAaGOTH My HAMEPEHH NpOAHA/M3U-
poBarTh NpoCieus MAWMEHOTO yYeHMA, & TaERe UHAYKINR, NPUHA-
Mafd B RavyecTBe oTnpaBEO¥ TOYxM Texe NPERNOCHIRU, YTO B

nepBo# vacTh.

Logiczne podstawy reprezentacji wiedzy

-« pracy tej prooujeny sprecyzowac podstawowe pojgcia
= dziedziny reprezentacji wiedzy oraz przedyskutowac
wlasnosci systendw reprezentacji wiedzy. specjalng uwagg
poswiycono nierczerwalnosci obiektow w systenach repre-
zentacji wieczy, definiowalnosci oraz przyblizonej cefi-
nsowelnc:ci pojgc., w istniejgce] literaturze nie zajmowa-

no siy tyz1 aspektami systemow reprezentacji wiedzy.
1

w CZeuCl aruglej tej pracy aamy zemiar przeanalizowac
prcolesy kompuisrowego uczeniz sig oraz indukcji, przyjmu-

Jice jaho punkt viyjscia te same przesZanki CO i CZgsci

-

prerusze

S-

Preface

-

This paper is intended primarily for those researchers in AI interest-
ed in symbolic reasoning processes and the symbolic representation of
knowledge for use in machine inference. )

Two major issues of knowledge enginesring are representation and
utilization of knowledge. Knowledge representation research is focus—
ed on developing methods for representing expert - level knowledge as
symbolic data structures for computer use. Know¥ledge utilization re~
search consists in designing flexible control structures and heuristics

‘for plausible ressoning and decision making. We discuss foundational

sspects of both representation and utilization of various kinds of in-
formation and we develop methods of dealing with knowledge at a con-
ceptusl level., We illustrate the importance and, in fact, the neces-
sity of considering both semantic and syntactic levels of representa-
tion. Ve present the conceptual organization of knowledge on these two
levels. We use description tools which are as neutral as possible from
the implementation point of view and can be realized by various AI tach-
niques. The idea of organizing representation of information according
to the pattern: schemes - instances of schemes is not new. It was sug-
gested by the view of representations as extended data typeés and by

the need to represent knowledge sbout those data types. Ve follow this
pattern at a conceptual level, considering two stages of representa-
tion. We introduce formal languages which provide a framework fcr de-
fining schemes of information items. Semantics of these languages pro-
vides instances of the schemes. lorsover, we develop deduction methods
which can provide mechanisms for using knowledge. The languages intro-
duced in the book are expressive enough to represent a varlety of types
of knowledge explicitly. They can provide a direct, manipulatory access
both to =facts”™ related to knowledge about a domain of applications,
end to "heuristics™ that guide decision making at a meta-level. The
presented theory provide a medium for the formalization of knowledge

in domains where it is as yet highly informal.

The work we present in this peper is to a great extent ‘inspired by
general discussions of knowledge engineering research, case studies,
and experiments. We report s sample of these publications in referen-
ces. The theory developed here, although deriving its motivation from
knowledge engineering, can be viewed as a theory for reasoning in em-
pirical theories in general. The publications which had some impact on
that work are reported in references.



1. InNTRCOUCTICH
1.1. Pepresentation = Senantics + Syntax + Deduction Method

The problens of knowledge representation shown in this paper ore
in the sphere of Artificial Intelligence cven though many of the pro-
blems anzlysed nere have 2 longer genealogy going back to the method-
wlogy of sciences and logic. The term knowlédge representation in
the narrower sense neans the way of presenting information about a
fragment of reality and the way of using such information. But a broad-
er interpretation of that terns has become common in recent years:
it is used to denote the spnere of research concerned with the search
for nethods of presenting and handling information in artificial intel-
ligence systems. Those methods can refer to any sphere of applications
and any level of knowledge: one seeks ways of representing both ob-
ject-level knowledge and meta-level knowledge, the latter being the
knowledge about the former. In this book the methods of knowledge -
represcntation will be analysed in accordance with the following sche~
ma:

Representation = Semantics + Syntax + Deduction Method

Usually our primary concern about a given domain is semantic in
character. Cur views of the respective part of the real world are
formed in asbstraction from language. Hence the component Seﬁanfics
is to provide a conceptual qodel of the domain to be represented. The
term domain is understood here both generally and broadly. In object-
level knowledge we are interested in a given sphere of applications,
for instance, in medical system, in paiients and certain data about
them. In neta-level knéwledge the domain consists of the knowledge
et the former level. ife can continue this sequence of domains through
en arbitrary number of levels. The domain at each level determines the
use of the knowledge 3t the next lower level. The conceptual primitives
specific to the knowledge level under consideration should be defined
in such a model. Thus the object-level primitives should characteriie
the domain of applications. The meta-level primitive concepts éhould'
accordingly describe the characteristics of the object-level knowledge
in question. ’

The component Syn@ax_provides the linguistic counterpart of the
conceptual model acdopted in the component Semantics. The point here is
to define a formal lenguoge to bz used .in expressing informatiﬁﬁ‘about

thosc domains to which & given conceptual mcdel pertains. There aust be
a strict correspcndence betwszen the mocel and tie language connected
with it. The primitive ccncepts included in the model should have thei:

inquistic counterzzris et he lavel of atomic fornulas. Further, ~cr=

pound foraulas should be constructed from atomic formulas with the use
of loaical operators, selected according to the tvpe of the dcmain.

The component Deduction lethod is to provide the methoc¢s of handl-
ing the knowledge presented by means of the formal language introducecd
within the component Syntax. The working out of such a deduction method
should consist in formulating the logic to be used and the methods of
jnference that are in agreement with that logic. Such logic should
obviously include classical propositional logic, but, as it turns out,
classical logic alone does not suffice in many cases. For instance,
making use of knowledge with the consideration of the temporal dimen-
sion of information requires the use of temporal logic.

The methods of knowledge represcntation suggested in tuis bool
cover all the three aspects of representation listed above. Ve arc
also concerned with the mcthodology of knowledge representotion inter=
preted in terms of the said three. components. The methodological pro-
blems reiated to the component semantics refer generally to unanbi-
guity end redundance of the knowledge of a given domain. Hext, the
methodological problems related to the component Syntax cover the
expressibility of the concepts pertaining to the domain represented
in o given case in the language linked to the model of that domain.
Finally, the methodological problems related to the component Deduc~-
tion Methods cover primarily the completeness of inference technigucs

in logics under consideration.

4.2, Conceptual primitives

The methods of knowledge representation shown in this book cover
those domain which can be described by the listing of the following
conceptual primitives:

Object

Attribute

Value of attribute

Each element considered here is treated as the designatum of a clasc
of objects of a certain kind. The choice of the sphere of applications
is linked to the indication of the objects which are elenents of cach
cf those classes. ’

1t is assumed that anything that can be spoken about in the sub-
ject positien of a natural language sentence, e.g., book, company,
etc., is an object. Objects need not be atomic and indivisidble. Thny
can be compound and structurecd, but are treated as single wholes.

It is further assumed that propertics of oojects are fundamentol

clements of the knowlsdge of a given domain. A property is defined
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by a verb phrase in a natural language sentence, e.g., is red, is tall,
ctc. Thaose propertics ,are given by means of attributes an¢ values of
attributes which arc meaningful for given objects. For instance, in
ordar to express the property of an oquct‘bcing of a certain .colour
we assume that we have at our cisposal the attribute Colour .which for
a given object tekes on a definite value frouw amongba_fixod set called

the set of values of that attribute. For instance, the attribute Colour .

in e-given domain may have tht values red, greon, white. Obviously,
objects of different kinds have in principle different sets of charac-
teristic sttributes, aslthough some attributes can be common to objeocts
of different kinds. For instance, the attribﬁte \ieight is common to
human beings ‘and machines, but the attribute Education is proper to

human beings only. 1t is assumed that objects of. a given kind are char-~

acterized by attribuies connected with certain practical considerations.

Hence in different domaing we can uso different sets of attributes for
objects of a given kind provideﬁ that these attributes are admissible
for that kind of objects. )

Every attribute can take on values from a definite set of valucs:
for instonce, the value of the attribute Weight can be a real number
from a certain interval, the attribute Number of Children will have
values which are natural numbers. Noto that, according to our needs,ﬂl
one and the same attribute can draw its values from difforent sets;
for instance, the attribute Colour may assume values from thes sot: red,
blue, black, ves s but 1its value may also be defined by. light wave-
lenght; the values of the attribute Height may be given in centimetres
or in inches, but thev may also be defined as sméll, medium, large.
Thus the set of values of each ;ttributa is defined, on the one hand,
by our needs, and on the other, by our possibilities of measuring or
observing that attribute. We shall-hereafter assume that the sets of
objects, attributes, and values of attributes are fixed for a given
domain, ) ) . .

The methods of knowledge representation suggested in this book
offer us the opportunity for presenting those three basic conceptdal
primitives for any domain et both the semantic and the syntactic level
of representation. ‘.. .

Next to the properties of objects,.which wavtraét as elemontary‘
components .of knowledge, we consider more complex elements of know-

- ledge, nomely conccbts. In its semantic 1ﬁfcrprctation'a concept is
represented ~ in accordqnée with thg‘;rddifidn cur}ent 16 sc%-thcopezic_
al consideroticns - by o set of objects: In its syntactic intorprota-
tion o concept.is a'formula of the appropfiute formal language. The

-g -
relationship between the semantic and the syntactic interpretation of
concepts is the fundamental problem of concept representation. The
methods of knowledge representation given in this boock make it possible
rigorously to formulate those relationships and to show the resulting
possibilities and’ limitations in the handling of concepts. Those pro-

blems are discussed in chapter five.

1.3. Deterministic information

As stated in the preceding section, the adoption of the domain
the knowledge of which is to be represented consists, among other things
in listing the cobjects connected with that domain, fixing the attribu-
tes which characterize those objects, and listing the sets of values
of the respective attributes.

The description of an object by the listing of the values of all
jts attributes sdopted in a given domain will be termed deterministic
information about that object. Vhen. ve speak about deterministic infor-
mation we mean the fact that every object takes on exactly one value
for each attribute and that the value of each attribute is defined
for each. object. Thus deterministic information about an object is
exhaustive and exclusive. Deterministic information about an objecct
is given by a.set of pairs of the form: attribute -~ value of attribute.
self-evidently, that information depends on the set of attributes and
the set of values of attributes we have at our disposal. It may occur
thet in a given domain certain two different objects are described
by the same informetion. This is to say that those objects are indis-~
cernible in terms of the given set of attributes and values of those
attributes. '

The knowledge representation (KR) system of deterministic informa-
tion given in Sec. 2.1 is, for the domains with deterministic inforsa-
tion, the model that corresponds to the semantic level of representa-
tion. The concept was first used in Pawlak (1981). Such a system con-~
sists of a set of objects, a set of attributes, a family of sets of
values of attributes, and the deterministic information functien, which
to each object and each attribute assigns a certain value of that at-
tribute. 4 .

At the syntactic level, each KR system of deterministic informa-
tion has the language 6f that system assigned to it. The language des-—
cfibed in this book is a modification of the language introduced in
Marek and Pawlak (1976 ). Deterninistic descriptors, i.e.,, formulos
of the form (name of sttribute, name of value of attributc) are atcric

fornulas in that lapguage. Compound formulas are obtained fro@ atcnic



- 10 -

formulas linked by classical‘propositional operations of negation,
disjunction, conjunction, implication, and equivalence. Sets of objects
considcred in a given system naturally correspond to the formulas of
the language of that systen. The atomic formulas of the form (a v)

have their counterpart in the set of those objects to which the in-
formation function assigns vaiue v of the attribute o. Conpound for-
mulas have their counterpartis in the sets of objecrts obtained from

«he sets that correspond to the components of a given fornulas fel-
lowing the appropriate set theoretical operations. The usual corres-
pondence between propositional and set theoretical operations is pre-
served: negation has its counterpart in the complement : disjunction,

in the union; conjunction, in the intersection of sets. Implicaticn

and equivalence are definable in terms of negation and disjunction,

and hence the operations of complenent, union, and intersection suffice
to definc the set of objects for every formula of the language of a
given system.

The conponent Deduction Method is, in the case of donains with
deterninistic information, defined in terms of the classical proposi-
tional calculus in which schemata of descripters play the role of
propositional variables. The inference method complzes with the axioms
and rules of the propositional caleulus. The models of the language
of that logic are deternined by KR systems of deterministic informa-
tion.

The. representation of deterministic infornation at the three levels
of rcpresentation is discussed in chapter 2.

1.4. Nondeterministic information

Deterministic information, discussed in the preceding section, is
related tc those domains in which we have ccmplete knowledge of the’
objects as far as the attributes adopted in a given domain are concern
ed. But it often cccurs that we are not in 2 position to state with
certainty what is the velue taken by a given attribute for a given
object, and are merely able to indicate a set of the pctential values
of that attribute for that object. For instance, we may not know the
colour of the eyes of a given person, but can only say that they were
klue or green, and certainly neither brown nor black. In such a case
the concept of deterministic information does not suffice. This is
why the concept of- nondeterministic information is used to cope with
such situstions.

‘e have to do with nondeterministic information about an object

if @ certain subset of the set of values of a given zttribute is as-
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signed to that object and to every attribute in the domain under con-
sideration. That subset indicates the range of the values within which
the value of a given attribute is to be found, even though that value
is not explicitly assigned to the object in the domain in guestion.
Thus nondeterministic information is, in a sense, incomplete.

At the semantic level, the domain of nondeterministic information
has its model in the KR system of nondeterministic information. Such
systems were first discussed by pawlak (1983) and later investigat—
ed by Orlowska and Pawlak (1984). Those systems differ from the
systems with deterministic information by the definition of the infor-
mation function. The nondeterministic information function essigns
to every object and every attribute a set of values of that attribute.
Each subset of the set of values of a given attribute will be termed
the generalized value of that attribute. As in the case of deterministic
information, in this case, too, it may occur that certain objects in
a given domein are not discenible in terms of nondeterministic informa-
tion. ' E B

As in the previous case, a special language of the system is the
syntactic counterpart of a KR system of nondeterministic information.
Nondeterministic descriptors, that is formulas of the form (name of
attribute, name of generalized value of attribute) are atomic formulas
of that language. Compound formulas are obtained from atomic fornulas
with the use of propositional operations. This time, next to the clas-
gical propositional operations used in deterministic information lan-

' guages Wwe use certain other operators which are modal in character.

They meke it possible to compare objects relarive to the generalized
values of attributes they take. We .are in particular interested in in-
clusions and intersections of generalized velues of attributes. Two
objects are treated as similar if the generalized values of attributes
assigned to them have pairwise nonempty intersections. Further, an ob-
ject is treated as informationally contsined in another if the general-
jzed values of the attributes ‘assigned to the former are included in
the generalized values of those attributes of the latter. Likewise,

as in the case of -determinisrtic information languages. each formula

" of the language of 8 KR sys:éh of nondeterministic information has

its counterpart in a set ofNBbjects of that gysten;

In the case of domains wiith nondeterministic information the cowm-
ponent - Deduction tethod requires application of other logical means .
then in the case of de:erministic informatian. ‘The logic on which in-
ferendes in the languages of KR systens‘of nondeterministic informa-
‘tion can be based is developed on the baé;s_of s4 snd B modal logics
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(Gabbay (1976)). In the language of that logic, schemata of nondeter-
ministic descriptors are atomic formulas. Models of the language of
logic are defined with the use of KR systems of nondeterministic in-
formation.

Problems of representation of nondeterministic information are

discussed in thapter 3.

1.5, Temporal information

The dbmains considered so far were linked to static knowledge, in
which the temporfal dimension was not taken into account. This is cer<
tainly a limitation with respect to real life situations, in which
properties of objects usually change with the lapse of time. \le are
interested in such attributes as Height, Temperature, Blood Pressure'
usually atgiven moments of time. Further, their change in a given ti
interval may be of essential importance, to0. This is why we have to
consider such information about an object which is explicitly relate
to time. Such information may be deterministic or nondeterministic, J
but it must additionally include the parameter which represents the
moment to wnich that information applies.

The KR system of temporal information, suggested and investigated
in Orlowska {1982) and Orkowska (1983 (c)) is the conceptual model o
domains with temporal information. That system, next to the element{
discussed earlier in this Introduction, includes a set whose elements

are interpreted as moments of time, and a relation of linear order i

that set, interpreted as the earlier-later relation.

The language of KR systems of temporal information, presented in,
this book, makes it possible to formulate the dependence of informa-
tion upon time. The atomic formulas in those languages have the sche
(moment of time, property of object). Compound formulas are formed dﬂ
atomic formulas by linking the latter with classical propesiticnal '
operations., Properties of objects are represented by formulas constr
ed of formulas of the form (name of object, name of éttribute, name
value of attribute) with the use of the classical propositional oper;
tions. and propositional operations related to time. The intuitive sJ
of those temporal operations is: possibly in the past, possibly in t
future,definitely in the past, definitely in the future. Thus the pri
erties of objects, expressed in such a language, have a reference to
time, end moreover time is explicitly indicated in the fornulas of f
langusge as one of the parameters. That makes it'possible to use dir

1y the temporsl context of information. . E
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The logic on the basis of which the component Deduction Method
rests is defined in terms of tense logic with linearly ordered time
(Burgess (1979)). A special form of the atomic formulas is adopted
and, as in the case of deterministié and nondetermiﬁistic information,
the models of the language of logic are deternined by KR systems of
temporal information.

Representation of temporal information is discussed in chapter 4.

1.6. Concepts

In accordance with the reservations made in the previous sections,
the fixing of & representation of a domain reduces to fornulating an
appropriate KR systes, the language of that system, and the method of
inference in that language. The problem arises which.concepts pertain-
ing to & given domain can be represented with the use of those means.
It has been said that both deterministic and nondeterministic infor-

mation sbout an object need not necessarily describe it in an unam-=
biguous way since there may be several objects information sbout which
in a given domain is the same. The same applies to information about
an object in a fixed moment of time. This fact essenéially affects

the possibilities of representing the concepts related to a given do~
main. i :

In accordance with what was mentioned in Section 1.1, each subset
of the set of objects in a given KR systemlwill be treated as a sem-
antic representation of a concept. Further, the formula in the lan-
guage of that KR svstem which corresponds to the subset will be a
syntactic representation of that concept. The problem whether every
concept which can be introduced sementically can also be defined syn-
tactically is an essential aspect of the methodology'of knowledge re-
presentation. It turns-out that in the general case the answer to the
question is in the negative, and that in view of the indiscernibility
of objects, with which we have to do when information about objects
does not define them unambiguohsly. Thus in every KR system the in-
formation function establishes the indiscernibility relation in the
set of objects. Two objects are indiscernible if and only if the va=~
jues of the information function for those objects are the same for
every attribute. That relation is‘an equivalence relation. The equi-
valence classes of that relstion will be termed elenentary sets. Hence
every elementary set conizins those objects which are mutually indis~
cernible by the attributes adopted in a given KR system. of course,
it may occur that all elementary sets contain one element cach so that

each object is discernible from all the remaining ones, but that need
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not be so in the general case. If it is assumed that information about
s subset of objects is the “sum” of information about its elements,
then it may turn out that certain objects cannot be defined syntactic-
slly. For it may occur that some objects which are in the same elemen-
tery set may be in the set that corresponds to the concept in question
while others are not. It follows there from that attributes can be used
to define those sets only which are sums of the equivalence classes ‘
cof the indiscernibility relation deternined by the set of attributes
fixed in & given KR system. The notion of approximate definability and
the notions of lower and upper approximation are introduced for those
concepts which are not definsble. The lower and the upper approximatio
of 2 concept in a given KR system are defined in terms of the indis- ?
cernibility relation in that system, Those problems are discussed in
sections S.1, 5.2, 5.3, and 5.4, . 3

The indiscernibility relation turns out to be decisive for the ?
expressive power of KR systems, that expressive power being interpret-
ed as the possibility of an adequate representation of the concepts
related to given domain. A logical formalism which makes it possible
to prove facts connected with the expressive pover of KR systems under-
stood in this way is suggested in the book. A logic is analysed in the
languege of which there are constants which stand for indiscernibility
relations. Those constants are used to define the operations that cor=
respond to the operations of lower and upper approximation., That logié
is discussed in Section 5.8, The problem of expressive power of KR
systems discussed in the book was formulated in Oriowska and Pawlak
(1984 (a)).

Another important methodological problem connected with the re-
presentation of concepis is such a choice of the attributes for g
given KR system which would eliminate all attributes superfluous for
the description aof the concepts considered in that KR system. Those
problems are analysed in Section 5.6 and 5.7.

Research on the representation of concepts outlined in this book
is continued in Pawlak (1982), Pawlak (1984), Ortowska (1983 (a)).

[}
-t
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2. REPRESENTATICH CF DZTERHINISfIC INFORMATION

2.1. Systems of deterministic information

In this section we present and discuss a mathematiczl model of
knowledge representation (1:R) systen of deterministic information.
A deterministic KR system is intended to represent knowledge about
sone objects in an application - specific domain. i‘ence the basic
component of the system is a nonmempty set OB of objects e.g., human
beings, books. ‘le ossure that knoviledge about these objects can be
expressed through assignment of some cheracteristic features to the
objects. For example, human beings can be characterized by means of
sex and age, books by means of title and author’s name etc. The char-

acteristics of objects are represented by attributes and velues of
the attributes. Hence a nonempty sct AT of attributes ond for eoch
a« AT a set VALa of valucs of attribute a are the componengs of the
system. From the formal point of view the assignment of attribute val-
ues to objects can be considered to be a total function from the Car-
tesion product OBXAT into set VAL = U va,.
aeAT
Now, we give the formal definition of a deterministic KR system.
A deterministic KR system is a quadruple ’
5 = (03,AT, VAL Y 5 a7 F)
where OB 1s a nonempty set whose elements are called objects
AT is a noncnpty sct whose clements are calied attributes
VAL, is 8 nonempty set whose elements are called values of et~

tribute a

f is a total function from set OBxAT into set VAL ='L,} VALa
: aeAT

such that f(o,a)e VALa for every o0& CB and every ae AT

For any attribute a set VAL, is referred to as the domain of at-
tribute a and function f is called information function.

