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Abstract

In this article, we discuss methods based on the combination of rough sets and Boolean reasoning with applications in
pattern recognition, machine learning, data mining and conflict analysis.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Boolean reasoning; Approximate Boolean reasoning; (In)discernibility; Rough sets; Reducts; Decision rules; Classifiers;
Discretization; Symbolic value grouping; Association rules; Conflict analysis
0020-0

doi:10.

* Co
E-m
Data! data! data!
Sir Artur Conan Doyle (1994). The Adventures of Sherlock Holmes
Penguin Books, London
1. Introduction: discernibility and Boolean reasoning

The reader is referred to [92] for the notation used in this survey article.
Tasks collected under the labels of data mining, knowledge discovery, decision support, pattern classifica-

tion, and approximate reasoning require tools aimed at discovering templates (patterns) in data and classifying
them into certain decision classes. Templates are in many cases most frequent sequences of events, most prob-
able events, regular configurations of objects, the decision rules of high quality, standard reasoning schemes.
Tools for discovery and classification of templates are based on reasoning schemes rooted in various paradigms
[25]. Such patterns can be extracted from data by means of methods based, e.g., on Boolean reasoning and
discernibility (see Section 2 and [15]).

Discernibility relations belong to the most important relations considered in rough set theory. The ability to
discern between perceived objects is important for constructing many entities like reducts, decision rules or
decision algorithms. In the classical rough set approach, a discernibility relation DIS(B) � U · U, where
255/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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B � A is a subset of attributes of an information system (U,A), is defined by xDIS(B)y if and only if non-

(xI(B)y), where I(B) is the B-indiscernibility relation [92]. However, this is, in general, not the case for the gen-
eralized approximation spaces. One can define indiscernibility by x 2 I(y) and discernibility by I(x) \ I(y) = ;
for any objects x,y, where I(x) = B(x), I(y) = B(y) in the case of the indiscernibility relation, and I(x), I(y) are
neighborhoods of objects not necessarily defined by the equivalence relation in a more general case [91].

The idea of Boolean reasoning is based on construction for a given problem P of a corresponding Boolean
function fP with the following property: The solutions for the problem P can be decoded from prime impli-
cants of the Boolean function fP. Let us mention that to solve real-life problems it is necessary to deal with
Boolean functions having large number of variables.

A successful methodology based on discernibility of objects and Boolean reasoning has been developed for
computing of many entities important for applications, like reducts and their approximations, decision rules,
association rules, discretization of real value attributes, symbolic value grouping, searching for new features
defined by oblique hyperplanes or higher order surfaces, pattern extraction from data as well as conflict res-
olution or negotiation (see Section 2).

Most of the problems related to generation of the mentioned above entities are NP-complete or NP-hard.
However, it was possible to develop efficient heuristics returning suboptimal solutions of the problems. The
results of experiments on many data sets are very promising. They show very good quality of solutions gen-
erated by the heuristics in comparison with other methods reported in the literature (e.g., with respect to the
classification quality of unseen objects). Moreover, these heuristics are very efficient from the point of view of
time necessary for computing of solutions. Many of these methods are based on discernibility matrices (see
Section 2). Note that it is possible to compute the necessary information about these matrices using1 informa-
tion encoded in decision systems (e.g., sorted in preprocessing [5,78,134]) directly, which significantly improves
the efficiency of algorithms.

It is important to note that the methodology makes it possible to construct heuristics having a very impor-
tant approximation property which can be formulated as follows: Expressions generated by heuristics, i.e.,
implicants close to prime implicants define approximate solutions for the problem.

In Section 2, we discuss applications of methods based on rough sets and Boolean reasoning in machine
learning, pattern recognition, and data mining. Section 3 is dedicated to conflict analysis based on different
aspects of discernibility and indiscernibility.

2. Rough set methods for machine learning, pattern recognition, and data mining

In supervised machine learning paradigm [28,47,62,63], a learning algorithm is given a training data set,
usually in the form of a decision system A ¼ ðU ;A; dÞ,2 prepared by an expert. Every such decision system
classifies elements from U into decision classes. The purpose of the algorithm is to return a set of decision rules
together with matching procedure and conflict resolution strategy, called a classifier, which makes it possible
to classify unseen objects, i.e., objects that are not described in the original decision table. In this section, we
provide a number of rough set methods that can be used in construction of classifiers. For more information
the reader is referred, e.g., to [2,10,17,18,22,24,26,29–46,53–56,58–60,64,65,67,76,3,83–88,93,97–104,106,107,
111,112,122,124–128,130,132,133,135], and for papers on hierarchical learning and ontology approximation,
e.g., to [7,11–13,77,80,79,108,113,115,116].

Most of the techniques discussed below