Example 2.1.1

Let us consider a very simple deterninistic K2 system defined as

follows:
oB = (01 '02'03'04'05'06&

AT = {Sex, Age}
. nale, fenale}

<
=
Z
)
1

VAL = {young, nedium, old T




3ff) tEUfUfdo  hos) oabp jo Lotiviusseddey Vg *qel

auepnasg
JOTTUS
Jadoo:y *Q
JoqunTd
AJdgio0u003
- a9qdeg
AdB3049205G .
J07TES3
Jodaoy *Q
AJa@3oao08
4030y
Jequntd
juopnig
Jodoay *°Q
iuopnig
107108
Jequnid
4030y
Jadooy *°g
J3q4eg
_oFusYy29l)
1030V
1uopnig
40310V
Joquaeq
quapmg
AJ40304005
JOTTCS

aedooy) *qQ

informa

and the

g *qoJ pouay 31704300
v opToTUOH S|JOA MO
v a8apany obuotd
0 *ysnd Gnag §I0A MON
a a0panyy *Buy so
3] adey NJOA Map
v Guyspoe Ty 3704390
a *qoJ poudy uoisog
3 Sutddeupyt 3T0J430Q
2 aopany uo3snolf
' 3 GPFOTWOH uo3zsog
v ‘adey +Buy son
Y o Jepany oBaotyg
' 2 OpTOTUIOH cuga4 ues
v CupyoefltH 340, 140
3 *ysnd Gnuq uolsho!|
a GupnoefIH sueJg ueg
1] *qoJd poudy ofootyn
v 20pAny *Buy soq
3 aduy 1704380
2 *qQoJ pouuy cugJs.y ues
a GuyddoupTsi uoisnol|
3 *ysnd 6unug *Buy son
o] Supsoe iy 340, Ao
v S aepany “340) MO
a odey ofimotyn
v BPTOTWOl u0180Q
g Buryoe 1t *Buy so -
a adey uoIsno}|
v Jepany 170438Q
B34 AAIIUD ‘daavy *H
©
~
)
[23
&
(=2}
c
o
o
-
—
) e , e
- o 3 5 =3
=4 sl Kal [~
¢ © 3 W BV T W 3
£ o O 2] — [] —t [o]
#« < > & o0 8 o >
>
)
o
o
] c
ke [ © o
O G~ - — ~
- (4] LN [} o a o (1]
9 XA <4 E = B €
[ o @ ©® © 68 © O
H e g Y g L M
c
] .
P SR A L)
- o o o o o o
133
[=
5
frad
c
<]
sl
Led

Cbserve, thot according to the definition of deterministic KR s;

Joquntid

* 30U

angd
tig

ninis

why we consider information of this kind to be deter

is
Given o deterministic KR system S = (0B,AT,VAL,f), for every obj

for cach object the value of each attribute is uniquely deternined.;

tem one attribute value only can be associated with each object,
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fo(a) = f{o,a)
This function is called information (or data) about object o inT

ject o€ 03 we cefine the function fo from set AT into set VAL such j

that

system S. Consicer, for example, information about object o, in the
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(Age, medium)

system given in example 2.1.1., It consists of the following pairs:
(sex, male)

Let us notice that information about an object is exhaustive ang
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exclusive i.e., values of all the attributes are determined for thef

object and only one attribute value can be associated with the obje}
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2.2, Examples of systems of deterministic information

In this section we give some real life examples of deterministig
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KR systenms.
Example 2.2.1

Tzble 1 is a part of a large criminal file conteining records of

crimes, criminals, arms, locations, methods and other informaztion cf

d of time {see Ashany (1976)).
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fron the row of the tablc corresponding to the object.

Exenple 2.2.2 )

shown below is the other instance of criminal data file {+.shany
(1976))

1 Name Hair Hair Eycbrows Eyebrow Eyes Eyes Eyes
Cover- Tex- \ieight Separa- Open- Separa~ Colour
age - ture tion ing tion
1 John . Full Wavy Thin Sep. Narr. Medium Blue
2 Cloude Rec. Str. Bushy Mest. Narr. \Mide Srovn’
3 Robert 2ald Str. tedium lieet. Jtedium Close Green
4 MHancy Full Yia Thimr Sep. \vide Medium Hazel
5 Ingmar Rec. Curly Bushy Heet. Wide \/ide Slue
6 fRoberto Full Curly Thin Sep. Narr. Close Blue
7 tarcel Rec. Str. Bushy teet. Narr. edium 2lack
8 Johanna Full Curly Thin Sep. tediun tedium Green
9 Jurgen Bald ‘iavy Thin Sep. Wide Close Green
1 Ton Full Vavy ledium Meet. Narr. ~ledium llazel
Tab. 2

The table contains data needed for identification of human face. There

are the following attributes in thc system: MNane, Hair Coverage, Hoir

Texture, Cycbrow leight, Eyebrow Separation, Eyes Opening, Eyes Sepa-
ration, CEyes Colour.

Tho domains of these attributes are given below: . -

VALName = {John, Claude, Robert, Mancy, Ingmar, Roberto, ttarcel,
Johanna, Jurgen, Tom &

VAL = {Full, Receding (Rec.), Bald&

Halr Coverage

VAL,

Hair Texture ={Straight (str.), wavy, Curly}

VA = {Thin, Medium, Bushyk

LEyebrow vieight,
Separate (Scp.), Meeting (Heet.), Narrow
(Nar.) E -
= {Narrow, Medium, Wide k

VAlevebrow Separation ~

IVALEyes Opening
VALEyes Separation = {Close, HMedium, Wide X _
VAlgyes Golour {BlaCk; Blue, Brown, Green, Hazel y‘

In the pharantheses the,abbreviationé used in the table afe‘given.

Thus information sbout the ‘face of Roberto is as follows:
(Hair Coverage,bFull)1

(Hair Texture, Curly)-

(Eyebrow yleight, Thin)

(cyebrow Separation, Separate).

(Eyes Opening,fﬁarrow)

- 19 -

(cyes separation, tiedium)

(Eves Colour, Sluc).

Our ncxt exzmple concerns pathomorfological changes in cells and
cell organelles. .

In table 3 we give after lloore et al. (1977 ) pathologic state de-
finitions in terms of the general pathology of the growth disorder.

State Volume Numerical Surface
Density Density Density
MNormal Normal Normal Normal
proliferation lormal Increased Increased
Hypertrophy Increased Normal Normal
Hyperplasia Increased Increascd Increased
Hypoplasia Decreegsed Decreased Decreased
Atrophy Cecreased Normal Decreascd
Agencration _Hormal Decreased Decreascd
pysplasia Increased Decreased Decreased
Decreased Increased Increased

Dystrophy
» Tab. 3

Objects in the systecn are states of cell orgonelle systems. The
organelle systems are characterized by attributes called Volume Densi-

" ty, tiumerical Density and Surface Density. The domain of each attrib-

ute is iNormal, Increased, Decreased}. The biological meaﬂing of these
attributes and their values is jmmaterial for the purpose of this pa-
per. Let us observe that each pathological state is described by 2
certain combination of attribute values. In other words each patho-
logical state is determined by the information about this state con-
taoined in the table.

Example 2.2.4 )
In this example we give instances ofmicroorganisms description in
the "object, attribute, value* fashion after tichalski et al. (1981 ).

The objects to be described are somemicroorganisms shown in Figure 1.

There are the following attributes chosen to characterize the micro-

organisms: Sody Farts, Body Spots, Texture, Tall Type.
The domains of these attributes are as follows: _
VALBody Pérts'= {one part, two parts, mony partsk

VAL, = {one spot, nany spots}

Body Spots
VAlraxture {bla"kr striped, Cfosshatchedk

VAla11 Type = {P°": single, multipie};

Table 4 gives information about all the hicrborganisnsshown-in

Figure 1.
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Fig. 1
?ody Body Texture Tail
Farts Spots . Type
2 one one blank single
b one one blank none
c one many striped multiple
d two one blank nultiple
e tvio nany ‘striped single
f nany many striped none
g _meny one ~blonk multinle
R nary many striped multiple
i nany one blank none
J many nany crosshatched multiple
Tab. 4

As in the previous examples information about a microorganism in

the table consists of values of all the attributes for this microor-
ganism. ’

Example 2.2.5
Knowledge in the form of deterministic KR systems often is

used in medicine. The medical deta used in this example are taken from
VLarnus :

1883 ). Table 5 centains a sample from a data file of patients
suffering from heart disease secn in one of the hospitzls in Varsaw.
There are the following attributes in the table: Gascmetry, Dys-
pnea, Cyancsis, Pulmcnory Stasis, Heart Date, liepatomegsly, Edema,
Cegree of Disease Advance. '
The set of cbjects in this system consists of patients Pl""FiO'
The donains of the attributes consists of integers. For ekenplé, val-

ues of attribute "Hearg Rate” arc integers ranging from 50 to 250.

> > Y
1S Q “ o
- [u] Ral o 1 00
o o 124 co o > © a0
=3 Cc o Qi P o Q o QL
[»] Q = E O Lo cQ & Lo o
[2] [ aQ - 0 [~ 304 [~Rgo] [+ DO >
2] > > o B4 o0 © 0 o QT
(@] a [&] aw iy aid L E _lll o<
P1 3 1 1 1 62 o] ¢] 1
Py 43 2 3 4 76 8 3 3
Py 42 1 2 1 71 1 0 1
°, 43 0 3 2 80 5 1 1
Py 48 1 3 3 2 6 3 3
P6 33 1 3 2 87 5 1 2
P 54 ) o o gs 1 o 2
P 40 3 0 0 128 1 o] 0]
P 40 1 0 8] 111 1 0 1
Pyg 59 0 1 0 68 2 1 1
Tab. 5

The Yast column contains data about a health status of patients. The

degrec of discase advance increases according te the natural ordering
of the values of this attribute. In rcality therc are six values of
this attribute but not all cf them occur in the presented‘part'of the
table.

To maoke use of information gbout objects given by means of o K
system we need a longucge for expressing explicit knowledge of the
systen and rules for deriving implicit information. In the following
section we present a formal language ond a deduction system for the
language. The language is intended to express deterministic informa~

tion.

2.3. Logic DIL of deterministic information

In this section we define a formalized language which is exprecssive

enough to represent a variety of types of deterministic infornation.

Since information about an object in o KR system of deterministic in-

formation is 2 set of attribute - value pairs, expressions of the lan-
guege include schemes of such pairs as atomic foraulas. From atonic
formulas we construct compound formulas by using the usual propcé;ticn;
al operstions. '

We can formally define these formulas to be expressions built up
from synbols taken from tic fcllowing nonempty ot most denumerablo
and pairwise disjoint sets:

a2 set CCHAT of constants representing attributes

/s
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a set GCHVAL of ccnstants representing vaiues of attributes

set{‘l v,A,2 <9k cf propositicnal opcrations of negation, disjunc
tion, conjunction, implicstion and equivalence, rcspect*vely

set {(,)} of brackets.

Set FORDIL of all the formulas is the least set satisfying the
following conditions:

(a v)e FORDIL for zny a€COHAT and v€& COHVAL

if A,B& FORDIL then 1A, AVB, AAB, A3, A<®BE& FCRDIL.

Fornmulas arc the schemes of santences expressing information about
objects. Each formula will be interpreted os a set of objects obeying
the property described by the formula. A formula of the form (a v) will
be interpreted as the set of objects tzking the value denoted by v for
the attribute denoted by a. Formula of the form 1A will correspond to :
the complement of the set of objects represented by A. Formulas AvD
and AAB will reprcsent the union and intersection of sets deternined
by A ond B, respcctively. By using formulas of the form A8 and A B
we shall express inclusion and equality of sets.

If the following we define semantics of the given language by mcans
of the notions of model and satisfiability of the formulas in o model.

Ly a model determined by a KR system S = (OB, AT, VAL, f) we ncan a

tuple
M= (s, m)
where m: COMNAT U CCNVALD ATU VAL is a meaning function such that

n{CONAT) = AT and m(CCHVAL) = VAL.

Thus we give on interpretation for formulas by assigning correspond:
ence betwieen elements of the language and entities in the domain of
discourse represented by a given KR system. In this way constants re-
presenting attributes dnd values of attributes are considered to be
sn indication of a whole class of entities, with individual instances
supplied by the domain od application. If we give to each constent its
proper meaning in a nodel M = (S, m) then we obtain a sentence stating
a property which is meaningful for objects froa sysfem S. Some objects
nay have this property and the other may not. To express this we intro-
duce the notion of satisfiability of formulas by objects. \le say that
an object o satisfies a.formula A in a model M(M, o sat A) iff the fol-

lowing conditions are satisfied:
M, o sat{a v) iff flo,m(e)) = m(v) . *
M, o0 sat JA Lff not i1, o sat A :
M, o0 sat Av3 iff M, o sat A or. M, o sat B
i, o sat AAB ifTf i, o sat A and L, o sat B
t, o sat A»B iff M, o sat 1AvB - )
H, o sat Ae®B iff I, 0 sat A8 ant M, o sat BYA.

(e) ext AvS =

v 23 =

According to this definition to each formula A of the language
there is associated the sct of those objects which satisfy the fornmula
in a model H. Ve call this set extension of foramula A in model M,
(ext‘\/\)i v

exth {os 03 '+ M, o sat A}

The extansions of compound fornulas depend on the extensions of

their components in the following way.

Fact 2.3.1 .
(a)'exx“@ v)= {o&CS :

(b)

f(o,n(a)) = a(v)Y
extpg§ = -ext; A

extMAUextrﬁ

(d) ext MB = ex;rfnextns

(e) ext A3 = -extylvext. B

l (f-) ext AeB = ext f‘\nextmau( ext”A)'\ (-ext B)

Thus an object o satisfics a formulae A whenever o has the property
described by A, and extension of a formula A consists of the objects
possessing the property expressed by A,

We soy that a formula A is true in a model H(F,A) iff-ext, A = oB.
‘A formula A is valid (kEA) 15f it is true in every model. A set T of
formulas is satisfied by an object o in o model K(H, o sat T) iff 1,

o sat A for every formula A€T. A set. T is satisfiahle if there e;lsts
a model M and sn object o such that M; o sat T. A formula A is a sem-
anticol consequence of a set T of formulas (TEA) iff M, o sat A wher
ever M, o sat T for every model # and for every object o from the set
of objects of il. Formulas A and B are said to be equivalent in a model
M 1ff ext A = exti A, Formulas A and B are equivalent iff they are e-
quivalent in all nodels.

e _now have an easily established fact:

Fact 2.3.2
(a) Ep 1ff extyA = 08
(b) kA iff ext)A = B
(c) EpIB iff exyAgext,B
(d) BreB 1Ff exnA =

The lemmz shows that we can express inclusion and equality of sets

of objects in our languzge.

\/e now give a deductive structure to tiae language. Ve specify a
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recursive set of axioms and inference rules. The axioms corres"ond’
very closely to the axions for the classical propositional logic.
- Axions of DIL
Al. A=>(D%)
A2, (A= (87c))2((As8)=>(/>c))
AZ. A» (TAeB)
A4, (TAPA)= A

Rule of inference

A A

LJgﬁzg modus ponens
o

The given axioms characterize the operation of negation and impli->
cation only, but in our language the renaining propositional operations
are definable by means of 1 and » , namely we have the following lemme.:

Fact 2.3.3
(a) extrfws = extrﬂAﬂB

(b) ext,; /4B = ext J(A"2)
(c) ext, A0B = ext, (AIB)A (B2A)
1 M

Wwe say that a formula A is derivable from a set T of formulas
(TFA) iff it is obtainsble from the axioms and the formulas from T

by repeated application of the rule. A formula A is said fo be a theo- 4

ren of logic Dil(+A) iff it is derivable from the axioms only, A set
T of formulas is consistent iff a formula of the form AATA is not de-
rivable from T. ’

A logic is said to be sound if every formula A that can be derived

from a set T is also a semantical consequence of T.
DIL has soundness property. '

Fact 2.3.4 (Soundness theorem)
(a) A implies EA
(b) THA inplies TE A
(¢) T satisfiablevimpiies T consistent

Proof: The axioms of DIL are easily seen to be valid, and the rule

clearly preserves validluy. This proves (a), from which (b) and -(c)
follow immediately.

In the following we list some important theorens and .metatheorems

of logic DIL. Thoy represent facts that are true in all models,'tha: o

is the facts expressing those properties of objects which do not de-
pend on. a2 choize of a donain‘of applications.

Fact 2.3.5

Wwe show that logic

25 -

(a) K11 LeA
(b) F 1(,.vu)e>(1,\415)
(c¢) b 1(2As Je> (14v13)
(d) FAa(Bve e (AaB lv(anc)
(e) tav(a zaC e (Ava)A(Ave)
(f) F(A20)e (132 094)
(g) r(ars)e (TAvs)
The given theorens of logic DIL prov1de a basis for equivalent
transformations of formulas.
In many artificial intelligence systems inplicational formulas of
the form A A..‘AA >3, referred to as production rules, are used. The
next lenma shows hou we can transform production rules.

Fact 2.3.6
(a) F(asove)o (A3a N(axC)
(b) F(AABaC )€ (Ac)v(BIC)
(c) F{avBrc ) (Axc )A(2>C)
(d) tErscac)e (As3)a(sac)
(e) F(A22)4(C2D)* (AvCaBVD)
(f) FAsB> AvB

Fact 2.3.7
(a) AeT implics Tk A
(b) THA and TSZ imply ZFA
(c) F A implics TFHA for any T
(d) TrA and THAYB imply TF B
(e) TV[a}t-B iff TFA>B
(f) Tra iff TU{1A} 15 not consistent

A logic is said to be complete if every formula A that is a seman-
tical consequence of a set T can also be derived from T.

In the following we prove the completencss theoren for logic DIL.
_The procf follows closely the proof of completcness for classical prop-
ositional logic. The only difference is that a special canonical KR

“'system should be constructed.

Let T be o comsistent set of formulas and let relation a2 be defin-
ed as follows:

A%B iff THAOB

. Fact _2.3.8 _
“(a) nelation 4 is an equivalence on set. FCRDIL

]
{b) nelaticn 2 is o congruence with respect to opcrations 1, v, andA.

- Let FCRDILkg denote the set of nll the cquivalence clzsses of rela-




is ¢ nen-dogonerate Soolean algebra
3 R A 8]
= 1

not ThHA

bs the family of 21l the manimal filters in aigebra ADIL,
is non-eapty since the slgebra is non-degenerate. Ve define ;

i
cunonical i system S as follewis:
8

Vil fg )

0
<

AT = CCNA
VALu = CCNVAL
T’D(F.a) = v 1iff [(a v)]eF for ony FF_—OBO. ae-f‘Ta and vt"-"VALo.{
Canonical model M determinegs by the cancnical system is defined
as fcllows:
My = (s,. m,)
whore mo(a) = o for.s & CONAT

mq(v) = v for v& CONVAL

Foct 2.3,1C
The follewing conditions are equivalent:
(a) 11, F sat A

(v) [A]eF
Proof: The proof is by induction with respect to the lenght of |
fornule «
Case 1. A is (a v
gy the dofinition of sotisfisbility !, F sat{a v) iff fo(F,a)
and hence by the definition of the cancnical model the theorem nold

SN e

-4

sat 15 iff not ligr F sat B. 3y the induction hypg
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thesis not [S]e F. Since F is o maxinal filter, vic hove t!q]c F.
Case 3.  is T>C :
vie have H , F sat o>¢ iff not iiy, F sat'5 or HA,AF sat C. Hence
[15]6 F or [CJEF. Since F is a prime filter, we have [1Bvcle F. oy

 2.3.5 (g) we have [sfc_}e E.

tie are now ready to prove the completeness theoren.

Fact 2.3.11 (Completcness theoren)
(a) A implies kA :
(b) TEA implies THA

~(c) T consistent. implies T satisfiable

Proof: Suppose-not Tk A. By 2,3.9 (d) we have [1A] # oo Thus' there
is a moxinmal filter F_€ FT such that [/, Fo+ Oy 2.3.10 we have i,
F, sat A. For any formula BET we have TF O by 2.3.7 (a) and [:] =1
by 2.3.9 (c). lience [B]e Fge but by 2.3.10 3, F
tion. Condition (a) follows from (b), and condition (c) follows frem
2.3.10. '
' As a corollary we obtain the following

sat 3, a contradic-

Fact 2.3.12 ( Compactness theorem)

The following conditions are equivalent:
{(a) T is satisfiable
(b) Every finitc subset of T is satisficble

The ngterial presented in this section preovides a tool for defin-
ing languages of IR systems. These languages can be considered zs lin-
guistic counterparts of the respective systens. They enablc us to ex-
press explicit infornation about objects and to infer inplicit infor-

nation.

2.4. Languages of systems of deterninistic inforaaticn

The formalized language defined in section 2.3 provides a means

“-- for representing. information deternined by a KR systen. The fornulas

of the language of logic DIL can be treated as schenes of santences

which express knowledge sbout objects. In this section we ceonsider

languages obtained from the langucge of CIL by assigning meaning to
ettribute constants and attribute vzlue conctznts. In othor words with
any KR systen we associzte a longuage deternined by -this systen,

~ .Let o system S = (C3, AT, VAL, ) ond a meoning Ffunction m be given
such that o{CCHAT) = AT and m(SCHVAL) = VAL, et li= (S,n) be tie molel
deternined by system 5. V'e consider set FORCIL(Z) of formulss of

-

cys
“tem S. It is thc least sot containing all the pairs of the fora {(afa)
X b ¥
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€ llilT and v € CCiVAL and closed with respect to the opcra- § ext(aninality bear) = {A,. "‘;v%
{72 72
tions 3, v, A, ®, ond & . ¢ define saotisfigbility cf formulas of (snimslaty dog) A (zize large) v
ze lzrge)<€?

tcn O By objocts of the system and extensicns of these fermulos by v (rnimality norse) A (=

. of tlhie respective notio

s introcduced in logic CIL. Fer an ebject § e (size lcrgc)
ext{size large) :{'.‘3' Ao r&‘“
(size small)=> (Colour black)
ext(Cize small) =47y, ,'.415

ext(Colour black) =,(Al, Fo Pge g /-.51(

3 we have

<} sat(m(a)m(v})liff i, o sat{a v)

For conmpound feraulacs the inductive definition of satisficbility
vis the samc as in logic DIL. Similarly

ext{mlaln(v)) = ext“(a v)

Extensions of c¢ecmpeund fermulas are defined in a way similar to
hat followed in 2.3.1 (b) = (f). A formula Ae€FCRSIL{!) is true iff
A = G5,

The formulgs from set FORDIL(1) express properties of objects of

ext(Size small) & ext(Colour black)
size small)e J(Size medium)A TV(size large)

T
ex ext1(Cize medium)} = .{'/\1, "‘3' ,‘\4, ""6' A7'S«

: : . t1(cize large) = [a Mmy Fae o
the given system C. Ve can describe all the properties cf objects which ext( g 1t 20 A 5}

rc expressible in terms of information about these objects provided extd{Size medium) N ext1(Size large) = ‘(Al' A4}7

’

and Stone {196E).

&
Sy system 5. lonsider, Yor cxample, the systen presented in hunt, ::ar:.n {colour black) ¥ (Zolour brown)

- f{ »
ext{Colcur biack) = iAl‘ Fms Bge Bga AG",

Exannle 2.4.1

ext(Zolour brown) = {/’;3, ;7'[,
WWe arc given a chorocterizotion of various animals in terms of ) )

. ~ L . ext{Colocr black) U ext{Colour brown) = 0B
arttribures: Cizc, Aninality, and Colour. ive have .

08 = IA,s Ay fgu Ag, Al A AL

AT = {Si:e, Aninality, Colourlj'

Croncle 2.4.2
Suppose we are given a true fermula F in the lenguoge of a systen
with the following sets of attributes and attribute values:

VAL.,_ = {emall, rediua, large
Size { 5 AT = [Profession, Add.—esss'
VALr‘\nimality = {bear, dog, cat, horsezf VAL: Lcsossion © {programmer, actor, mathematician}
- O pERE

VALcolour © ‘(bln‘:k' brown § VAlasdress = {‘.‘.’arsaw. Paris‘r
The informetion function is given by means of the following table F : {Profession progrommer) A (Address warsaw) v
Size Animality Colour (Profession actor) A (Address warsaw) v

Ay snzll bear black {Profession mathematician) A (Address Paris)

A2 medium bear black Wle czn sce that this formula is true in the following systems C,

As large dog brovm and S. with the sets C3, and 08, of objects, wiere

hy small cat black - - <

Ag medium horse black o8, = {John, tary, Sob ¥

A6 large horse ) - black 0B, = 08,v {Jill, Robertlg

Ay large horse brown and with the 7ollowing information. functions:

e have, for example, the following true fornﬁlas in the lznguzge Profession ~ddress
of the given system: B ‘:'1 John progremner viarsaw

(Animality bear} A (Cize snall) v Hary acter viarsaw

v {animelity bear) A {Zize medium)<> Bob methenatician Paris

(Animslity bear)
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Profession Address
£ Jean srogrampnar V.arsavi
B rary actor arsaw

Sol nothienaticion Paris
Ji1l precgranner \larsawv
Robert actor Vilarsaw

e con:luce that information function characterize objects up to

E
v . . e ;
undistinguishable odjccts and as a consequence fcrnulas do not uniquely
detcrnine scts of objects. The problem of

indiscernibility in KR sys-
tems will be cencidered in chapter G. '

and the following true for-:

u his gsysten:
F1 (rddress varsaw < ("rofession progranmer) v (Frofcssion actor)
P (~cdress raris) 2 (Professicn nathematician) X
£. (~diress varsaw) v (~ddress Paris)

Fron these fornulas we can derive 3
Fa (rrofession progranmer) v (Profession actor) v (Profession 90‘5}
cmatician) ’

by using 2.3.6 (a) and modus poncns rulc. :

In the next cxample we show that meta - level knowledge can 2lso

syntax-semantics-deduction |

provided by a KR system,a

of the languoge of this
system ond a deducticn mcthod is determinad by logic DIL.

be conceptuclized according to the schema:
method, whcre a scmantic repreosentation is
syntzctic representaticn is given by means
Exanzle 2.4.4

Let us assume that a certain KR system 8, is given and let the
following formulas of the language of systenm S1 be true:

Fy AR A By

Fp A3Ay™5;
F3 Asaas
F, ‘2AB,>0,
Fg 5,A25%3g
Fg 22453

P, D ATe™Ig
Fg DpA o3y
Fg
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Fio “3
Fiz 4
Faz 5

Furthermore, let us neta - level knowledye about cys-

tem S, 1S civen by neans o systen S? in which we indicote the utility
- o
~

of object = level knowuledgo. 5. is defined as follows:

0B = {1:1.---,F12-&

AT = AFrcniscl, ?lcmisez, conelusion, Utility Undcer Conditionl,

rs

Urility Under Condition, Y

VAl s N

. e YAl
. Frenisc,

< FCR o
“Conclusion < FereIL( 1)

A = VA s \ =% do~
YALjri1ity Under Condition, “yr4lity Under Conditions {

finitecly uce

ful, probably useful, especially uscful, useless,
probably useless }

it is easy to sce that a formula of the form A8 is equivalent o
A,4(0v1c)*98 and any formula A is equivalent to CvICTA. lence any
inplicational formula con have a valid formula CviC as ¢ premise and
any assertional fornula can be interprcted as an implicational fornu-
an infermotion function

1z with valic¢ premiscs. Hence the vclues of

of system S, can ve defined for all the objects and all the sttributes.
- ) -~y .

Let us assumc that this functicn is defined by means of the Ffollowing

tsble. For the sake of simplicity wo use the abbreviation utility,

and Utility, for the respective attributes.

Promisey Premise, Conclusion Utility, utility,
Fy Ay A By useful useless
Fo Ag Ay 2y def. useful useless
F. cvic A By def. useful prob. useless
Fy Ay B, By useful useless
F5 By By Bg espe uscful cdef. useful
Fq 5, Ag By useless usazlecss
F, T, By Bg esp.useful‘def. useful
Fg S, o 0y usetul prob. uscless
Fg cvisl Cv iz Ay prob. useful uscless
Foe cvic cvic Ay prob useiul uscless
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F11 Cv1C Ccvic A4 def. useful prob. useless
F12 cvlc cvilc AS def. useful prob. uscless k

chown bclow arce cxcmples of formulas fronm set FGRDIL(SZ) and their
intuitive meoning.
(Premise, Ay) v (Premise, 2,)
. oxt Gy =[F,, Fu Fol
(Prcmise1 Az) v (Prcm1502 A2)~> (Utility1 useful)
ext G, = CB
Under ccndirion1 production rules which mention A2 in their premis-ﬁ
es are useful
6. (Conclusion B.)
3 5
oxt Gy = 05 - fFg, 7§

G (tonclusion 35)‘€>(Utility2 probably useless) v (Utility2 uscless);
ext G4 = GO

Under Condition2 production rules which do not mention Bg in their 7
conclusion are probably useless or useless

If we ore interested in indicating a partial ordering of the object
level production rules then we can introduce the attributes: First,
Last, Defore F, After F, etc, for some production rule F. Values of
these attributes range over set {yes. noy.

2.5, Summary

In this chaopter we prescnted the three major elements providing
the conceptual fromework for representation of deterministic informa-
tion. First, we gave a conceptual counterpart of domain of applica-'
tion. Ve assumed that a domoin consists of a set of objects which are

characterized by neans of some attributes and values of the attributes. }

Wie assumed that information about a2n object consists of a set of at-
tribute - velue pairs such that a single value of each attribute is
specified for the object. Second, we defined formal languages which
enable us to express information sbout the objects. Deduction method
for these languages was developed, by using ldgic DIL of.deterqinistié
‘informotion. The logic wras obtained from the classical propositional
legic by assuming o special form of atomic propositions. .

- 33 -
3. REPRCSENTATICON CF NCHOETERMINZICTIC INFGRIVTION
3.1. Systems of many valued information

In many rcol situations it is not sufficient to ossociate a single
volue of en attribute with an object. For example, if a person knows
more thon one languzge, say Snglish, German ond Polish, then informa-
tion about the person sihould include the thrce pairs:

(language, English) (language, German) (language, Polish)

To cover such situations we introduce a notion of meny - valued IR
system. In many - valucd systens information cbout objects is given
by means of infornation relation. Thot. is we assume that many values
of an attribute may -bc associated with an object.

By a many - valued KR system we mean a quadruple

s = (0B, AT, {VALa}aeAT, g) .
where OB, AT, and VAL = td/ VALa arc sets of objects, attributes,

86 AT
end values of attributes respectively, and g€ 0B x AT x VAL is
a relation such that 1f (o, &, v)e g then ve VAL , and for each oe GB and

each aa AT there is a value ve VAL; such that (o, a, vJ)e g.

By an information about object oe OB we mean relation g & AT x VAL
such that '

(a, vleg, iff (0, a, v)eg

Lét us observe that according to the given definitions information
about an object includes at least one ‘pair for each attribute of the
.system.

Exomple 5.1.1
Consider a KR system which contains facts about languages (Lan)

which persons P1, Ps P3, Pys P5, P6 speak, snd about deérecs (Dgg)

. they have. The respective many - valued KR system is defined as fol-"

lows:
. !
ol:} ={P1, Pos Pgs Puo Pg, Ps}
~ AT = fLan, Deg& ' -
VAL = {French (FJ), Hungarian (H), German (D), Swedish (S), Romanian
(R)} :

VALDeg s{aachelar of Science (8S), Master of Science (115), Phiw
losophy Doctor (PhD) }
" The information relation of the system is given by means of the’

following table. ) _
In the table we use the following notation. In the place of the

table labelled by an object o and ah attribute a we put all the values
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v of attribute o such that (o, a, v)&€g. For example, information
about person P, consists of the following pairs:

(Lan H) (ran ?) (Beg 8S)
Lan Deg
o Py F, D 3s, Hs, PhD
Py H, R BS
Ps F, D, § BS, N3 |
Py F 8BS, MS
Pg F, D BS
Pg R BS

Examnle 3.1.2 .
Assunme that we are interested in representing knowledge about song
patients in a hospital, e are interested among others in illnesses ;
which the patients were through and in medicines they took. These ard
exanples of sttributes which for a given object may assume more than,
-one value. E
similarly, eamong attributes which characterize medicines we may
hove sttribute Contraindications which usually assumes several valued
for a given medicine. E
In the next section we dlscuss a generalization cf meny - valued ;
systems. \ie consider domains of objects which connot be characterlzef
neither by an information function nor by an information relation, 4
but the only information we can get is a set of possible values of

an attribute for an object.

3.2. Systens of nondeterministic information.

By a system of nondeterministic information we mean & quadruple
s = (0B, AT, {VALa}aeAT, £)

where 0B, AT and VALa,
attributes, and attribute values, respectively,

£ : 08 x AT>P(VAL) where vaL = U vaL_
a&AT

is a total function such that f(o,a)gana for every o0& 08 and a & AT

for each agAT, are non-empty sets of objects.

Function f is referred to as nondeterministic information functiof
It does not specifv a single value of an attribute for an object. Fdi
‘each object there is associated a sct of possible values of every a{.
tribute. e do not specify how many values an attribute may take fo
a given object. Sets f{o0,a) are said to be generalized values of at-
tribute a. )
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fFor any object 0& 05 we define function f : AT P(VAL) which is
referrec to as nondeterministic information about cbject o:
fo(a) = v iff f(o,a) = V where V<& VAL

Example 3.2.1

Consider a criminal data file providing information about some

criminals given by a wittness. This information is usually vague. The

wittness specifies attributes characterizing the criminals say colour

of eyes and age with sone tolerance. He suggests that the proper value
of the respective attribute belongs to a certain set of values, but
he is not sble to point out it definirtely.

Example 3.2.2
Given below is a part of the table which provides information aoout

gome comets.

Conet A1 1/a
1899 1 +2.920.4 -a6tc1
1946 1 +3.0 -5
1948 I +0.8%0.2 +47%18
1955 V +1.5%0.8 -2841239
1975 XI +0.8%0.5 -1542389

The above table can be treated as a nondeterninistic KR systen in
which the given comets are objects, ond they are characterized by at-
tribute A,, corresponding to nongravitational effects in cometary mo-
tion, and reciprocal scmimejor axis 1/a. The values of these attributes
are obtained by measurement and therefore they cannot be specified

exactly. lie can only know some intervals of their possible values.

Example 3.2.3

Consider a table in which the accuragy of the comet orbit determi-
nation is characterized by a quantity §(L+H+N) vihere the integers L, T,
end N depend, among others, on the determination of the osculating 1/a

#nd the span of time covered by the observations

L, M, N tfegn error of 1/a Time span of obscrvations
6 1 - 4 units 12 - 24 months
S 5 - 20 6 - 12
4 21 - 100 3 -6
3 101 - 500 ' 1.5 -3
2 501 - 2500 0.75 - 1.5

In the nondeterministic KR system determined by the given table
we have, for cxaaple, the .ollow1ng information about the degree S
of accuracy.
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{Mean error 1/a, 5-20) {Time span of observations, 6-12)

This means that to achieve the accuracy 5 one has to measure 1/a
with the errcr not exceeding 20 and possibly agreater than 5, and to
cbserve a comet for at least & months and pcssibly not more than 12.

Exzmple 3.2.4

Consider, for example, a system of medical inforrmation. Let set
08 of objects be a set of discases, set AT of attributes be the set

of some parameters of patient s body e.g. temperature, biood pressure,]

state of throat etc. Set VALa of values of paramcter a is a set of

possible values of that parameter. For example, VAL is the

temperature
set of elements of the interval 35° - 42%. For a disease o and e pa-
rameter & the set f(o,a) is the set of values of a which may occur

during disease o. A nondeterministic information f° about disease

o indicetres what are the gereralized values of sll the sttributes for j

object o.

Given a system S of nondeterministic information, we define binary

relations of informatricnal irclusion {in{S)) and informational simi-
larity {sim($)) in the set OB as follows:

{o,07)e in(s) iff flo,a)<c ¥(o0",8) for all aeAT
(c,¢”)e sin(s) iff f(o,a)n flo",a) £ @ for all ae AT.

Hence en object o is informationally included in object o when-
ever for every attribute a& AT the possible values of a for o are
among the possible values of a for o”. For exangle, a discase o is
informationally included in » disease o  if the symptoms of o occur
during o°, or loosely speaking, if disease o  is accompanied by dis-

ease o, or if o  may be caused by o. Objects ¢ and o are information-j

ally similar if for every attribute a€ AT the generalized values of .
a for o and o have an element in common.

The following properties of relations in(s) and sim(S) follow im-
mediately from the definition.

Fact 3.2.1
(a) Relation in(S) ic reflexive and transitive
(b) Relation sim(S) is reflexive and symmétric.

Fact 3.2.2
(a) (01,02)(:in(s) implies (oi,oz)e sin(S)

(b) (ol.oz)eum(s), (01.03)é;n(5). and ("2'94)6 in{g) imply (03,04)-‘{

€ sin(s).
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Exanmsle 3.2.5
Exam5.0 2omal
Let us comsiticr a KR system C wihich provides information zbout scue

medicines. fach ncdicince is characterized by means of indications and.
contraindications of their usage and their possible side effects. vie

assune that

%=4W'%'%'W'%'%%
AT = {Indication, Contraindication, S5ide Effect}

VAlpndication {11' - 13‘ i4§

VALContraindication = {cl' Co» CSH

VALgide zefect “{°17 20 ©3 €4

Attribute Indication gives the names of ell diseases which can be
treated with the corresponding medicine. Attribute Contraindicaticn
gives all disease which exclude the use of the medicine. Atiributce

side Effects gives inforgation about all possible unwanted effects

which might be caused by the medicine.

The nondcterministic information function cf the system is definec

below: ‘

Indication Contraindication Side Effect
M1 il' iz. 13 €44 Cp S4r Cpu Gz
M2 12, i4 Css C3 Cqr Cne Cy
H3 i& s €ay C3
M4 iz, is P ci, c3
HS 13 Cq0 Cg C4s S
M6 14 s Css €4

Relation of informational inclusion and informational similarity
of the system consist of the following pairs, respectively: ’
in(8): (11, 1) (g, M) (Mg, M) for i =1,...,6
sim(3): (Ml, M) (Mg, H4) My, Ms) (15, MA) (H2, ”5) (MS,
(Mg, ¥) forall i =1,....6
(Mj, Mi) for (Hi, Mj) listed above

Let us observe that any many - valued KR system can be treated as
a particular nondeterministic K2 systom. Given zn infornation rcla-

ticn g<CB x AT x VAL, we can. define a nondeterninistic informaticn

function f: 03 3 AT-PF{VAL) asc follows:
f(o,a) ={vev;‘«L:(c,a,v)e g}
In the next section we present a formal language whose formulas
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are schemes of scntences cxpressing properties of objects in system
ci nondetcrministic anfornation. e covelop 2 deductive systen for
he lancucce based on axiomatizatien of propositional modal logics
(2876)).

.
L
(sabbdey

noncdeterninistic information

.
&

N
-
o

o]
el
o]
¥
r
Q
~t

ing norennly,
bcls:

a2 set CCMAT of constants representing ettributes

at least denumerable, and pairwise disjoint sets of ‘syn

a sot GORCVAL of constants representing generalized vealues of ot~
tributcs
sctJ1 Vi AL D ,e*s of classical propositional operations

e i 00 & -

tionsg

DF, C]}of unary modal propositional operai

set (( R )% of brackets

The nocal operations are related to relations in(s) and sim(S).
Diamong (> ) eperatcrs are referred to as nossibility operators, and
box () crcraters arc trcated as necessity operators. Their infornal §
meanins is ce follows: :
0‘1 possibly greater (with respect to informational inclusion)

g
0, 1 pocscibly less
<> possib
[}g definitely greater
(5] 1 cefinitely less

'

v similar {(with respect to informational similarity)

{J definitely similar ;

Set FGRNIL of all formulas is the least set satisfying the follow—:
ing conditions:

(e V€& FORRIL for any a& CONAT and V& CCHGVAL

if 4,3€ FCRNIL then 714, AVB, AAB, A>B, Ac®BE FORHIL

if A E€FCRNIL then <‘>gA, 4. QA Qg.s., CllA, OA& FORNIL

Foramulas of the form (aVv) are called nondeterministic descriptors.f
Le: DESHMIL denote the set of all the nondeterministic descriptors. i

Forpulas are intended to be schemes of sentences providing defini-j
tions of sets of objects. For exarple, 2 forpula of the form (av) re-
presents ths set of those objects for which the set of possible valued
.of ‘sttributc denotcd by a coincides with the set corresponding to V."
Modal opcrations enzble us to exprcss facts connccted with informa-
tional inclusion and informational similarity of objects. They provid;
a nmeans for .considering Boolean»strucéure of fonilies of generalized &
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values of attributes. Fornula O.(a V) represents the set of those ob-
ject which informationally include at least one object assuming V as
a value of a. In particular if we consider o system with ;he single
attribute 2 then. this set coincides with the set of those objects o
for which V is incluced in f(o,a). Similarly, formula <>1(a V) corre-
sponds to the set of objects which are informationally included in
objects assuming V as a value of a. 1f a is the only attribute of a
systen then this set coincides with the set of those objccts o for
which f(o,a) is*included in V. Fornula O (a V) represents the set of
objects which are informationally similar to‘some objects assuming V
for a. .

semantics of the given language is defined by means of notions of
podel and sotisfiability of the formulas in a model. 3y 2 nodel we
mean a system

m= (0o, R, Q, B)
where OO0 is a non-empty set of objects

R is a reflexive and transitive relation in set [oF]
Q is o reflexive and symmetric rclation in set (o}:)

and moreover R and Q satisfy the condition: :

(o4, o,)e2, (oy. 04)&R, and (o, 0 )6R imply (05, 04)€R

m: DESNIL-~> P(0B) is a mconing function assigning sets of objects
to nondcterninistic descriptors.

vle say that an object c& 03 satisfics a formula A in a model I
(M4, o sat £) iff the following conditions arc satisfied:

M, o sat (a V).iff oe m(a v)

M, o sat 1A iff noc M, o sat A

M, o sat AvB iff M, o sat A or M, o sat B

M, o sat AAB iff M, o sat A and M, o sat 3

M, o sat A>B iff M, o sat “1AvB

M, o sat A<*B iff M, o sat (An>B)A(B>A)

M, o sat <>gA iff there is an o & 0B such that (¢, 0)&Rr and t, o
sat A

M, o sat { ;A Lff there is an 0’ 03 such that {0, o”)&R and 1, o’
sat A '

M, o sat O A iff there is an o’& 03 such that (o, 0" )&Q and M, o’
sat ‘A !

M, o sat O A iff for all o'« 08 if (c%, o)&ER then H, o"sat A

M, o satd ;A iff for all o’e©8 if (o, o”)ER then i, o sat A
M, o

sat L1 A iff for all o’& C8 if {0, 0o”)&q then i, o sat A
To cach formula A of the language we assign tne set extyh (e
of A in M) of thosc objects which satisfy the formula in a nodel:
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ext i = {oeCB: t, o sat Alf
Faoct 3.3.21
(a) c::t‘,:(a V) = m(a V)
(b) ext A = ~ext A
{c) ext,AvB = ext, AUext B
(a) ext, AAD = c,\:tr_i«ne::tl.'is
(e) ext A3 = ~ext \Uext, 8
(£) eXTAPD = oxXT AN ext, BU (-cxtM/\)ﬂ (—extHB)
(g) e::tMOgA ={0603: there is an o€ OB such that (0", o) &R and
o€ cxt:.;‘\lr _
(h) °Xtr.olA ={oé C8: there is an 0”& 0B such that (o, 0" )€ R and

o’e extr{’\}

(i) extMOA = fo&C3: there is an 0”& 0B such that (o, 0" ) &0 and
oe extMA}

(3) extHDSA = oxty,] og‘l A

(&) e::t”DlA = extM’IOl'l.—\

(1) extHD,\ = extM"O'lA.

‘e say that a formula A is true in a model M (ﬁr'\) iff ext, A = OB.
A formula A is valid {FE A) iff it is true in every model. A set T of
fornulas is satisfied by on object o in a model !1 (M, o sat T) iff 11,

o sat A for every formula A€ T. A set T is satisfiable iff there exists§

a model M and en object o such that M, o sat T. A formula A is a sem~ 3
antical conscquence of a set T of formulas (TEA) iff M, o sat A when-?

4

ever I1, o sat T for every model M and for every object o from the sat j

of objects of ti,
Ve admit the following axioms and inference rules for logic NIL.
Axioms of NIL

Al, All formulas having the form of teutologies of the classical prop-3

ositional calculus.

A2, Ug(A—-)B)-? (C]gA-) Elgs)
“A3. Dl(‘-‘qﬁs)—* (Dl,.\al Cllg)
A4, L (a>5)-> (OA ->0s8)
AS. A»alogn\

AB. A DgolA
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->
A7. Dgr’\ A
A8, 34724
A9, daZa
A2 O A
A10. 0 A0 8,
a1, 0 ya= 0,04
A12. A200OA '
3. da20d gD Dl,-\
Due to axioms A2, A3, end A4 logic NIL is a normal modal logic.
Axions AS end A6 show that operation (_ is inverse with respect to .

‘operation Ol. Axioms A7 and A8 provide reflexivity of relations R

and G, respectively. /xioms A9 and Al10 provide transitivity of rela-
tion R and symmctry of relation Q, respectively.
Rules of inference

i

A, A8
Do 2
R1 B . R3 DlA
- A A
2 BA R4 &A
Rules R2, R3, and R4 are counterparts of the necessity rule in moc-

rl logics.

The given axioms end rules characterize the operations 7, *, J
Dl’ and O only, but it is sufficient due to 3.3.1 (f), (g), (k),
and the following

ﬂ'
(1)

Fact 3,3.2
(a) ext AVB = ext”1A9B
(b) ext A48 = cxtM'?(A*‘lB)

Ve say that a formula A is derivable from a set T of formulas (T+

A) iff it is obtainable from the axioms and the formulas from T by
repcated application of inference rules. A formula A is said to be @
thcorem of logic NIL (+A) iff it is derivable merely from the axions.
A set T of formulas is consistent if a formula of the form A4lA\ is not
derivable from T.

Fact 3.3.3 (Soundness theorem) -
(a) FA implies EA
(b)vT_il—,A_ ipplies T&A
(c) T satisfiable implies T consistent.’

Proof: The axioms of NIL are casily seen to be valid, and rules
clearly preserve velidity. This proves {a) froa which (b) end {c¢)
follow immediately.

Examples of theorems of logic NIL are presénted bolow.
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Fact 3.35.4
(a) [t Ogi\
(b) o (avz)e (QavgB)
{c) P—QG(AAB)" (og;mogs)
(d) f T, (Mo (T A4a05)

J g e}

(e) r-ngA—) ng_‘]g,‘\
(£) RO g A
(¢) F1gne Qglr

(h) FQOM>A

(1) =7 04AQTA

(;) R GlAAQgB-%Qg(AAB)
(k) F O,/40,3> &, (Aks)

Theorems related to operations & 4 and[j, are similar to that pre- §
F

sented in (2)s..-.(g). They can be obtained through replacement of

Qg by &y anc Dg by O,-

In the following completeness theorem for logic NIL will be presentd

ed. Let T be & consistent set of formulas and let relation/y in set
FORNIL be defined as follows:
A 8 iff THASB
) melation X is an cauivalence on set FORNIL
) Relation & is @ congruence with respect to™, Vv, andA .
) If A% B then O _A% O 3B, GIAQ: o,e, z=d aAX OB,
The proof of conditions ga) and (b) is the same as for the clas-
sical propositional logic (Roasiowa and Sikorski (197¢)). Condition
{c) follows from A2, A3, A4, and necessity rules.
vie construct the quotient algebra
ANIL = (FORNIL/x, -,u,Nn,1,0)
where FCMIL[r is the set of the equivalence classes [A] of relation
N~ for all fornulas A
-0 = [14]
[Alv[2] = [avel
[#1e [©] =[ as]
1= [A\"[)q )
C = [Ar1A] ’
Fact 3.3.C .
{a) ~lgebra ANIL is & nondegenerate Soolean slgebra
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(b) [A}f[_a]iff Tt-[f\-l*'a]
(c) THn iff [a] =1
@[ A] # © iff not TFA
tet FT be the family of 2ll the maxinal filters in algebra ANIL.
set FT is noncmpty since the algebra is nondegeneratec. “e definc re-

lation nog FT x FT as follows:

(F,G)& Ry iff for any formula A if [_ﬂli'«]s F then [/\]'»60.

Fact 3.3.7

The following conditions are equivalent:

(a) (F.GleR,

(b) 1f [Dg/\]ec then [A]GF
(c) 1t [a]€F then [0 ales
(¢) 1¢ [alec then [0,alerF

Proof: Assume condition (a2), ond suppose [Dll»\]éG and []é?. it
follows that [7."]6 F and by A5 [ﬂl Q. .:]é.F. By {a) we obtain ['O n‘l."]
€G. By 3.3.4 (3) ve have [Q (AMA) JeG, but G is a proper filtc;)

a constradiction. Hence condition (b) holds. )

Let us now assume that cendition (b) holds and supposb [/,,](;,:' and
[OQA]‘# G. Hence [U 7/‘]& G and by (b) wc have [_] r’\]é F, a-contradic-
tion. lence condition (c) holds. .

Assume condition (c) and suppose [:‘«]eG and [Q,A]qﬁ F. Then [“I(} l'f‘]
11: F and by (c) we have [() 91(7 1A € G. By /6 and 3.3.4 (g) we havc[1A_]
& G, a contradiction. Hence concition (d) holds.

We also have {d) implies (a). For suppose not,
by (d) [OITA]EF. By 3.3.4 (k) we have [OI(AMA)]& F, a contradiction.

vie define relation Q. <& FT x FT as follows .

(F,G)&Q0 iff for any formula A if [U Al&é F then [A]éc

then ’IA‘JC- G, and

Fact 3.3.8 v
(a) Relation R  is reflexive and transitive

(b) Relation Q  is reflexive and symmetric

(c) 1f (FI'FZ)er.' (Fl,F3)&R°, and (F2,F4)é2° then (FB,FA)é‘QO
Proof: Condition {a) follows from A7, A8, A10, All. Condition (o)

follows from A9 and Al2. Condition. (c) follows from A13.

Fact 3.3.9 . ) )

{a) If [00.‘.]6F then there exists a GEFT such that (F,G)é.‘o and "
[ec’ S

(b) If ['Olf\ &7 then there exists a GE& FT such that {G,f

) E"«]*VG, .

-
T
1)

1]
=)
(a9
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(c) If {Q}'.]E F then thore exists a S & FT such that (F,G)er and [Al&
&G. .

Frocof: Let [().,.'Jé F and consider set A —J[”] l] ]é- F}. Set X
is nonempty, since 1€ X.. Consider filter F’ generated by set X ,{[,]
Ve have F™ = (B]~ Liere exist[;\l],....[r\n}e XF' nz1, such that
( 1}0... An [ ]< [ ]} we shall show that for any [_A-] ,.-.,[A ]é A
vie’ have [ 1]h... [«] [“] # 0. Suppose conversely, then Tr-AiA...A
AN P A By A3 and R3 we have Tk C‘l(A /*...AA )y»Qa 1A Since[ul 1]

[_D “]C:x,we have [Dli ...AD ]&F. Since i—ﬂ/‘4ﬂ Be—aﬂl
(A48 ), we have [Gl(nl-‘\...AAn)]e F. Hence [_El 1"_1’\]6:!’, so ['IOIA]&F,
what contradicts the assumption. Thus filter F° is proper. Let G be i
the maximal filter containing F'. \le clearly have [A]éc and (F,G)&Ro

Hence condition (a) is satis fied. The proof of conditions (b} and (c)
‘is similar.
vie define canonical nodel M° as follows:

M, = (08, Ry, Qgu )
vinere OBo = FT

Ro and '30 are relations defined above

Fen (ov) iff [(av)]e F.

Fact 3.3.1C
The following conditions are equivalent:
(a) My, F sat A

(b) [aleF

Proof: If A is of the form (aV) then the theorem holds by the de-
finition of meaning function fy in the canonical model. If A is of
the form 1B or B>C we use the definition of satisfiability and the
fact that filter F is maximal and prime., If A is of the form OgB or

v’

QIB then the theorem follows from 3.3.7 and 3.3.9 (a) and (b). If A

is of the form & B then we use 3.3.9 (c). Now consider a formula of
the form DlA and suppose that l. , F sat l:llA and [D A]%F Hence

) [() 11/« &F and Mb' F sat € 'IA Thus M° F- sat 1Cl .a contradiction 3
Suppcse now I—_D A]&F and consider set X... {[B] LG BJé r'} vle have
A& "F' Voreover, set, "F is a fllter, s:ane we have ["] and [C]&

iff [é]“ [ ] [5‘" € Xz for any formulaa B and C. Set Xg. is a proper
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filter, since O¢ X ‘e By Kuratowiski -~ Zorn lemma there is a maximal

filter G such that (F,G)e R, and [A]éG. But X is included in every

filter G such that (r,6)€ R' , thus [A] belongs to every such filter.

’ By the inducticn hypothesis we have M , G sat A for all G satisfy;nn

(F.G)eR,. Hence M, F sat 0,A. For formulas of the form Ty A and D4

the proof is similar.

Lemna 3,3.10 enables us to prove completenccs and compactness of
logic NIL.

Fact 3.3.11 (Completeness theorem)

(a) EA implies FA
(b) TEA inplies T+A

(c) T consistent implies T satisfiable.

Proof: We now prove condition (b). Suppose not Tt A. By 3.3.6 (d)

wie have ['IA] £ 0. Thus therec is a maximal filter Foe FT such that [1..}_—’

€F . By 3.3.10 we have M., F sat 1A, For any formula B €T we have

THB by 3.3.6 (c). Hence [B]E‘: Fo and by 3.3.10 Ho', F, sat B,b o contro-~

diction. Condition {a) follows from (b), and condition (c) follows from
3.3.10. . , : T ‘ '
As 8 corollary we cobtain

Fact 3.3.12 (Compactness theoren)

The following conditions are equivalent:
(a) T is satisfiable
(b) Every finite subset of T is satisfiable.

Deductive methods based on logic NIL ensble us to determine when

‘s fornula expressing a property of objects is implied by scme other .

formulas. In NIL all the tautologies of classical logic are valid and

hence its d'eductive power is not less than that of the classical logic:
The modal operat:.ons enshle us to reason in the presence of nondeter~
minism understood as indefiniteness of information about objects. These

‘operations enable us to penetrate in a sense a Doolean st_ructure of
“families of generalized values of attributes. In the next section we

discuss languages of systems of nondeterministic infornation based on

_logic NIL.

3.4. Languages of ‘systems of nondeterministic infornat"on'-i'

Ltet s = (0B, AT, VAL, f) b¢ -given, and let 1n( ) and. con( ) be rc-}

lations of 1nfornatxona1 :.nclucion and :.nformarlonal sinllar:.ty

i
i
1
i




jatiens of informational jnclusion and informational similarity deterﬁ
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mined by systen 5. Let n be the function
n : CCHATU ccimvaL= ATu P(VAL )

such that n(CCHﬂT) =

AT

the range of function f is included in n(CONGVAL)

Function n is referred to 28 naning function. It assigns attributes

ro attribute constants and
stants of gcnerali:ed valucs.

vie consicer model

1w = (c3, in(s), con(s), »)
where m{a V)= {o:f(o,n(a)) = n(V)\
Thus the meaning function m assigns sets of objects to nondeter-

ministic descripters

vle can now define

5. 20 Ogf 4 (o) '\19. aq Q.

In a noturol way we define satisfiability of formulas of system S 3

according to the infermation about these object&
the set ForRNIL(S) of formulas of system S to be §

the least set containing all pairs of the form (n(a) n(v)) for any a3
CONAT and V€ COHGVAL and closed with respect tO operations 1, V. A Y

by objects of thc system, and extensions of formulas, namely

o sat (nla) n{v))

i£f 1, o sat (a v)

%

ext(n(a) n(V)) = extM(a V)

For compound formulas the respective inductive definitions are si{

jlar to that prescnted in section 3.3.
A formula A€ ForuIL(s) is true iff extA = OB.

py using formulas

of objects which are

Fact 3.4.1

from set FORNIL(S) we -~an express many‘properti;
charaqterized by nondeterministic information. 3

v

(a) If Og(n(a) n(v))is true then n(V)gf(p.n(a)) for all o€ 0B
A (b) If Ol(n(a) {v))is true then <f(o,n(a))c_.n(v) for all 0&0B
(e) If & (n(a’ a(v)) is true then f(o,n(a))gn(v) ;¢ for ell 0&08B 1

Proof: Formula Qg(n(a) r(v)) is true iff each object o in 2 givgﬁ

systen has associated with it 2 certain object o’ which is informa-j

tionally included in

o and assumes’gencralized value n(Vv) of a;frib*

n(a). It follows that n{v) is a subset of @ generalized value of at-]

tribute n(a) for object 0. In a similor way conditions (b) and (c) ;

be casily seen.
~ Fect N

For any system su

1

ch. that AT = {a} the following conditions are 58

generalized values of attributes to the cod
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jsfied: . )
(a) If ext C%(n(a)n(v))# ¢ then there is o0 object assuning cencral-

(o)

(c)

(¢)

of

jzed value n{v) for attribute n{s) and it is nossible that there
are objects assuming supersets of n{v) for n{a)

1f ext<>l(n(a)n(v))# g then there is an object assuming a(v) for
n(a) and it is possible that thcre are objects assuming subsets
of n(v) for ala)

if extijg(n(a) n{v))# @ then there is an object assuning n(v) for
n{a) and there are no objects assuming superscts of n(v) for nlz2)
1f ext Dl(n(a)n(V))f g then there is an object assuning n{v) for

n(a) and there are no objects assuming subsets of n(v) for n{a).

Exgmple 3.4.1
1ot us consider the foilowing system of medical information:
08 = 40y, +-%
AT = {a,b} is a set of symptoms ccecurring during diseases from CD
vaty = {var V2o Var Var Vs Y
vaLy = {uge vz us

A = % A
VAL JALaL/V Lb

ig a set of diseases

f:08 x ATZ p(vaL) is given by the following table
a b
Py [vqr V33 {ugs vo uz T
B2 {va: vs Y {”171
O3 fvgr Vs gk {uge ugb
4 {V:Llf Juge vl
5 [va: 1 Jus
Pg {vs} {u,
The relation of informational inclusion of the given system consists

the following pairs of diseases:
211 the pairs (Di, Di) for L = 1,.4046

(4, 04) (P, Dy) (Dg+ 0,) (D4 O3) (og, D3)

In the following we list extensions of scme fornulas of the lan-

guzge of the system and vie give their intuitive interpretation.

ext og(a{vi“) = {04, 030 94

piseases 4. Dz, and D, can be casused by a disease in which symptonm

Gz

TR
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a assumes value v,; in other words if a patient suffers froa one of

disczses Dy, B or D, then he possibly suffered from a disease satis-
~
fying (a(V13)'
ext Oy(afv,. vz. v 1) = {05, 0, 051(
Diseases Ds. D, and by are possibly followed by a disease in which
'possiblc valucs of a are anong V,. Vi. and‘v4; or if a patient suffers
from D5, D, or 05 then he will possibly suffer from a disease satis-
fying (alvy.s v vyl
ext Dg(b,(ulk) =(DZ' 061[ -
Each disease causing D, or D, assunes value uy of stpton as.
ext Gl(b‘(ui' UZ‘S) =‘(°31f
Each discase causcd by D, assunes uy or u, for syuptom b.
Let us observe that
ext ()g(a(vsy) =g
_since in our system there is no object which assumcs generalized value
(VSH of attribute a. This means that although in our system (v3§ is a

cubset of generalized valucs of a for diseases Dl' D3, and Ds; knowledge

provided by thc system does not enable us to point out a diseasé vthich
satisfies (3493}) and possibly causes disecases Di, D3 or Dg.

The relation of informational sipilarity of the given system con-
sists of the following pairs:
all the pairs (Di' pi) for i =1,...,6

(0,, 05) (0,, 0,) (05, D5) (b, D) (05, 0,) (P, D) (g, Dg
all the pairs (Di' DJ) for (Dj' Di) given above.

Consider, for example, the following extensions:

ext o(a{vl, v3p = {Di, D34 DA-,ADS} '

For diseases D,., D, Cy» and Dg there are diseases informationally
similar to them which may take v, or vz as-the vaiues of symptom a.
ext A(bfu, 1) =4/ 2, bg 7 |
All diseoses similar to D; or Dg in the sense of informational sifi- -

lerity may assume u; for attribute b.

In the ncxt exangle we show that in some cases meta-level knowledge
can be specified by using nondeterministic KR systeonms and their lan-
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guages

Zxznple 3.4.2

Assume that we arc given a KR systenm S1 such that the follcwing
formulas of the language of S1 are true:

F, AAA?BAB AR

1 ™M )
Fp ARy B, . ‘
Fgy AqRMAAASD DyABaa3, |
Fs B4 3

F5 AlAASI\DléS

Fg Aghig>05s

44 Bg

ASAA4d 81-7 8:/\ le‘ Bs

e acsume that for each of the zsbove fcrmulas an importonce measurs
is deternined with respect to a certain conditicn. The inportance
seasure takes valucs from the real interval L0 1). Ve define the rcs-

pective nondeterministic KR system S, as follows:

08 = ,(Fl,...,.:./l(

AT = JFremises, Conclusions, Importance Heasurey

fa n o -
VAL, cenises’ V”LConclucionssFO"DIL(“l)

v"LImportance leasurc <f0: 17
tondeterninistic information function in our systenm is defined as

follows:

Premiscs Conclusions Ianportance lleasure
Fy Agr Ay By Byy By 0.7 - 1 ;
Fa As, Ay 8, 0.5 - 0.6,
Fs Ao Ayy Ay Bys By By 0.6 - 0.9
F4 81 Bs 0.5 - 0.7
Fg Ays Az, By G,e By 0.5 - 0.8
Fg A3, Ay 8,5, By 0.4 - 0.8
F7 A3, AA' Bl' B.,_. BS' BS ) 0.5 - C.9

Relotions of informational inclusion and infornational sinilarity
of S, consist of the following pairs of forrulasz, respectively:

in(s,) 1 (Fpu Fed (Fpu Fp) (Fu. Fg) (Fy Fpd (Fg. 72) (Fy. Fy)

fFor i = 1,.04,7
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) ( )« ) ( )« of nontieteraministic KX 'systems and wc developed deducTion merhods for
im(5 : (F F. F F. F F_ F ot . cee ) : . - s

sin(S, 1073 2' '3 [ 27 the logic. The crucial ciffcrence betwcen deterninistic end nendeter-
miniztic systenms, is that the first refer to domegins in vthich charcc-.

~ © =~ =
(Fs, r-/.) (F‘;: '5) ("4' ‘_7) (FS' F7
terizotion of objects is given by means of ‘some attributces and thedir

for (Fj' Fi) given above

values while the second correspond. to domains in which knowledge cbout
objects is incomplete in a sensec. Inconplctieness is understood as a
lack of dofinite information about values of attributes for the objects
in the domain. It follosrs that we are not able to characterize the

Listed below arc extensions of some formrulas from set ForHIL(S, )

and their intuitive interpretation.

ext Ql(Conclusicns (::, 34, 0511) =.(F2~, Far Fge F_)TJ
Zach production rules smong F,, F,, Fg, and F, is informationally less objects precisely. :
. The logic of nondcterministic information considered in this chap-
thon a certain rule hoving conclusions 8,, B, and B.: this means that . iy . Iy

2 E 5 ter is an extension of the lcgic of deterministic infermation. The

languoge is augmentcd by modal operations and deduction method enables
us to rzason in the prescnce of these modalities. The nodal operators

-provide e means for comparing objects with respect to informational

both their presisecs, conclusions,.anc importance measures are incluced

in the generalized velues of the respective attributes of this rule.
ext<>g(1mpcr:ance leasure G.5 = G.5) =‘{F2' Fgr F7s_

inclusion and informationol similarity.

Inportance mcasure intervals of rules F., Fs, and F7 include interval
2
0.5 - 0.6, and moreover the remaining attributes have their generalizeg

values not less than the respective attributes of a certain rule with
importance measure between 0.5 and 0.G; it follows that F,, Fg, and 7,

are possibly more important than 0.5 - 0.6
ext & (Conclusions {E,) = F1e Far F3u Foo £,

' FG and F, are similar to certain rule having B,

2s a Conclusion: in other words these rules have B, among their

Each rule Fl' FZ' F

conclusions and morcover both their premiscs and importance measure

intervals have en element in common with generalized values of the
respective attributes of this rule. .

Vie now conclude that by using modal operations of the language we
can express those relationships botween objects of a system which are
determined by the algebraic structure of the farily of generalized -
values of esttributes. These relationships are not stated explicitly
in a KR system, that is on the level of semantics we do not have a
direct access to them. Huwever, we can have a manipulatofy access to
these relationships by using the language based on logic NIL.

3.5 Sunmary

In this chapter we focused on deternining the appropriafg concepts A
to represent knowledge about domains in which objects are characterize
nondcterministically.:ﬂe intreduced a notion of nondeterninistic K
systea wiich corresponds te semantic view of knowlcdgc; iie:zt, wvie intro

duced aspecial nodel legic providing a means for defining languages
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4. R~PP:S:haAT CN Or T_HPCRAL 1HFOI!;'.ATICN

4.1. gystems of temporal informoticn
In the previous chapters two major forms of knowledge were con- -3

sidered, ‘lowcver, in these. epproaches knowledge was regarded as re-

presenting a static information czbout some: parts of reality. But static;

knowledge is .insufficient to model reality correctly. A KR ‘system can-

ga

not be seen as o collection of information items which repre*ent only
the current stute of knovledse.

In this secction we 1ntroduce a senantic conponent of rcprescnta—

N i A

tion of temporal information. The task is then to determine a set of

G g

conceptusl primitives winich are expressive ‘enough to model temporal
informatien, As previously we assume that objects, attributes and val~

Bt S

ucs of attributes are atomic pieces of information. tiorecver we admit
2 set Til of moments of tine and:-a lincaf order R in this set as com-
ponents of cach KR system of temporal iaformation. e shall consider
the time dinension in its full generality, that is we consider set TH
to be an crbitrary lincarly ordered set. If decisions must be made
resticting o number of time versions of information items then it will
be possible to,addvthc respective assumptions for set TH and relation
R and then to supply the corresponding axioms for the logic of temporal 3
informatien., : o i
Vie can formally define a KR system of temporal information-to be 3
‘a systén‘ ;
= (on, AT,.{VALa}aeAT, TH, R, £)°
where 08 is a nonemnty set of objects
AT is a nonempty sct of_attributes

VAL is @ nonempty set of valuss of attribute e

" TM is a nonenrpty set whose elements are called monents of time
RECTI x TH is ‘a linear order ’

£:08 x TM x AT>VAL = (U
' ) : aéAT

VAL is. an 1nformation function such
that f(o,t, a)&VAL for ench oa 0B, teTH and éeAT.

By nmeans of the information’ function each object has associated
with it a characteristic feature at a mcment -t. This characteristlc
feature is determined by a set of attriﬁute ~ value pairs which may
change over tiae. ‘e define an information . about object o at_ a moment . 3

t to be a function f ot} 4T"VnL such that

fqt(a) = v iff f(o;t,g) =

b ot o

e o 1 AN
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Consider ‘the part. of the teble containing tho result +of “photo-
clectric obsvrva~lons of stars, presented in the As-rophysmcal Journal.

2.8 v v

ScML  1608.788  11.12 1,97
& Cne 1798.538 © 9.28 1,76
R Cne 1719.750 3.38 1.47
R 18C0.558 . - 9.51 . 2.02
R Teo .  1683.821 .  6.27 . 1,62
‘ 1853.481 9,91  2.87

T Cen 1667.826 6.05 1.44
1717.816 . 6.12 1.73

" The above tablec can be treated as a tcnporal KR systen such that:

the set 0B of objects consists of the star 3 Canis tinoris, R,
Cénori, R Leonis and T Centauri ' S R T

the set AT of attributes consists of the two‘wavelcnght regions
of the spectrum: visual and blue- visual

the set VAL of valucs of attributes consists of the nagnltude of .
a star. in the given wavelenght reglons .

the set TH of moments. of time consists of nonnegatlve real nunbcrs,
representing Julion Days, given in the seécond column of the table

the information functlon is determined by the glven table.-

Exunglc 4.1.2 ' o

Presented below is: a part of: the table from The Biochenical Journal
deternining a tine course of [ 5 ] cysteine incorporation into metal--
lothionein and high - molecular weight'proteiPQ-éfter‘exposure tc Cd
er Hg B ' -

Vvﬂigh-molecular- ‘ .
Time(h) - -weight Proteins AHetallbth}dnein
1 Control 68s4%735 - 1005115
cd - . soa23iss2 . 901138 -
. Hg 6940787 .972%34
12 Control 87092581 - . 1307%49
" cd " 107862798 4111%170
Hg;: ' 95852343, » : 18ﬁ1+51

We can represent this table as the following KR syskcn--
0s Control, Cd Hg}
‘;mT = {Hign-no‘ecular-helcht Proteins, Metallothioncin %
.VAL is a family of sibsets of the set of 1ntcnnrs including the
subsets r*ven in the third and fourth columns of the taole
M o= {1 12 o :
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ral orcer in tiie set of intcgjers
uncticn can easily be recenstructed from the teble

a system wnich consists of thc exsmination results of

er
some patiente in o hospital.
P

AT 4 enperature, Ache, Nausez Q

VAL, {oclow normal, normal, slightly above ncrmal, high
“Temperature
above ncrnal@

! . .
v'“‘Ache = {ncnc, pr-szfen».

, = , s

Valiausea no. ve

™ = ,{eo/cd/c £3,/05/04, 83/05/06 ¥

n is the sarlier - later relation in the set Ti

information functicn f is given oy the following table:

pate of Temperature Ache Nausce
examinétion
Py §3/05/01 ‘ high above present yes
normal
83/05/04' slightly above present no
) normal : '
83/05/C6 nornal none no
Pa 83/05/0C4 high above present no
N . normal ’
83/05/06 below normal pregent no
P 83/C5/01 . nornal none ves
i 83/05/04 . normal present yes

“In the given systenm information about patient P, at the 4th iay

"3 consists of the following pairs:
(Temperature, slightly above normal)
~(Ache, present ) '
{Nausea, no)
in the fsllowing scction & logic of tenporal infcrmation is intro=
duéed providing 2 ccmplete notation for dealing with the definition
of time varying information end for teamperal reasoning. Wwe introduce .
the tense ope.utors which eneble us to recall any past state .or any
future state of‘an-cbje:t with respect tc q given state. )

4,2, togict of temporzl information

In this secction wvie int—ocucc a logic TIL called \cnpora; inforpos
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tion logic. The language of logic TIL is a propositicnal lancuage with
the modal tense operations. Fornulas of the langucge are built up fron
symbols taken from the following nonempty at least denumerzble and
pairvise dicjoint sets ‘ ]

a set CCHOD of constants representing objccts

a set CONAT of constants representing attributes )

2 set CCHVAL of constants representing values of attributes

'sct_{1, v,A,>, é;\ of classical propositional operations

set A‘) (7f, p* t].} of modal propositional operations

set {( )} of brackets
The informal meaning of the modal operations is as follows:
<>p possibly in the past

O+ possibly in the future
Tp definitely in the past
ﬂ# .dcfinitcly in the future

Set FORTIL of formulaos of the language is the least set satisfying
the following cenditions:

(o & v)& FCRTIL for any o& COMOB, a &CONAT, vé&CTiV

if A,B&FCRTIL then 1A, AvB, AA3, A DB, ALDE ECRTIL

if A€ FORTIL then OPA, OfA, UpA, DfAé FCRTIL

The fornulas of the language are intended to represent information
about objects provided by a temporal K2 system. In particular, if o, &,
end v represent a certain cbject, attribute and attribute value in a
given KR syster, then formula (o a v) express the following proposi-
tion: object o assumes value v of attribute e. However, in a temporal
KR system the truth or the falsity of such z statemcnt depends on the
moment of time. Hence semantics of the language shculd enable us to

_express time dependencics of statements.

Vie- define semantics of logic TIL by means of a notinn of model

““determined by a temporal KR system. By a model we mean a tuplc

7 M=(s, a)
where 5 = (0B, AT, VAL, T!1, R, f) is a temporal &2 systen

n : CONOB v CONAT U CONVAL 2 03 UATU VAL is a meaning function such
that - '

n{coMEB) = CF; m(COHAT) = AT, and m(CGIVAL) = VAL.

- \iec now define satisfiability of the fornulas in a model. Wcsay_:h:T

o formula A is satisfied in o model M at a monment t €7 (i, t, sat ..}
iff the following conditions are satisficd:
M, t sat (o a v) i7f f(n(o), t, nla)) = n(v)
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11, 't szt 1o iff mot 1, T st A
11, t sat ;w3 iff 1, T sot A or M, t sat 3
1, t sat AAD Lff i1, T set A oand M, t sat B
1, t sat A8 1iff I, T sat PV}
M, t sat A D iff 1, t sot (n=n)A (B2A)
M, t sat Op"’ i%f therc is an s &Tii such that (s,t) &R and I, s set
t, t sat Qg iff there is an s & Tl 'such that (t,s)&R and I, s sat
1, t sat O ﬁ: for a1l s& T if (s,t)ée R then I, s sat &
M, t sat B A iff for all seTH if (t,s)en then.m, s sat A

Accordine to the given scmantics a formulz of the form (0 & v) is
satisfied by‘t wuhenever an informarion about the object denoted by o
at moment t includes the pair (a{a).n{v ). A formula of the forn
0 (c av) is satisfied by t if information about object m(o) 2t all
thz moments earlier thon t iacludes (m{a2),ma(v)). Similarly, a formula
of the form (o a v) is satisfied by t 1f information about object
n(o) at a ccrta*n moment later then t includes {(m{a),n{v)).

A formula & e true in a model M iff for 211 t € Tt we hove 1, ¢t
sat A, A formula A is volid (P A) iff it is true in all models. A set

T of formulas is said to be satisficd in a model at a moment t{m, ©

sat T) iff M, t sot A for every foraula A€ T. & set T is satisfiable
iff M, t sat T for some model ! and moment t. A formula A is a sem-
entical conscquence of set T of fcrmulas (TEA) if M, t sat A when-

ever 1, t sat T for every t! and t.
we give a deductive structure to the language of logic TIL in the

usual way, specifying & recursive set of axioms and inference rules.

Axioms of TIL
Al. Al1 formulos having ghe form of tautologies of the classicgl prop-

ositional calculus,
A2, Elf(AeB)-*( a2 ce)

a
A3, ﬂp("-\aa)—*(ﬂpf” 18)
A, OA>A :
" A5, DpAéA
ao .
AB. A fo
A7. A‘)CIPO:A
AS. l]_,_;\-b D_ C],_;‘.
AQ, R D G o
'J
A1C. OmAQw-ﬂO (A“B)vO (AAQ2 v O, (0,'-/‘»))
212, O A0 27 (O _(aachvo (An Oﬁu,vop(on.:. 5))
P el [d b L r
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R1 A‘3-7~8

A
[= P

A
U,pi.\

The notion of a proof of a formula is defined as usual. \/e say that

a fornula A is derivable from a set T of formulas (THA) whenever there
is a proof of A from T. . fornula A is a theorem of logic TIL (b A) if
there is a proof of A from the empty set of formulas. A set T of for-
mulas is consistent if a formula of the form A4TA is not derivable fronm
I. . . .

R2

R3

The following soundness theorem holds for loglc TIL.

Fact 4.2.1
(a) A implies FA,
(b) THA implics TkEA,
(c) T satisfiable implies T consistent
The given axiomatization follows closely the axiomatization of

_the tcnse logic with linearly ordered time presented in Burgess (1979).

fxioms A4 and AS'provide.reflcxivity of time ordering. Axions /8 and
A9 correspond to transitivity of this relation, and axioms AL10 and All
guarantee that. a timec scale is linearly ordered. Axioms A6 and A7 show
that past operations are inverse with respect to future operations.

In the following we list some theorems of logic TIL

Fact 4.2.2

'(a) FA> QPA

(b) t—op(Ave)e(opAvopa)
(¢) F o, (arB)* (O Ar0 B)
(d) + (E\ AV G B)-' a (AVB)
(e) - @ (Ats)t’(ﬂ AADB)

(f) f—‘lo A<->C!‘IA

(g ) 171G pAc-' Qp‘lA‘

" The respective theorems for future operations are mirror images

of the abovefformulas,'that‘is they can be obtained by switching past
operations'and future operations. i

- We novr prove complcteness theoren for logic TiIL. e use the stzn-

-dard alﬂebraic nethod and vie adopt it for our special scmantics, which

is’ closely.related ‘to temporal KR systems. ‘e show that a cononical KR

il
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systen can be defined by using syntactical constructs.

Let T be a2 consistent set of fornulas, we define relation X in set
FCRTIL as follows

AX D Iif TEAOS

Fact 4.2.5
(a) Relstion 4« is an equivalence on set FORTIL
(b) nelation & is a congruence with respeét to operations 1, V, andA .
{c) 1f AX 3 then ap;«cc Clps and Df;‘ % 4.5 :

The proof follows closely the earlier proofs of similar theorems
for logics DIL and NIL. Condition (c) follows from axioms A2, A3 and
the rules R2 and R3 of necessitation.

As previously, ve consider set FORTIL/: of all the equivalence
claosses [A] of relation X for AE FORTIL, and we form algebra

ATIL = (FOI:TIL/:/,U ., -, 1, 0)
which satisfies the some conditions as those presented in section 3.5
for algebra ANIL. Let FT be the set of all the maximal filters in al-
gebra ATiL. Ve define a canonical KR system as follows:

5, = (09, AT . VAL, M. Ry» fo)
where OBo = CONC3

ATO = COHAT
VALo = CONVAL
T = FT
o
R, = {(F,G)& FT x FT : for 8ll A€ FORTIL if [leA]eF then [A]s G}
fo(o,F,a) = v iff [(o a v)](: F

.

Fact 4.2.4
The following conditions are equivalent:
(a) (F,6)eR

(b) [UPA]G:G inplies [A]eF

(c) [\] &F implics [QPA](: G

(¢) [A] &G inplies LQfA]éF : 7 ‘ _ 4
Proof: Assunme that condition (a) is satisfied and suppose {Cl .‘\]GG

and [A]f— F. Hence[T A]é:’-‘ and by AG{Uf Opj A]é F. using (a) we obtain

[Op"-’-" €G. cince Gp.\AOf? Op(ms). ve ‘have C_Op(u‘{g)}; G, & contra- :

diction since G is a preper {ilter. Hence ¢ondition (h) holds. :
Let us now assune thet condition (b) hoids end suppose [,:«]e F.end -
[Op .~\] §G. Hence [ 0 p’h‘«]éG and by {b) we heve EA]&_F,‘ a contradiction,
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Hence condition (c) holds.
. < )

Assune condition (¢ ) and -suppose [A] € G and ‘,Of.’JG F. Then DO_._A &
€F and by (c) we have [op 10 ff~] €G. 3y A7 [1 f‘_\]e G, a contradiction.
Hence condition.(d) holds. ’

‘e can also see that {d) implies (a). Ctherwise we would have[‘b\ &G
and by (d) [Of‘h'] G F. Since ?‘UfAAOfBé Of(,v\a), we would have [¢¢

'(AA1A)J € F, 2 contradiction.

Fact 4.2.5 A ) )
Relation Ro is a reflexive and transitive linear order in set FT.

Proof: Reflexivity and transitivity of Ry follows from A4 and A8,
respectively. Dy using A1O and All we have (F,G)§R° or (G,F)eﬂo or
£ = G for any F,G&FT and hence R, is a linear order.

The following lemmas are needed for the completeness theorem for
logic TIL. ’
l Fact 4.2.6 -

(a) If EOfA]eF then there exists an Ge& FT such that (F,G)eno and

[Alee , .
(b) 1f B}p/‘JEG then there exists. an FE&FT such that (F,G)eRo and’

[AlerF

*{e) If [_D Ale F then for every GEFT if (F,G)eR_ then [A]EG
f o

(d) 1f [D p/ﬂGG then for every F€ FT if (F,G)eRO then [A]&F

Fact 4.2.7

The following'conditioné are equivalent:
(a) M s F sat A
(6) [AleF. . , |
) The proofs of these fac;s follow closely the eerlier proofs of
‘theorems 3.3.9 and 3.3.10. Theorem 4.2.7 enables us to establish in a
usuel way completeness and compactness of logic TIL.

~ I1f in some applications it is desirable to consider irreflexive

time scales than we can drop axioms A4 and A5 and'considor models de-
termined by temporal KR systens withvtransltive lincar orders.

4.3. Languages of s'ystems of tempbré-l _.:Lnformation

In this section we define two languagés, L,{(s) and Lz(s).basec! on

the tenporel ihfofnétion_ logic TIL and a model . of the Yogic. Expres=
" sions of the .language LI(S) are intended to represent assertions which

.
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may be true or false at a given moment of time. These assertions. con-
cern propertics of objects which can be expressed in terms of attributes
and values of atiributes. Expressions of the language Lg(s)farc intended
to represent propertics of objects in their scmantical scnse, that is
subsets of & set of objects.

Assume that we are given a model 11 = (S,m)vdetermincd by a tempdral
KR systen S = {CB, AT, VAL, TIt, R, f) where the meaning function n as=-
signs objccts, attributes and values of attributes to the respective
constents. Ve consider set FORTIL{S) of formulas of system S which is
obtained from set FCRTIL in the -usual way by substituting names of ob-

jects, attributes and attribute valdes for the respective constants.
The language Ll(S)
Atonic expressions of language Ll(s) are all the pairs of the form

(t,~) for t €Ti and A& FoRTIL(S). Other expressions are built up fronm
atonic expressions by means of the classical propositional operators.
\ie can formally define set FOR (S) of all formulas of language Ly (s)

to be o least sct satisfying the following conditions:
{(t,A)e r—o:zl(s) for all t&Tii and A&FCRTIL(S)

A,BE FORi(S) inplies 1A, AV3, AAB, A-B, A@BGFORl(S)

fn atomic formula of the form (t,A) con be considered as the as-
sertion : condition A holds at the moment t. In particular, if A is.
of the form (o a v) then expression (t,(0 a v)) is a representation
of the foct that object o:assunes value v of atiribute a at noment t._
similarly, (t, ¢ A) and (t, Ofn) represent the fact that there is'a

monment s earlier (later) than 't such that conditipn»A holds at-s.;'
Cxample 4.3.1 : . ’ )
Let us consider the results of the spirography test for a groﬁp .
of children suffering from fibrosis pneumbnic. The‘following table is
a part of the document presented in !tilanowsii (1972).

Date of : cex Age Height  vC3 : 'FEVl%
exanination } o ‘
f.s. VII 68 ' m 8 143  46-50 :81-85
X | 68 S ’ , . 40-45. 81.85
XII 68 T 4p=45 - 81-85
VI &9 E e 40-45 74 7
XII &9 , 9 1ss 40 .. 85 . .
70 - 10 47 “40-45 T
X1 70 - 46-50° 61-85
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E.S. I1I 63 f 12 129 50 ., 74

VoM, XI 68 o 8 116 50 . 85
1 69 : - 46-50 _ 74-8C
III 69 ‘ 50 81-85
v 69 i ' 46-50 -  B1-£5
11 70 .10 118 - S0 74-20
v 71 11 121 .50 81-85

"The above table determines the information function of the follovi-
ing KR system of tenmporal information:
o8 = {M.s., E.5., w.¥
AT = {Sex, Atge, teight, Vital Capacity, flaximol Expiratory, Capac-
ity
VA {p(male) f (female)%

VALAge and VALHcight are subsets of the set of integers

V‘ALVital capacity consists of subscts of the set of integers and
includes the subsets denoted informally by < 40 (integers less than 40),
40-45 (intcgers between 40 and 45), > 5C (integers grcater than 50)

VALbeimal Expiratory Capacity includes the following subsets of

the set of integers: {74, 74-80, 81-85, »85.
Consider the folloving expression of ‘the longuage determined by

this KR system: . |
(1.69, Op(m.s. VC; < 40)) . i
This is the ‘representation of the fact that there is a moment later ;
than the. January 69 vhen patient M.S. had the percentagc value of VC ;
less than 40.

The language Lz(s)

Expressions of language LZ(S) are intended to repkésent subsets of
the set of objects of system S. First, wc define an auxiliary set z(3)
of expressions obtained from formulas from set FORTIL(S) by removing
the naacs -of objects.
: Set E(S) is the least set satisfylng the follow;ng conditions:
(a v)et(s) for all a &AT and v &VAL
A,B€E(S) implics A, AV3, AAB, AC, Ao, OPA. 0 e 8 e

UfAéE(S)
’uet Fcuq(°) of all the expressions of langu ge L2( ) is the lecast

set de:ined 2s follows:
(t,n)éFO. 2(5) far all téTI" and .‘e_(s)
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A5 €Fcn, (s ) izplies 1A, AvS, AM3, A5, aerpe FO(8)

An cxpression ©f the forn (t,4) is intended to represent a set of
those objects which at the moment. t have the property A. To each for-i.
mulz A of language Lz(o) we cssign a set of objects callcd extensiocn -

of A:
ext(t,(a v)) = {o €02 : fot(a) = v.k
ext(t,1A) = - ext{t,A)
ext(t, Av3) ext{t,A)vext(t,B)
ext{t, A4B) = ext(z,A)n ext{(t,o)
ext(t, A>B) = ext{t,1Av3)
ext{t, A< D) = ext(t, (a=>B)r (3=2A))
ext(t, Op/\.) = .(onB : there is an s &€ TH such that (s,t)&R and

i

g8 e ex tAk
xt(t OfA) {oe 0B : there is an s €Tt such that (t,s)&R and
5 € extA ’
ext(t,0 A) = {oeoa . for all s &éTH if {(s,t)€R then s&ext;\k
ext(t, O A} = [osos . for all s €TH if (t,s)€R then sc—extA‘;

Extensions of composed formulas of language FCRH(S) are defincd

in @ usual way as the set - theoretical combinations of the extensions:
~of their componoents. '
Observe that languagc L ( ) enables us to express infornation sbout

objccts which in the time period between moment t, and moment t, pos-

sibly have a ccrtaln property. Such assertions have the fora:

(t,, 0ada (55,0 ) :

The first conjunct represents the set of those objects which cbey
property A in. a certain moment later than t;. The second conjunct cof~

responds to the set of those objects which obey A at a certain moment
earller than t,.

Ve can also express the fact that for sone obJect. a moment t is
the eariiest (latest) moment in which thosc objects have a certain
property. These fornulas have the form s ’

(6,04 (2,0 1) Lol TR

(t,A)a (£, 0 WA)

. Formula (t, Dﬁ“A) reprcsents the set of ob;ects unich do not obey
property A at oll the mcments earlicr tnan t. Fornula. (t,n) reprcscnts
the set of objects which obey A at moment t. The intersect*on of thesc
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two sets consists of those objects which for the first tine obey & at -
moment t. In the s1m11ar way the in.erpre~atzon can be given for the
second formule.

Exaople 4.3.2
Consider a library catalogue which can be considered as a temporal
KR system in the following way. The set CB of objects consists of the
catalogue nunmbers of books, the set AT of attributes consists of title,
author, publisher, and subject, and the set Ti of nomcnts of time indi-
cates a vear of edition of books. Some exanples of assertions formulat-
ed in the language deternined by this KR system are given below.
(1965, ¢ ((autnor Ropinson A.)A (subject Logic and Foundations)))A
(1980, © ((author. Robinson A. )A (subject, Logic and Foundations))).

The formula given above represents the set consisting of the cata-
logue numbers of books by A. Robinson concerning logic and foundations
of mathematics and edited in the period 1665 - 1980. It includes, for

exanple, "Non—standard analysis” and "Complecte theories”

{1975, (subgect Artificial Intclligencc))

This formula corresponds to the set of catalogue nunbers of the
books on artificial intclligence edited later than 1975. It may include
“Logic for problenm solving by R. Kowalski and "Understonding spoken

‘1anguage' by D.E. Walker.

4.4, Summary
In this chapter wie have discussed how the temporal dimension can
be incorporated in conceptual models of knowledge reprcsentation. ‘e

proceeded according to the scheme: semantics + syntax + deduction method
£ dealing with a time scale explicitly
vje used the formalism

end we introduced some metheds o
on each of these three levels of representation.
of the temporal logic of lincarly ordered time which occurred to be
suitable for defining languages of systens of tenmporal information.
The formal languages had been introduced providing a direct nanipula-
tory access to time dependent information. The definition of these
languages is devided into two sublevels:
- one in which ve consider the tinme dimcnsion =cnan»ica7ly, in the
sense of a modal approach %o language semantics,

temporal propositional logic whosg interpretation structure is

and we define the
deter-

nined by a temporal KR systen
- orie in which we introduce tinme cxpllcwtly, and we define a pro-
respect to tie decductive power, is

positional calculus which, with
and nmorcover the formulcs

based on the classical propocitional logic,

1 1 locic
of the calcdlus conta:n tinme constants “and formulas of temporal -CG=C.
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5. {iETH CLCGY OF KICWLEDGE RIFRESZINTATION
5.1. Indiscernibility

In general, information about objects provided by a KR system is
not sufiicicnt to charzcterize objects uniquely that is we are not

able to distinguish 21l the objects by means of the adaitted attributes

and their values. Qonsicer, for exzmple, the set of aninals which are
characterized by attributes Aninality and Colour according to the fol-
lowing inforamation function (Hunt et 2l (1966)):

Animality Colour
Al bear \ black
A2 bear . black
A3 dog ) brown "
Ay cat black
A5 horse black
A6 horse black
A horse ‘ brown

In this R systen infornation about A, 1s the same as information
about Ay and consists of the following pairs:

(Animality, bear) (Colour, black) .

Similarly, information about Ag. equals information about Ag and
hence these aninals cannot be distinguished by means of attributes
Animality and Colour. \'e can observe the other sets of undistinguish-
able objects in the given system. For. exanple animals A; and A, cannot
be distlnguwsncd by attribute Colour; animals A5, A6 and A7 cannot be

" distinguished by attribute Anipality. . . : ! g

To deal with such cases we defire a fanily of indiscernibility re~

lations determined by the attributes of a KR systen. Given a KR systen

with a set CB of objects, a set AT of attributes and an infornation

~
function f, we consider a subset A of set AT and a relatlon A in set 0B
defined as follows:

(01‘0 )G A iff f(clva) = 7(02,0) for all 8€ A
¢ 08 x Oo ’

Relation 7 is rererrcd to as indlsoernibility with respect to at-

tributes from set A, 4 pair of objects belongs to relation ® whenever

they cannot be distinguished by means of attributes from A, An indis-.
cernibility relation determined by the enpty set does not enable us te’

-
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| teil zn object from noric of the others. Indiscernibility relation K3

determined by all the attributes of a system S is‘called 1ndiscerp-
ibility determined by S, and it is denoted by ind(S). Let us obsorve

‘that the definition of indiscernibility relations does not depend onm ‘
the kind of information function, that is the notion ofvindiscernibi;ltyr

is'meanihgful both for deterministic end nondeterministic KR systems.

Fact 5.1.1
(a) A is an equzvalence relation for all AS AT
(b) AvB e AnE. _
(c) If A< B then Be A _

Equivaience classes of a relation % are called indiscernibility
¢lasses of set A, In particular the indiscernibil;ty classcs of ind(s)
are called elementary sets in system(S.

Cxanple 5.1.1 ‘ ‘ . .
Let us consider a KR system of deterministic information doternin-

ed by the table given below:

o

. -
01 .
o3

6 A P O O K O O B kO

O H O O B B B O O OB
» O N BN O N » O O

0 2 1

The indiscernibility classes of the attributes are as follows:

"."1 010 Oz: 03¢ O7: Ogs °1c' °11} foge 050 060 o)
LE {o 1 ope °5' °9’3 !°3' 070 © o} {°4' Og+ Ogs. °11}
_'Cv‘! { 3,.0 IS Ds, 07, Olc} l 1 Oq, 05. 08, 09, 011}

-Elemontary sots of the systen are as follows: -
={og: on} '

- Ez = i°3' °7"°1o.3> A
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Indiscernibility classes of attribute Colour of EYgs:
| {Pl,_ Py P7) 1P2e Pa) {Ps+ Pe} {Pe)
Indiscernibility classes of_attribdte Age:

| {Pyr P3s P4} {P2r P7) P Per Pg)
Elementary sets: ' }

{Pye P) {Pa\ 1Pa) if’s- Pg) {P6)

5.2. Definable sets of objects

5 {049}
g, = {os o)
&g = {og °113

Exonple 5.1.2 ,
Let us consider a many - valued KR systen providing infornation

about languages presons Pl,...,P10 speak. Ve admit the following values

i 2 . cZnglish (&8), French (F), Gernman {D), Polish (pL)
of attribute Longuage s In this section we discuss how indiscernibility of individual ob-

Language jects influences knowledge about sets of objects. Clearly, since objects
Py G3, F ) are not necessarily distinguishable in a KR systenm, knowledge charac-
P, PL, G3, D terizing a set of obje;ts may be ambiguous to sonec extent, Consider,
< £ D for exomple, information about animals given in section S.1., and as-~
P * ' . ’
3 . b sume that we are(intcrested in set X = {Al' Age AG' A7}. Information
Pa o provided by the given table does not enable us to pharacterize set X
Py GB, F precisely. Vie cannot say that an animal belongs to X iff it is a black
Pe G3, D ) bear, a brown dog, a black horse or a brown -horse, because A2 and AS
P, pL, G3, D satisfy this condition too. Some other sets can be defined precisely,
for examplc, set Y = {A , As, A } can be characterized by the following
Pg F, D . ) © 7 .
'%qhgpndition: an animel belongs to Y iff it is a black or brown horse.
P F, O, PL - - . .
9 we conclude, that we should distinguish sets of objects which can
P10 F, D, PL , be completely characterized in a given KR system. e |

‘e consider nondeterninistic information function determined by
this system and the indiscernibility relation deternined by attribute

Assume that we are given a KR system S with set 08 of objects and-
set AT of attributes. ¥e say that
set X 0B is definable by set AS AT iff

Languagc. The elementary scts in the system arc. as follows:
{rye Pgy P2 Py ‘ {Ps. PgY {Par Pe) 1Por P10}

Example 5.1.3 ) ffﬂ.

X is either the empty set or the union of some V. i
indiscernibility classes of A T o

i 5 In particular if X is definable by set AT then we say that X is y
Consider the following KR systen of nondeterministic information definable in system S. Obserye, that eny finite set OB‘and the empty" 1
Colour of Eyes . Age eet_arebdefinable by a set A.of attributes. Moreover, for a finite OB ;
Y \ - |
Py blue, green 20-30 the faqily of sets definable by A is closed under union, intersection f
P green, hazel 20-35 and complement, and hence iv ig a Boolean algebra. )
2 » ) g EE : L N i
. blue, green 20-30 o ’ . Example 5.2.1 - ] - ‘ . o T
3 ’ ) Let .us consider the system given in example 5.1.1 and sets
20-30 . : N S : ]
Py green, hazel 0-3 X = {01. 05¢ 05, Og) : - “
wn, black 35-40 ,
Pg brown, bla ‘ Y. = {94, Og+ 9gs 0113‘ o : ; _ : !
- 35-40 { : -
Pe brown,‘hazg} 5 z = l°3"°4' 0g+ 97s 010}
30-35 . R
Py blue, green ‘These sets are definable in the given system:
brown, black - 35-40 : .
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X = Elu E4
Y = 53u55
Z = EZUE3

On the other hand sets
T = {030 940 050 0. 0g. °11)
3]

{oz: 05+ 0gs 014}
Vi = {03. 04, 05, 09}
are not defingble in the systenm.

Example 5.2.2

Consider the KR system from example 2,1.1i. The elementary sets of
the system are given below.
3 .
[oa] {eze e4} {oze 05) {og] |
This means that knowledge provided by the system enables us to
distinguish the following sets of individuals:

young males
males of medium age
old fenales

young females )
all sets which cen be obtained from the above sets by using set-

theoretical operations . .
Set X = ioi. On4 Oy 063 is definable in the system. It consists

of young males, males of medium age and young females. Set Y = {01, 03}

and set Z = {oz, 05} are not definable in the system., We cannot say
that Y coincides with .a set of young males and old females, since g

does not belong to Y. Similarly, it is not true that set Z coincides” -
with a set of males of medium age and old females, since o, and o4 do

not belong to Z.

It is now éasy to see that any set of objects which is definable
in a system can be described by a certain formula of the language of
this systea. o

Fact 5.2.1

The following conditions are equivalent:

(2) A set X is definable in a system S
(b) There is a formula F in the 1anguage of S such that X = ext F.

Example 5.2.3

Let set OB consists of the following ten tralns. presented in Mi-

chalski (1980).

UUE=T=ToN =P

Fig. 2

Let set AT = {él’ a5, 935 be defined as follows:
8, number pf'cars‘
32' maximal number of wﬁeels in cars

'33 occurence of a zigzag line in cars

E We have :
VALal - {3 4,5}
.'VALaz - [2, 3}

‘IVALa3.=‘{9es;_h03

The 1nformatlon function can ees:ly be reconstructed from the given
pictures. : . :
The 1ndlscern1b111ty classes of set zal. 32} and'the'reépcctive
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formulas of the language of the given system are as follows: sists of exactly one object.

) - (g 5)n(a, 3)
{72, 775 (a, 4)n(a, 2)
{TS' TSS (2, 4)n(a, 3)
['r‘, Tgb (a, 5)A (2, 2)
{Ter Tyo) (ay 304 (a, 2)
{Ts)) (2, 3)A (25 3)

The indiscernibility classes of set {ai, a3b and the respective

Fact_ 5.2.1 )

The following conditions are equiValent:
(a) A system S with a set 08 of objects is selective
(b) Any set X< 0B is definable in'S '

Given a definable set X €0B, knowledge provided by the system en-
ables us to decide when an object o€ 0B belongs to sat X. However, if
set X is not definable in system S we are not able to answer a membe r-
ship queétion precisely, For example, knowledge provided by the system

given in example 2.1.1 is not sufficient for establishing whether an
formulas are as follows:

!Tl‘ T4} (ay 5)n (25 no)

{Tpe T3 T57J (a, 4)a(ag no)

tTG' Tge Tu;j (ay 3)n (8 no)

{T.ﬂ) (a, 4)n oy ves)

{79} (ay 5)A(ag yes) v

Set Z = {TG, T,e Tge Tgo Tm} is not {al, a2} - definable, but it

object belongs to set {ol, 033 since we are not able to define this

set in terms of attributes Sex and Age. To deal with such cases we
introduce notions of approximations'of sets of objects.

5,3, Approximations of sets of objects

“Let a system S = (0B, AT, VAL, f) be given, we definc a pair of
operations in set OB of objects,'namely the operation of lower approxi-
mation and upper approximation of a set. These operations enable us
is 19 8 3 - definable. Ve have to assign a pair of definable sets to any subset X of set OB. For a set

1° "3 ) o v
ext((a:1 a)A (62 Z)V(a1'5)/\(az Z)V(B1 3)A (a2 Z)V(a1 3)A (82 3))
={ T2 T4e Ter T70 Tae Tor Tyo) = 2v {72 Ta)
ext((a; 3)A (g no)v (a, 4)A (ag yes)v (8, 5)A (ay yes)) = Z

X which is definable in the system its approximations coincide with
X, and for a nqndefinable set X its approximations are, roughly speak-
ing, close enough to X. They determine limits of tolerance for decid-
ing whether objects belong to X or not. '

An upper approximation SX of set X in system S is the least set

Listed below are some formulas of the languagé of the given svatem

which is definable in S nd includes set X.
and the corresponding sets of objects which are definable in Fhe system. @

A lower approximation SX of set X in system S is the greatest set

Fy (81 4)A (32,2)' extF, = iTz. T73 which is definable in S and is included in X. .
Fé 1(31 ) o oxtF, = tTi' Tae Tge Tge 79”T105 The following facts follow immediately from the given definitions.
Fy (ag 5)V (a2, 3) » extFy = 1T1, T Tgo TQ‘JA ’ f__a_‘.:.t_.S_:"_l _ - ) ‘ o )
) v oxtF. = lT S } A (a) X = {oe,OB: there is an o0"¢ 08 such that (o0,0”)e ind(S) and o' Xj
Fy (al 3 ) . 4 6° '8* '10J . {b) st = {oe 03: for all o'e 08 if (0,0” )& ind(S) then o€ X}
. 2 : extF : : ' ' .
Fg (a3 3)9(ep2) s T P Fact 5.3.2
Fg (ay 3)(e, 4) extFg = 08 The following conditions are equivalent:
Fy (a, 3)1(ay 4)a1(a, 5) extF., = 0B (a) A set -X¢& EF is definable in sxstem S
: : : : (b) Sx = X = 3X
“We have

Example 5.3.1 .
Let us consider system S determined by the following table

1 ) 3

ext(a, 3)¢ ext(1(ay 4)) _
ext(é1 3) = éxt(ﬂ(al 4)A'1(§115)) o

A KR system S is said to be_selecpive iff each elementary set ton=
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L2 2 4
oy 2 3
o4 1 4
og 2 3
%g 3 4
oy 2 4
cg 3 3
og 1. 4
%0 3 4

Elementary sets of the system are as follows

i 1) vi°2' °77J is' °57) {°4' o) { %ge °105 i"éj

vie consider set Z = ioe. Oy Ogs Oge O94p)- It is not definsble in the

given system and its approximations arc as follows
52z = ioz. 040 Oge Og¢ Ogs Ogo °10} = Zv{oz. 043
sz = ins. Ogs 0105 a Z - {o7¢ 095
Exomple 5.3.2

‘tet us conszder the system from example 2.1.1 with the following
elementary sets: -
[°15 {oz. o) {"3' °55 '{°55
Sets X = {ol, 023 Y = {o,. °3"°65  Z = 5°2' 04 °65
_have the following approximations: '
5 = {0, o3 045’ . L osx = e,
8 = {04, 054 050 0) sv = {05 9}
B2 = 8Z = loz, Oy °65 = Z ‘ B
_ In the following we list some properties of the" operations of lowt
and upper approximation.
- Fact _5,3.3
(a).s(xnY) = SxngY
(b) sxex :
{(c)ssx=25X
(d) s o8 =08
" - Fact 5.3.4
" (a) §(xvy) = sxvsv
-(b) x= BX
{c) 358 x =58x

_(a) A set. X is internally nonde.xnable in a systen s iff none of t

R

(d)§¢-¢

It follows that algebra p(oB) of all the subsets of set 0B with
‘additional operations S and S is 2 topological field of sets, where
S is a closure operation and S is an interior operation.

Fact 5.3.5

(a) Sx = =5(-X
(b)-sx = -s( )

() 1f XY then 8xe€ Sy and SX< Y.

) Thus operations §'and S are dual and monotonic with respect to
inclusion. :

5.4, Rough definability

Given a system S = (0B, AT, VAL, £) and a set X<08, for any ob-
ject o€ 0B we say that

o is an S-positive instance of X iff o€ SX

o is an S-negative instance of X iff 0eOB - SX

o is an S-borderline instance of X iff 0uSX - SX.

It. follows that if o is a positive instance of X then knowlecdge
provided by system S enables us to state that o definitely belongs to
X. For negative instances of X we krow that they definitely do not be-
long to X. Borderline instances of X represent a doubtful region, they
possibly belong to X but we cannot. decide if for certain in virtue of
knowledge given in the system. Vle say that

a set X is roughly definable in a system S

1ff SX A @ and 3X A 0B,

Thus for roughly definable sets a membership question can be de-
cided approximately. However, if lower approximation SX is empty then
there are no S-positive instances of X and hence none of the objects
_can be recognized to be surely an element of X. Similarly, if upper
spproximation SX equals set OB then there are no negative instances
"of X and hence none of the objects can be definitely excluded from X.
.We say that
: a set X is internally nondefinable in a systen s iff SX = @

f“‘ a set ‘X is extersally nondefinable in a system S iff SX = 0B

"a -get X is totally nondefinable in a systea S
<

:~,ﬂiff X is internally nondefxnable and extsrnally nendefinable in €

: Fact 5.4.1.
h\

- objects is an S-positive instance of X.
(b) A- set X is externally nondefvn zble 1n s iff none of “the obJecta
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is an S-negative instance of X

Exomple 5.4.1
Consider system S from exaaple 2.1.1 with the following elementary

sets:
{°11} l"z' °41] 2"3' °sj {%S
Sets X = {02. 03, 043 Y = ioz, 03 Z = ioi, CPY 03, oej

have the following approximations: -

¥ = {020 04) X = {°2' 03+ 040 95)
sY = @ SY = ioz. 054 040 053
sz = {01. 065 ; Sz = 08

It follows that objects o, and o, are the positive instances of X,

objects o, and og are the negative instances of X and objects osAand

o. are bordeline instances of X. Set Y is internally nondefinable and

5
set Z is externally nondefinable in system S.

Observe, that if an indiscernibility ind(S) generates a one-clcment
elementary set then there are no totally nondefinable objects in sys-

tem S.

5.5, Comparing knowledge representation systems

It can be seen from the previous considerations that expressive
power of knowledge representation systems is closely related to their
ability for defining sets of objects. In this section we consider a
family ST = {313141 of knowledge representeation systems of the form

s, = (o, ATy,

where set OB is the same for all the systems and I is a nonempty set
. of indices. We say that
a system S € ST is more expressive than a system S,€ ST

VAL, f,)

(s, ¢5,) iff ind(s, ) € ind(s,).

This means that if 515 S, then the indiscern;bility relation of
system S, provides a finer partition of sét OB into elementary sets
than.the indiscernibility relation of system S;. It fdllows that ap-
proximations of sets of objects in sysfen 31 aré closer to theéé sets
than their approximations in system 82,'name1y the following theorenms

hold.
Fact 5.5.1

=15~
The following conditions are. equivalent:
(a) S, ¢S, ‘
(b) B x< §2x for any X< 0B
Proof: Let [o]i, for i=1,2 denote the equivalence class with re-

spect to relation ind(si) deternined by object oe OB. If ind(sl)Q

‘ind(sz) then for any 0€ 0B we have [o]ﬂ_g[o]z. and hence condition (b)

holds. Let us now suppose that for any set XS O3 we have §1XS§2X and

not sié S,. Hence there is a pair (0,0°) of objects such that (o0,0”)
eind(sp and (o,o')f ind(s,). Consider set {o). vie have o’¢ §1[o} and
0?52{0), which contradicts condition {b).

Fact 5.5.2
The following conditions are equivalent
(a) Sié S,

(b) g,xE 8, for any XE 08

2
A proof follows from 5.3.5 and 5.5.1.
In the following we list some properties of relationg.

Fact 5.5.3
(a) 1f AT, < AT, 1
(b) Relation ¢ is a partial order in any family ST of systenms

then 325 S

(c) selective systems are minimal elements in any family ST ordered
by relation$ .

Exgmple 5.5.1

Consider systems S, and S, such that
'

0B = 0B, = |03, 05, 034 04, 05 )
AT, ”_{a- b} - AT, = {a, e, d]
ey = Lo 52}

VAL, = {‘4.1' qa}

vaL, = {10 r2)

N B

a b a ¢ d
fy o9 P19 fa 03Py T1 5y
%2 P Q2 % P 2 %2

°3 P19 %3Py T2 %y
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o, Py G 4 P2 T2 %

°5 Pz 93 . % Px T2 %
The indiscernibility relations of these systems generate the fol-

lowing elemcntary sets
ind(sl) : {01, 03} 102} {04, 05)

ind(s,) : zolb ioz} {035 {04, °S)
ve clearly have $,%£5,. Consider set X ={°1' 045‘ and its approxi~

mations in the given systens:
fslx = lol, Ogs Oy 053 §11\ =g .

szx = {01, Opr 055 _2:( = {ol}

5.6. Dependencies of attributes

Given a KR system with a set AT of attributes, we define a depend-
ency relation - on set P(AT) of all the subsets of set AT as follows:

z-T iff 2e7T

Thus fulfilling condition Z—?T means that if a pair of objects
cannot be distinguished by means of attributes belong:mg to set Z, then
it cannot be distinguished by attributes from set T. vie say that

a set TS AT is dependent on a set ZSAT iff Z->T holds

Fact 5.6.1
The following conditions are.equivalent:
(a) z-T holds '
N
b)zoT =72
This means thet if set T is dependent on set Z then sets ZuvT and

Z provide the same characterization of objects of the system. It follows

that set. T of attributes is superflous. The problem of reduction of
sets of asttributes will be discussed in the next section.

For any subsets Z, T, U end W of a set AT of attributes the fol-
lowing conditions are satisfied. '

Fact 5.6.2
(a) TS Z implies Z =T
(b) US W and Z-T imply Zv W=>TwvU
(c) Z-»T and T9U imply Z-7U
(d) Z-»T and Tv U—H‘:‘imply ZoU=3v
(e) z-T and Z7U imply Z>TwU
(f) ZTvU implies ZT and Z-2U .
Let us observe that if a-yb holds for a pair a, b of attrlbutes in
& system with an information function f then there is s functional re-

N~

2R RE
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lationship between values of a énd values of b, namely there exists
a unique dependency function-

h: VAL =7 VAL, _
such that f{o,b) = h(f(o,a))

. Let E( v) denote an equivalence class of indiscernibility ‘a con-

gisting of those objects o for which f(o,a) = V. Then we have the fal-
lowing lemma.

Fact 5.6,3

The following conditlons are equxvalent'
(a) e b holds
(b) E(a v)E E(b h(v)) for all v EVAL,

Let us observe that the definition of the dependency relatiom does
not depend on a kind of information‘function; Hence all the facts pré-
sented in this section concern both deterministic and nondetermimistic
KR systems. ‘

Example 5.6.1
In the system given by means of the table

& 22 8 3,
o, o o} o 0
o, 0 i o . 2
o5 1 1 0 1
04 1 1 o 1
og o 1 1 2

have the following indiscernibility classes:
: loi, L 955 i°3' ,04,))

: {°11} ’{"2' 030 040 05

: {°1' O30 031 94) {°55

1 {013 ,_{°2' ,057) : {03,' 04}

- Hence the foliowing dependencies hold:

- 8g=ay
8470 , ,
.The dorréspondin_g dependénc_y functi&ns are as follows
hy BRI —'hzl..
8423 : a 8, '
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0 © 0

2 0 2

1 1 1 1

2 [o}

Exomple 5.6.2

In the system given in example 2.2.2 we have the dependency
Eycbrow lieight =) Eyebrow Separation

The corresponding dependency function is as follows

Eyebrow Vleight ~7 Eyebrow Separation

Thin Sep
Bushy Meet
Medium Meet

Example 5.6.3

In the system given in example 2.2.3 we have the‘following depend-
encies:

{Volune Density, Numerical Densitys-ﬁ Surface Density

{v°1unc Density, Surface Density}-? Numerical Density

Example 5.6.4

In the system given in example 2.2.4 we have the following depend-
ency and thc dependency function :

Texture - Body Spots
blank one
shiped many
crosshatched ‘ many

¥e can generalize a concept of dependency function to sets of at-
tributes. Let Z = lal,....anB and T = {bl,...,bk). If Z<T holds then

there exist functions hb for b&€ T such that
f(o,b.) = hy (f(o,al),...,f(o,an)) for i =1,...,k
i

Fact 5.6.4
The following conditions are equivalent-
(a) z=T holds
{b) n E(a v) € E(u,h (v)) for all v& VAL, and for each b€ T

5.7. Reduction of sets of attributes

As we have secn in the previous section some attributes in a KR
system may be removed from the system without a loss of information
about objects, ‘e discuss this problem in sone detalls here. Let us
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consider & system S with a set AT of attributes. Vie say that
e set ZS AT is a reduct of AT in system S iff
Z is a minimal set such that 2 = ind(S)

Fact 5.7.1
The following conditions are equivalent

(a) A set Z is a reduct of AT in a system S

(b) Z-7 2 holds for all attributes a€ AT - 2
The proof follows immediately from 5.6.2 (a), (f).

Exanple 5.7.1
Let us consider a system given by the following table

a b c
0y 0 (o] 1
o, © 1 0
oy i 1 1
% 1 1 1 ' »
\Wie have the following dependencies in the system
[a, b)~7c .
h,éab
e, bY=a .

and hence there are the three reducts of set /a, b, cs in the "ystcm:
{a, bB [a. c) t c, b}.

Example 5.7.2
In the system given in example 2.2.3 due to the dependencies shown

in example 5.6.3 we have the following reductc
tVolume Density, Numerical Densitys
1V01ume Density, Surface Density)
This means that in order to define pathological states of a cell

"'it is not necessary to use all the three attributes, but it is suf-
~_ficient o admit two of them as shown above.

Example 5.7.3 )
. In the systen presentéd in example 2.2.4 the only reduct of the
set of attributes is as follows:

[Body Parts, Texture, Body fypeb v o
These three attributes are sufficient to characterize unidhcly the

micrnorganisms considered in that example.

Given a system S with set AT of attributes and a reduct Z of set

~ AT, by reduct of S we mean a system obtained from S by rcmoving the

attributes from set AT - Z and by considering the respective restric-
tion of the information function of S. ’

§

IS
b
i
5
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Fact 5.7.2 v
The following conditions are equivalents?
(a) s” is a reduct of S
(b) ind(s”) = ind(s)
(c) s°¢ s ond 5¢8°
Hence for any KR system S their reducts have the same expressive

power as system S.

5,.8. Logic INDL of ind1scern1bility relat:ons

The logic considered in the follow1ng section is intended to pro-
vide a fornal method for comparing an expresslve povier of knowledge
representation systems. The expressive power of a system is represent-
ed by the indiscernibility relation of the system. A system S, is con-

sidered to be more expressive than a system S iff indiscernibility
relation ind(Sl) is included in indiscernibility relation ind(sz).

‘we dofine a formalized language which enables us to express facts coﬁf
cerning sets of objects in knowledge representation systems. We also
give & deductive structure to the language and hence we are able to
recognize valid facts or to infer facts from given facts. In particular
we con axiomatize 'a class of selectxve systems.
Expressions of the logic are intended to represent sets of -objects.

They are built up from stomic expressions, i.e. variables by means of

operations corresponding to.set- -theoretical operations and operations
of upper and lower approximation. To define formulas of the logic we
use symbols from the following non-empty at most denumerable ano pair-

wise disjoint sets: .

set VAROB of variables representing sets of objects -

set CONREL of constants representing indiscernibility relations -
set {1 vV, A, 7 ,bab of propositional operatzons of negation dis-’

junction, implication and equivalence

set {_, ) of operations of lower approxlmatlon and upper approximaq

tion. . : - .
Set FORINDL of all formulas of the logic 1s the least set satisfy-
ing the following conditions: o ;
VAROB € FORINDL
if A, B € FORINDL then A, AVB A/\B A"’B A(—?BG FORINDL

if R€ CONREL and A€ FORINDL: then RA, RAE FOPINDL
Formulas ‘of the form 1A, AVB, and AAB ere: ‘intended to” represent
complement, union, and intersection of sets of objects represented by

A and B, respectavely. Expresslon A9B. represents the union of conple-:

- 81 -

plement of a set corresponding to A and a set corresponding to .
Expression AC7E represents the intersection of cets of objects deter-
mined by A-2B and B=A. Lastly, expressions RA and RA represent itibe )
lower and upper approximation of a set corresponding to A with mespect
to an indiscernibility relation R.

. We define meaning of the formulas of the yiven language by mmams
of notions of model and satisfiability of the formulas in a2 madel. By
a model we mean a triple

= (o8, n, v)
where 03 is a non-empty set of objects

m is a meaning function which assigns equivalence relstions aw sct
08 to constants from sst CONREL

v is a function from set VAROB into set P{OB) of all the subsets
of set OB. .

By induction with respect to e structure of a formula we defime
the notion of satisfiability of the formulas in a model. Ve say that
a formuls A is satisfied in a model 11 by an object o€ CB (1, & s@t A)
iff the following conditions are satisfied:

M, o sat p iff o€ v(p) for pe VARDB

M, sat 1A iff not M, o sat A

M, sat AvB iff M, o sat A or M, o sat B
sat AAB iff M, o sat A and M, o sat B
sat A-?B iff not M, o sat A or M, o sat B
sat A&?2B iff M, o sat A= B and M, o sat B2A
sat RA iff for all 008 if (o, o”)e n{R) then M, o’sat A
sat RA ifi there is an 0€08 such that (o, ¢“}€ r(R) and
v M, o sat A,

We say that a set T of Tormulas is satisfied in e model M by an

-
=
© 0 0o 0o o 0 0 O

.object o (M, o sat T) iff for each formula A€ T we have M, o sat A.

A set T is satisfiable iff there is a model M and an obJect o such
that M, o sat T,

According to the given semantics to each formula A of the language
there is associated the set of those objects which satisfy the formula
in 2 model; we call this set extension of formula in model

extyh loeoa- M, o sat A}

Extension of compound formulas depend on the extensions of thexr
components in the follow;ng way

Fact 5.8.1
(e) extyp = v(p) for pe VAROB

(b) ex,tM'lA = _extMA
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{c) ext AvB = ext AYext, 8
(d) exthA"B = extr‘fl\ﬁextns
(e) ext, A2 = —extyAvext,B

(f) ext A©9 = extM(A—?B)ﬂ extr_l(a-—)A)

(g) extl,_,EA = _rr_x_{_P_) extMA

(n) extlviﬁf«’ = m(RJ extM(A)
Axioms of INDL

Al, All formulas having the form of a tautology of the classical prop-
ositional logic.

a2, r(a-8)= (RA9RB)

A3. RAIA

A4, ATRIRIA

AS. RA-IRA

Rules of inference

A,A20 A
m g ® B

Thiz axiomatization corresponds very closely to the axiomatization
for modal logic S5 (Gabbay (1976)), however a difference consists in
considering a fomily of equivalence relations in the language and in

models.
The proof of completeness of logic INDL follows closely the earlier
completeness proofs. A cononical model in set FT of all the maximal
filters of Boolean algebra AINDL is defined as follows:
= (OBo’ W vo)
where o8, = FT

.

mo(R) ={(F1,F2)6 FT x FT: for any formula A if [5A]e F, then

[Aler, 5
vo(ip) = { Fe€ FT:[p]é F}
Fact 5.8.2
For any R€ CONREL m (Q) is an equ:.velence relation. .

Proof: By axioms A2 and 10.2 (b) we have [PA] [A] Hence if [PA_]
€F then [:A:' ¢ F, and so relation m (R) is reflexive. Let us now assume

that (F Fy Ye mo(R), &1]6 F, and suppose A]¢x~1. Hence, since F, is
a maximal filter, we have [‘1,@]6 Fl‘ By axiom A4 we have [P‘! \/-\Jé Fqe

Thus [1RA] € F,, a contradiction., Hence relation m_(R) is symmetric.
R 2 o y
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Let us now assume that (Fy,Fy)&m (R), (F,,F3le mo'(jR), I:B_A]e Fy+ and
suppose [A34 Fy. By axiom AS we have [E R A]e‘ Fys and hence[gAJG Fge
It follows that [A]‘: F3, a contradiction. Hence relation mO(R) is tran-

sitive.
As in the previous completeness proofs the key lemma is as follows:

Fact 5,8.3
The following conditions are equivalent
(a) M. F sat A

(b) [A)erF
Proof: The proof is by induction with respect to a structure of a
formula. For variables and formulas of the form 1B and B-C the proof

is easily obtained from the respective definitions. Vle prove the lem-
ma for a formuls of the form RB. Let us assume that Ho' F sat RB and

suppose [58]# F. Ve covnsider set ZFR = [[C] : [EC](-. F) . Vie now prove

four properties of this set.

(1.) Set Zpp is non-empty

It follows from the fact that [E(Av‘lA)JGZFR

(2) set Zop is a filter

ve have [B,]n [B,] €2 o 1ff [BnB,] €2 0. Hence [ R(B,48,)] € F.
Since | R(AAB )e» RARB, we have [ RB,ARB,]€ F. It is equivalent to [&s,]
€F and [re,]€ . Henc‘efal]é Zggp and [B,]€ 2,

(3) Filter Zpp is a proper filter

Let us suppose that 0€ Z_.. Then we have[g(AMA)]eF and hence

1 I[R(AV"A)]*- F, a contradiction.
(4) Filter 6 genereted by set Zp “:1 BJB is a proper filter

v _We show that for any [Al],...,[An]é ZFR' fer ny 1, we have [,\1}\.
...,n[A -]nE!B] # 0. For éuppose not, then we have T!—A /\..."A A8 -
AMTA, and hence Tl"A 4\..."A a7 8. By rule R2 and axiom A2 we obtain
TF ?A A...ARA -5 RB. Since. [Al]....,LA]E‘.FP, vie have rm ],...,[PA ]eF,
nnd hence [:RA LR.] RA]e F. So [RBJE F-and this is in conflict with

the supposition.;

It follows that filter G can-be exterded to a maxlmal filter H.
such that [‘\ B]G H and for any formula C if[ CJGF then: [CJEH. Hence
(F.H)e m, (R) and M,+ H sat71 B, but this is a contradiction with the
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assunption. Let us now assune that [gs]e F and consider se:,ZFR. We
have [D]& Z... By Kuratowski-Zorn lemna there is a maximal filter G
which includes set Zpn, and hence (F,cle n (R) and [n]e G. But Z., is
included in every filter G such that (F,G)e mo(R), thus [B] belongs
to every such filter. By the induction hypothesis we have Ho' G sat B
for all G satisfying (F,G)€ m (R). Hence M_, F sat RB.

The obove lemma ensbles us to prove completeness and compactness

of logic INDL.

5.9, Properties of KR systens expressible in logic INDL
In this scction Ge show how formulas of the given language can be
used to cxpress properties of sets of objects and properties of know-
ledge representation systems.
Foct 5.9.1
(a) F= A iff ext ASext, B
(b) k’ A©D iff ext) A = ext B
(<) hjfbx*?ﬁﬁ iff ext;A is definable in a system e such that'ind(s)
= m(ﬂ)

(d) Fﬁ RA iff ext A is internolly nondefinable in a system S such that

ind(s) = m(RrR)

(e) MPA iff ext A is externally nondefineble in a system S such that

ind(s) = a(R) _
(f) Fﬁw(ﬁA-vnA) 1ff ext A is totally nondefinable in a system 5 such

that ind{s) = a(R).

The proof follows immediately from the definition of satisflability.

In the next lemma we list some properties of a knowledge represen-
tation system related to a model. Let a model M = (0B, m, v).be given

and let S be a system such that ind(s) = m(R) for a certain RE CONREL.

Fact 5.9.2
(a) FﬁRA‘ﬂPA for every AE~FOR iff -system S is selective_

(v) Fﬁu(AAB)A R(AAT3) for every A,BE FOR iff equivalence classes of

ind(S) have at least two elements o SR e

(c) FﬁR (Ar8) A R(AAIB)7R(A) for every A,B€ FOR iff each equ1valence

class of ind(S) has exactly two elements. .
Proof: The formula in condition (a) says that for any A the upper
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approximation of a set-corresponding to A is included in its lower
approximation. By 5.3.3 (b) and 5.3.4 (b) conditicn (a) holds. The
formula in condition (b) says that in model M for any object a there
are objects oy and o, such that o, € ext A, o, &exB, (o,cLIE:n(n),

0, € ext A, 0,€ext B, and (o,oz)é a(rR). n{R) is an equivalence rela=~

tion and we possibly have 0, =00ro, =0 but not 0y = Oy since o
and o, are separated by extMB. Hence condition (b) holds. Im the for-

mula from condition {c) the left hand side of implicatiom guarantees
the existence of an object o satisfying condition (b, The foroula
on the right hand side of this implication says that this ebject is
the only one satisfying this condition.

It is easy to see that in the similar way we can defime formulas
expressing the fact that in a system related to a model each elemen-
tary set has at least or exactly n elements, for ny 1.

In the following we list some formulas which expreszs melations
between knowledge representation systems. Let a model fi = (U3, a, v)
be given and let S,, S, and S; be the systems such that imd(Si) = m(Ri)

for i =1, 2, 3 for some constants Rl' Rz, and R3.

Fact 5.9.3 )
_.- A N i <
(a) }ﬂ R,A7R,A for'every A€ FORINDL iff S; ¢S,

(b) FR,A7R,A for every A€ FORINDL iff S €S

155
(c) F(R,ADRAIA (R,AR,A) for every AE FORINDL and [=(R,A-7RA) A
(RA7RA)7(R;A27A) for every A€ FORINDL and every R€ CONREL iff
‘ ind(s;) = ind(s'l)n ind(s,)
(d) h—;{gBA TR AN (gsA—yng) for every A& FORINDL and }-;;(QA TRyAIA
" (RAR,A)7(RAR,A) for every A€ FORINDL and every R € CONREL
1Ff 1nd(S5) = (ind(s,)Vind(s,))"

Proof: The formula in condition (a) says that for any A the upper
approximation of extMA in system s is included in its upper approxi-

~nat:.on in systenm 82. -By S.5. 1 condition.(a) holds. Slmllarly, condi-~

“tien (b) follows from 5.5.2., The first formula in condltlon (c) says

that relation 1nd(53) is included both in lnd(sl, and 1nd(° ). The
second formula says that ind(ss) is the greatest relation with that

property and hence condition {c) holds. The formulas given in condi-
tion (d) say that ind(s3) is the least relation containing both ind(sl)
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end ind(S,). Since these relations are ecuivalences, ind(ss) is thg

transitive closure of ind(Sl)\Jind(Sz). Thue ccndition {d) holde.

5.10. Summary
The central aim of this chapter has been to consider the broader

implications that follow from the technigues of knowledge representa-
tion developed in chapters 2, 3 and 4. Ve ;nvestigated how the expres-
sive power of any KR system is influenced by the indiscernibility of

ects in the system. Proposals have been made for considering ap-
efinability of scts of objects to reflect deep structures

which are meaningful for the system. Vie developed logical

obj
proximate d
of concepts
formalism providing tools for the examination of expressive power of
KR systems in terms of indiscernibility relations.

\ie have also dealt with questions of what arc the criteria for
guiding the selection of attributes in KX systems,

The methodclogical problenms attenpted here can easily be formulat-
ed for KR systems of tecmporal information. It is only necessary to
consider indiscernibility relations for each moncnt of time. In this
way any KR system determines 2 fanily of indisccrnibility relations
and hence we can consider definability of concepts at a certai? monent .
Similarly, we can reconstruct dependencies of attributes wi;hvthe re=

ference to the time scale.
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6. LOGIC REPRESEMTATION OF INFORMATION

6.1, Information logic IL

In this section we introduce a language which is expressive enough
to represent a wide variety of facts related. to deterministic, many-
-valued and nondeterministic information about objects. v’ show how
inferences can be made from sets of expressions in the language and
vie discuss how to deduce statements from the other statements. The
basic concepts which. have their counterparts in the lanquage are ob-
ject, attribute, value of attribute and fact. As previously, an ob-
ject is anything we want to store information about. A property an
object might have in a certain real world state is expressed by using
the notion of an attribute (e.g. colour) and an attribute value (e.g.
green). Any pair consisting of an attribute and a valuc of this at-
tribute represents an atomic property of objects. From a logic point
of view atomic properties are one-place predicates e.g. (colour, green)
{x), where x is a variable ranging over a set of objects, is the pre-
dicate which results in a true predication whencver x takes a green
object as its value. From atomic properties we form compound properties
by using logical operations, e.g. (colour, green) (x) or (colour,
black) {x) is the property which results in a true proposition.when-
ever x takes a green or a black object as its value.

A sentence stating that a property holds or does not holds for an
object is called fact. For instance, if objects we are interested in
are plane figures Fis F2, and F3 then the following sentence is a fact:
(shape, oval) (F1> and (shape, triangle) (FZ) and‘not(shape, ellipse)
(Fy).

Since in almost all applications a huge number of possible real |
world facts is involved, it is impossible to specify a system by list-
ing of all imaginable facts.'One rather has to use an axiomatic de-
finition of possible facts. Any collection of facts providing an in=

i formation about the current state of given objects will be treated as’

an KR system. Facts listed in a system are called explicit facts; they-
play the role of axioms. To enable us inferring consequences of ex-
plicit facts we develop a logic galled information logic, =nd the proof¥
procedure for the logic which is based on the deduction nmethods in the
ordinary predicate logic. The facts which can be derived from explicit
facts are called implicit facts: they play the role of theorems.

Set of symbols of ‘the language of logic IL is the union of the
following nonempty, at most denumerable, and pairwise disjoint sets:
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a set VARCB of object variables, denotec by x, v, Rga Ygeeos

a set CONAT of attribute constants, denoted by a, ay4eve

a set CONVAL of attribute value ;onstants, denoted by w, Wysene

a set CONOB of object corstants, denoted by o, Ogreee

set {1, VoA, = ,&#S of propositional operations of negation,
disjunction, conjunction, implication, and equivalerice, respectively

set { V} of quatifiers, called existential quantifier and uni-
versal quantifier, respectively.

Set FORIL of formulas of logic IL is the least set satisfying the
following conditions:

if x€& VAROB, o€ CONOB, aeCONAT and we& CONVAL then {(x,a,w) and
(o,8,w)€ FORIL

if A,B € FORIL then 1A, AvB, AAB, A-rB, and A&@B¢ FORIL

if A FORIL then 3x A and Vx A& FORIL

As usually we assume that formulas do not contain redundant or over-

lapping quantifiers. Moreover, we adopt the usual definition of free
end bound variable. An object variable in a formula is said to have a
bound occurrence if it stands within the scope of a gquantifier with
the some object variasble; otherwise it is said to have a free occur-
rence. A formula without free variables is called a sentence.

Let DES be the set of all pairs (a,w) for o€ CONAT and w & CONVAL.
Elements of set DES are called descriptors )

It is easy to see that there is a carrespondence between formulas
of logic IL and formulas of the classical predicate calculus FC. \le
can treat descriptors as monadic predicate syrhbols and then formulas
of logic IL can be considered as formulas of the monadic predicate
calculus MPC.

In the language of logic IL we have introduced three kinds of can-
stants. Thus semantics of the language should be defined by using &
three-sorted universe and a meaning function, which assigns elements

of the universe to constants of the language.

Let OB and AT be nonempty sets, called set of objects and set of -

gttr1butes, respectively. For each attribute a& AT let VAL be a non-

empty set called set of values of attribute a. lLet VAL = L)ATVAL .
ag

The systen U = (oB, AT, VAL) is called universe. Any mapping m: CONOB
UCONAT y CORVAL=90B U AT U VAL such that m(CONOB) = 0B, n(CONAT) =

and. .m{CONVAL ) = VAL is called meaning function over the universe U.
Given a universe U, by a valuation over U we mean any function v: VmPOB
-20B. -
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By a model for logic IL we mean any systen
= (U, m, f)
where U is z universe, m is a meaning functicn over U and f< OBxATxVAL
is 8 nonempty relation such that if (o,a,w)€ f then we.VALa.

Given a model M = (u, m, f) and a valuation v cver U, we say that
a2 formula A is satisfied by v in M (#i, v sat A) whenever the following
conditions are satisfied:

M, v sat (x a w) 1ff (v(x), m(a), m(w))e

M, v sat (0o a w). iff (n(o), m(a), m(wl)ef

M, v sat1 A iff not M, v sat A

M, v sat AvB iff M, v sat A or M, v sat B

M, v sat AaB iff M, v sat A and M, v set B

M, v sat A»B Lff not 4, v sat A or M, v sat B

M, v sat A¢B {ff M, v sat A28 and M, v sat B2 A

M, v satd xA iff there is a p& CB such that M, vp sat A
M, v satV xA iff for all pe¢ 0B we have M, v_ sat A

P
where v is the valuation over U such that vp(x) = p and vp(y) = v(y)

for y £ x.
A formula A is said to be true in s model M = (U, m, f) (FMA) iff

for every valuction v over universe U we have M, v sat A.‘A formula

A is said to be valid in logic IL (EA) iff A is true in every model
for IL. A sct T of formulas is said to be true in a model M if every
formula A€ T is true in M. A set T is said to be satisfiable iff there
is a model M such that T is true in M. \ie say that formula A is scno-
antical consequence of a set T (TEA) iff for every model M formula
A is true in M whenever T is true in M.

We give a deductive structure to the language of IL in the usual
way, first specifying a recursive set of axioms snd inference rules’
end then defining a syntactical consequence operation.

The axiomatization of IL corresponds very closely to the axioma-
tization of the classical predicate calculus PC. Axioms of IL are sub-
stitutions cf the axioms of PC, that is they are formulas of IL which
have the form of theorems of PC. Simila;;y, rules of inference of IL
are substitutions of the rules of PC.

Axioms of IL
Ai. A»(B=A) ' ;

A2, (A+(B»C))» ({(A»B)»(A>C))
A3, A (MASE)

A4, (FASA)=2A .
A5. ¥V x{A»8(x))> (A>Vx3(x)), where x is any object variable nct cc-
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currinc free in A
AG. Y x4(x)27(0), where o e CONC3,

The propositional operations v, A, > and the existential quanti-
fier d can be defined by mecans of implication, negation and universal
quentifier: '

AvB = 1A2>B

A48 = 1(A=>18B)

aerB = (A2B)A (B2A)

Jxa =W x1A,

Rules of inference of IL

i’—gﬂ modus ponens

ST generalization

A derivation of a formula A from a set T of formulas is a finitp
scquence of formulas each of which is either an axiom or a formula
‘from-T or else is obtainshle from earlier formulas by one of the rules
of inference, and A is the last formula in the cequence. Ve now define
the syntsctical consequence operation. Formula A is said to be deriv-
able from set T of formulas {T¥A) if there is a derivation of A from
T. A fornula A is a theorem of IL (FA) if it is derivable merely from
the axions. A set of formulas is consistent if the formula of the fokm
AATA is not derivable from!T. A set is inconsistent if it is not con-
sistent. :

The axioms of IL are easily seen to be valid in IL and the rules‘j;

of inference clearly preserve validity. Hence we have the following

theorem.

Fact 6.1.1 (Soundness theoren)
(a) A implies B A
(b) T A inplies TEA
(c) T satisfiable implies T conéistenf.

Given set T of formulas, let D(T) denote the set of all formulas
derivable from T, that is D{T) =

erties of the operation D are well known.

Fact 6.1.2

(a) T¢ o(T).
(b) D(D(T)) = o(T) , -
(c) T,< T, inplies D(T Je D(T )

{Aé FORIL:. ‘rt—A}. we can treat .set D(T)
as the image of the set T under the operauon D. The following prop-
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(d) o(Tluf ) = o(o(T,)un(T,)).

In the following we list some other useful propnrtlcs of the operu-
tion D.

Fect 6.1.3.
(a) A implies AeD(T) for any T¢ FORIL
(b) Ae D(T) and (A28)eD(T) imply Be D(T)
(c) Ae¢D(T) implies ¥YxAe D(T)
(d) B¢ D(TU{A}) iff (A28)eD(T)
(e) Aco(T) iff TU{'tAk inconsistent.

vie now sketch the method of establishing completeness of logic IL.
This method follows closely the earlier proofs of completeness given
in chahter 2, 3 and 4.

Given a consistent set T of formulas of logic IL, we define a con-
gruence in set FORIL deternmined by set T and we consider algebra AIL
of all the equivalence classes of this congruence.

Fact 6.1.4 (Completeness theorem)
(a)E A implies A '
(b) T=A implies T+ A
(c) T consistent implies T satisfiable

Proof: Let us assume that Tk A holds and suppose not THA, Ve
conclude that{1A] £ 0 and by Rasiowa - Sikorski lemma there is a
Q-filter F in alcebra AIL such that [1A]é F. Ve then define a canonic-
al universe Uo s (ODO, ATo' VALO) and a canonical model ”o = (Uo,mo,f

where
OBO = CONOB v VARQOB
AT = CONAT
VAL_ = CONVAL . v
(p, a. w)ef i1ff [(p a w)]eF for all p&0B, ac AT, and we VAL
no(o) = 0, mo(a) =8, mo(w) = w '

Let,voz VAROS » OB° be a valuation over universe Uo such that vo(x)

B = X f§r any object variable x. We have the following lemma:

Mo, v,

o sat A iff [A]er

Vie prove this condition for a formula A of the form 3x8(x). -For
the remaining formulas thg'proof is similar to that followed in pre-

_vious chapters. ‘Let us assume that Mo‘ vo'sataxs(x). Hence there is

ape OBoAAS,l"Fh that M, v, sat B(x), where vop(x) = p and v (y) =

)

o
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vo(y) for y # x. Hence #_, v, sat 8(p). Suppose now[a:xs(x)]ﬁ F. e

conclude that [sz(x)]é F- and by A6 ['l B(p)] € F. By the. induction hypo-
thesis M , v, sat’ e(p), a contradiction. Let us then assume that

[-3 xB(x)]é £. Since F is a Q-filter, there is a pe o8, such that [B(p)]é'

¢ F. By the induction hypothesis M, v, sat 8(p). Hence M,, v, sat

ﬂxB(x). .

1t is now easy to see that since EWA]G F, we have M , VvV, sat TA,
But for each Be T we have [B] = 1. It follows that for any Q-filter F
we have [B]G.F. Hence Mo' Vo sat B for all formulas ge T. Ve conclude

that Mo' Vo sat T and Mo, Yo sat TA, a contradiction.

We now consider implicational formulas of ldogic IL which can play
a role of what is called production rule in Al systems. In fact we
consider a slightly more general form of rules:

AlA...AAna Biv...vBm for nonnegative n, B

The formulas Ai""‘An form the antecedent and the formulas Bl""'Bm'

the succedent of the rule. Both expressions may be empty. If the
sntecedent is empty the rule reduces to the formula Blv...VBm. This

means the same as if a valid formula stood in the antecedent. If the
succedent is enmpty, the rule means the same 8$s the formula‘](Alh...AAn).

This means the same as if a negation of & valid formula stood in the
succedent. )

In the following we present some properties of rules which may
pe useful in deriving new rules. These properties correspond very clo~
sely to the Gentzen inference figure schemata for the classical logic
(szabo M.E. (ed) (1969)). Following Gentzen-style formalism, instead

of formula AlA...AAQ? Blv...vBm we write Al,...,An—asi,...,Bm. The

informal meaning of this expression is no different from that of the
above formula: the expression differ merely in their formal structure.

in what follows Tl' T2, T3, and T4 denote finite or empty sequences

of formulas.

Fact 6.1.5

(717 ) /Ty 770

(A=) 5A, T43T, or FB, T,? T, imply A48, T, T,

(=v) FyT > Tps A OF T 7T B imply I=;1T~1—? T,e AVB

(v=) F:MA, 1,57, and FB, T4>T, imply AV, T,>T,

A and /T, 7T,, B imply f=M1'1—7T2, AAB

- 93 -

(=) lﬁ(\ T, T, implies 7,775,714

(1) FT,~7T,. A implies ljl‘rA, T, T,

=V) l’f,lTl—qu,'A(y) implies \=MT1-7T2,V><A(X) and y must not occur
neither in A(x) nor in any formula of T1 and T2

(¥Y=2) ‘f;‘A(o), T, T, implies l'ﬁVXA(x), T, for o& CONOB

(=3) BT, 77, Alo) implies E,,quTZ,HxA(x) for o€ CONOB

(A=) }-—r-(’\(y), T, Tz'implies ﬁﬂxA(x), 7T, and y must not occur
neither in A(x) nor in any formula of T1 andAT2

(a) }?«11’1_71.2 impl?es I;A, T, T, and ’T'lTi_7T2' A

(b) EA, A, T;7 T, implies BA, T, T,

(¢) fr=To. A A inplies BT, Ty A

(6) kT,. A, B, T,7Ty implies KTy, B, A Tp7 T,

() KT,7T50 A0 B, T3 implics FT,—~7Tp. Bs A T3

(£) ET, Ty, A and I?,lA, T,7T, imply BTy, T3 2o Ty

6.2, Logic knowledge representation systems -

The language defined in the previous section provides a means for
representing information determined by a universe. Formulas of the
language of IL can be treated as schemes of sentences which express
knowledge about objects of the universe. Given a universe u = (08, AT,
VAL) and a meaning function m over U such that m{conOB) = 0B, n( CONAT )
= AT and m{CONVAL) = VAL, we define set FORIL(U) of expressions which
are obtained from formulas of IL through assignment of values of con-
stants determined by the mapping m for these constants. The expressions
from set FORiL(U) are referred to as U~-formulas. u-formulas without
free variables are called U-sentences. U-sentences express knowiledge
about universe U.

The concept of derivability ¢an be extended in a natural way to
u-formulas. Vie say that U-formula A is derivable from set T of U-for-
mulas whenever it can be obtained from U-formulas having the form of
axioms of IL or members of T by répeated application of inference rules
of IL. Ve use the same notation as for IL, namely we write THA vhen- '
ever U-formula A is derivable from set T of U-formulas. o

Given a universe U = (03, AT, VAL) and 2 nonempty set T of U-sen-
tences, by logic KR sysfem over U we mean system )

s = (u,.T)
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Thus a logic K? system consists of a nonenpty set 0B of objects,
a nonempty sct of characteristics of objects represented by attributes
and values of attributes, and a nonempty set of sentences which express

sumptions concerning properties of objects

The following example explains how any system of deterministic
information can be defined as a logic KR system.

Exzmple 6.2.1

Consider a KR system which provides 1nfornat10n about languages
(Lan) (French (F), Hungarian (11), German (D), Swedish (S) and Romanian
{n)) which persons Py, Py, P3. Pyr Pge Pg speak, and about degrees
(peg) (bachelor of science (8s), master of science (#S) and philosophy

doctor (PhD)) they have. The respective logic KR system S, is defined

as follows:
o8 = {Py, Py P3u Py P PS}
AT = {Lan, Deg}
VAL Lo ={F,‘ H, D, S, RS
VALDeg = iBS, MS, PhDS
¢ VAL = VALLanU VALDeg
u = (0B, AT, VAL)
Let 7, be the following set of U-sentences
(p, tan F)a(Pg Lan F)
(P2 Lan H)
(P3 Lan D)
(Ph'Lan s) ‘
(Pg tan R) . .
(P, Deg PhD)
(P, Deg BS)A (P Deg BS)A(P Deg BS)
(P3 Deg MS)A (P, Deg us) .
Moreover, T1 contains all the sentences of the following schcﬂes'
¥ x{((x Lan p)<‘7'l_(x' Lan pl)l\‘_l(x Lan pz)/\j(x Lan p3)A1(x Lan p4))

where p, pys Pps P3o pa‘e{F, H, D, S}'R),:and for_éach i, 3 6{1'2'5'4j”

we have p; fvb and Py 3 pj,
CVx((x Deg qﬂﬂ?(x Deg ql)A1(x Deg qz))
where q, Q4. q2 {Bs.rs, PhD), and for each i, jé¢ {1 2} we have
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9 Fq andqiqu
Let S, = (u, Ty ). Sot T, can be considered as a definition of in-

formation function flz 0B x AT 2VAL given by the following table:

Lén - Deg

Py F PhD
P, Ho BS
Py D MS

Pa s MS -
Pg F. BS
. pé R 8BS

Obviously, system (U f ) is the system of deterministic informa-

tion. It is easy to see that any deterministic KR system can be < pre-
sented as e logic KR systen.

\le now consider an example of -a logic KR system which corresponds

_to many-valued KR system.

Example 6.2.2
Consider universe U from example 6.2.1 and the following set T,

of U-sentences:
.(P1 Lan F)/\_(P1 Lan D)

ﬁi(Pz Lan H)A (P2 Lan R)
' (93 Lan D)A (P Lan F)A (Pg Lan s)
",_(_g; ’L'an.‘F) _
('PE' Lan F)I\(Ps Lan D).
_‘(PG. Lén R)
(P, Deg as)A(P Deg Ms)A(P Deg PhD) .
(P, Deg 8S)A (Pg Deg Bs_)/\__(P6 Deg BS)
(Py Deg 8S)A(Py Deg 1S)
" (P, Deg BS)A(P;,O-‘p'eg MS)
?-Saf‘Té‘can’be coﬁsidgréd as 2 definition of fhg'informbtion re-

lation féi'DB x AT x VAL given by the folloﬁing table:
; Lan Deg '
Py .. F,D. BS, U3, PhD




P, H, R BS
Py F, D, S B85, MS
P, F, 8S, MS
Py F, D B8S
Fe R 8sS

System (u, f2) is the system of many-valued information.
Example 6.2.5
Consider universe U from example 6.2.1 and the following set T3

of U-sentences:
(P1 Lan F) v (P1 tan D) v (P1 tan S5)

(p, tan H) v (P, Lan R) v (P2 tan F) v (P2 Lan D)

(P3 Lan F) v (P3 Len M)

(P, Lan F)
kF Lan R)
(P tan D)

Yx((x Dea BS) v (x Deg VS) v (x Deg PhD)

In system S5 = (u, TS) we have incomplete information about lan-
guages persons P,, Pos and Py speek. The first formula says that P,
speaks French or German or Swedish. This means that P1 speaks at least
one of these languages. Similarly, Py speaks Hungarian or Romanian
or French or German, and ?, speaks French or Hungarian. This is a kind

of incomplete information when we can only know that values of a cer-

tain attribute for a certain object belong to a given subset of values.
The given formulas do not enable us to define an infprmation re-

lation. We can define only the family of sets Wan VALa for o0& 0B and

a€ AT such that if weé W°a then w is a possiblie value of attribute a

for object o. We have:

.

W =
PlLan

{e

o

¥p 3Lan = {F' }
JUA

w
P4Lan
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\d ={R}
PsLan

vl ={D}
PS Lan

wP.Deg = {BS, Ms, PhDS for i =1,...,6
i

Ve can identify system S, with the system (0B, AT, {VALa}aé AT” fs)

of nondeterministic information where f3(o.a) = woa for 0&€ 0B and a€ AT,

Exanple 6.2.4

Let the universe U be defined as follows. Set 03 of objects con-

sists of five plane figures Fa, FZ' F_, F4, Fs. Set AT of attributes

3
consists of two attributes a and b, determining a shape of a figure,
namely VALa = {oval. polygonal} and valy =Ie11ipse, triangle, sgueare,

rectangle}. Assune we are given the following set T of sentences:
1. Vx((x b cllipse)7(x a oval))

2. ¥x({x b tricngle) v (x b square) v (x b rectangle)=>(x a pclygcnal))

3. Vx((x a oval) v (x 2 polygonal))
4. (F, b eilipse)A (F, b ellipse)

5. (F3 b triangle)
6. (F4 b square) v (F4 b triangle)
7. (F5 b rectangle) v (F5 b ellipse)

The following sentences are examples of implicit facts derivable in
in this systen:
(F1 a oval)

(F. a polygonal)
3

ax(x a polygonal)
(F b elllpse)‘7(F .a oval)

Sentences 1 and 2 describe dependence of attribute a on attribute
b. They can be treated as a definition of.the dependency function cor-
responding to b-2a.

The language of logic It enables us to deal both with local prob~
lems concerning depencencies in a system, such as whether a set of
formulas representing dependenciecs. inplies another dependency, and
with global ones, such as whether a set of dependencies is redundant,
that is whether it can be derived fron the reméining facts of the sys-
tem, ’ ,

In the following sections we discuss methodological probleas con-
cerning logic representation of knowledge.
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6.3. Equivalcence of logic KR systens

Given a system S = (u, T), set T con be considered as the set of
explicit facts provided by system S, set o(T) ~ T of all formulas
derivable from T and not belonging to T is the set of 1mp11c1t facts,
and sct p(T) is the set of all the facts in S.

Let ST = {S be a family of logic KR systems of the form

iJie I

s; = (u, 7y ) such that all the systems have the sane universe U = (0B,

AT, VAL). Ye introduce an ordering relation £ in the family ST as

follows:

S, & s, iff o(T, )¢ o(T,)

if s, < S, holds then Sl is said to be a subsystem of S,. Hence
S1 is a subsystem of S2 iff the set D(Ti) of facts in S1 is included
in the set D(Tz) of facts in S,. S; is said to be a proper subsystenm
of s, iff o(T)§ o(7,). ’
' Ssystems S,, S,€ ST are said to be equivalent (s,~ s,) iff S,€°5,
and 525 Sl'

Examole 6.3.1
Consider system S = (u, T) from example 6.2.4 and a system with

the same universe as S and with the following set T of explicit facts:

fornulas 1, 2, 3, 4, 5, from T

(F4 b square)

(F b rectangle)

System s = (u, T).is 8 subsystenm of system S,

Examples of equivalent systems one can easily obtain by uszng the

following theoren. .

Fact 6.3.1
(a) 0({~,-5}) = p({ass))

(b) D(Tl) = D(T;) and 0(72) = D(Té) imply D(Tiu 12) = D(‘T;u Té)
Fact 6.3.2 . ' ' :
(a) if T, = D(Ti)' T, = D(Tz),_and T = 0(T) then T = T,vT, implies

T = T1 or T = Tz '
() if 7, = 0(T;), T, = o(T,), end T = p{T) then j-g TyvT, implies

TETlorTQ.T

This theoren 1ﬂpll°s restrlctlons in obtalnlng eou1valent systens

or subsystens of a -givon sysiem.
Y ¢ b

“(a) If S
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6.4, Properties of 'logic KR systems

In this section we investigate logic KR systens‘of the form {u, ™)
from the point of view of properties of set T of sentences. ‘e consider
systems in which set T of explicit facts is consistent or maximal or
independent, and we list theorems which .characterize such systems.
“These theorems are closely related to the well known theorems of the
proof theory.

A system S = (U, T) is consistent if set T of explicit facts is’
consistent. A system is said to be inconsistent if it is not consist-
ent. The following theorems characterize systems from the point of
view of their consistency. ’

Fact 6.4.1
The following conditiens are equivalent:
(a) A system S = (U, T) is consistent
(b) set o(T) is consistent
(c) For any U-fornula A we have A# D(T) or'lAefD(T)
(d) There is an U-foramula A such that A%:D(T) .
(e) Any subsystem S" = (U, T") of S such that T’ is a finite set is
consistent. - » :
It follows from condition :d) that if a system S is inconsistent
then its set of all facts coincides with the whole set of U-formulas.

Fact 6.4.2 .

e .
1 is consisgent and 52"51 then 52 is consistent

(b) 1f s,~S, and <, is consistent then S, is consistent

A sttem S = (U T) is maximal if for any U-sentence A we have
A€ D(T) or‘lA&D(T) This means that for every U-sentence A either

A or 1A is a fact in the system. In other words, for any fact A, either

A or 1A can be derived from the set of explicit facts of the system.
The following theorems characterize mgximal~systems.

Fact _6.4.3
The f0110wing'conditions'are equivalent:
(a) A system S = (U, T) is maximal
(b) For any U-sentence A if A#D(T) then system 8" = (U, T U{A}) ,té
1nconsistent o ; . ’
(c) For any consistent systen s’ 1f s&s” then s~s”,

It follows from this’ theoren that if a systea is aoxinal then it -
1s not possible to add’ new information without 1oosing consistency.
The following conditions are satisfied:: ’

(a) f Sy is maximal and S1 S2 then 52‘15 maximal
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(b) 1f s,~S, and S, is maxinal then S, is maximal

A systen S = (U, T) is independent if for any AET we have
A% (7 - [n) . Hence in an indepencent system none of its explicit
facts is derivable from the remaining explicit facts. Thus, from the
logic point of view, independent system has reasonably “small® set

of explicit facts.

Fact 6.4.4

The following conditions are eguivalent:
(a) A system 5 = (U, T) is independent
(b) For any system S  such that S$°4 S we have not S~S°
(c) For any A€ T systen {u, T - lA}‘Ji1A}) is consistent.

Fact 6.4.5
For any system S = (u, T) if T is finlte then there is a subsysten
5° of S which is independent and equivalent to S.

_Fact 6.4.6
(a) 1f 5, is independent and' 5, S, then S, is independent

(b) 1f S, is independent and $,~'S, then there is no proper subsysten:

1
of S1 equivalent to SZ'

Example 6.4.1
Let universe U be given such that

0B = {ol. 05, 033
AT = | a, b} (
VALa = VALb = lu. v}
VAL =VVALeU VALb,

Let us consider s8ll the atomic properties which can be defined

for objects in universe U:
(au) (av) (bu) (bv) .
Let system S = (U, T) be given such that set T of explicit facts’

i~ as follows:. ' . :
‘I(o1 a u)A(élva v)A(o1 b u)A1(01 b v)

(o, a u)A(o, a v) Ao, b uda(os b v)

‘\(o3 a u)A(o 8 v)A1(o b u)A(o b v)‘ »

These fcrmulas>prov1de 8 conmplete characterx-ation of objects 01,
o5, and oy in universe U. System S is consisten; maximal and indepen-

dent. U-formulas Vx(x a v) and ax(x a v)A (x b u) are examples of
implicit’ facts in the system. System S1 obtained from S by adding
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u- formula ax(x a u) is inconsistent since none of tha'bbjects in the
system has property (a u). If we reject a fornula from T or if we drop
.a conjunct in a formula from T then we will obtain the system which

is not maximal., System S, obtalned fron S by adding U-formula Vx(x ou)

“27(x b v) is not independcnt.3

6.5. Dynamics of logic KR systens

KR systems are not static objects, they interact with the environ-
ment. Usually they change their information content as the result of
adding new facts or removing some of the existing ones. In this sec-
tion we discuss the problem how the assimilation of new facts may
change properties of the system.

Assune we arc given a system S = (U, T) and an U-scntence A not
occurring in T. Ve treat A as a necw fact which is to be added to sys-
tem S. Hence we define the system S = (v, T*'lAB , and we have to
consider the following cases. . )

Case 6.5.1. System (U, Tv] A}) is inconsistent.

If we accept A then we should restore consistency. \ie have to re-
nove from T those facts which are in conflict with A. By confronting
information A with facts from D(T) we can improve information content
of the system.

If we treat D(T) as a set of assumptions, then we should reject
A, as information which is not confirmed by facts of the system.

Example 6.5.1°
Consider system S fronm exanple 6.2.4. The system obtained from S

by adding sentence A = (F2 a polygonal) to T is inconsistent, since
sentence 1(F a polygonal) can be derived from T. This derivation is

as follows: . - :
‘8, (F b ellipse)-#(F a oval) from 1 and A6

‘ﬂ'éf (F, 8 oval) v (F, a polygonal) from 3 and A6
‘&10.-(F2 a'polygonal)-91(F2 a_ovai)~from 9
11, (F, 8 oval).. '

Case 6.5. 2 Set D(T) contains information A

This means that A is an implicit fact in system S, and sets of
facts p(T) and D(T~JLAB) coincide. In-this case systems (U, T) and
(U T\J{AS) are equivalent and A is the redundant fact.

I Exanple 6.5.2 L : ’

_Consider system S fron example 6.2.4 -and sentence A =3 x(x b el-
llpse)A ax(x b trianglc). This sentence can be derived from T..By
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axions A6 we hove F a(o)23xa(x), and by formulas 4 and 5 we obtain
TA}—/‘.

Case 6.5.3. Systems (U, T\liAS) and (U, T\Jl1AB) are consistent.

This means that both facts A and 7A can be assimilated by system

. i
S. On other words A is independent from S.

- Example 6.5.3
Sentcnce (F5 b rectangle) is independent from system S given in

example 6.2.4,

Case 6.5.4. Some explicit facts in system S can. be derived from A
and the rest of explicit facts.
In this case we treat set T as the union of sets T1 and T2 such

that TOE-D(71°’lAS)- \le might consider system (U, Tis'{Aj) as the more
useful than the original one. By theorem 6.1.2 we have D(T')E D(leliAj)
and hence systea (U, T) is & subsystem of (u, T,V iA)).

Example 6.5.4
Concider system S frcm example 6.2.4 and sentence A = (F4 b square)

A (F5 b rectongle). It is easy to sece that formulas 6 and 7 from T

can be derived from A, Hence if we use sentence A instead of sentences
6 and 7 then the set of all facts of the obtained system will contain
the set of all facts of system S.

6.6. Summary

The primary pufpose of this chapter was to introduce a language
whose expressive power was sufficient.to represent deterministic, non-
deterministic and many-valued information. We developed deduction
method for the langusge and we prer completeness of the method, Ve
discussed methodological problems specific for logic EépreSentation .
of knowledge, namely consistency, maximality, and 1ndependehce‘of
kncwle#ge'expressed in the given language. Ve also investigated how
consistency is influenced by dynanric changes of information content
of KR'systems.' ' . ‘ :
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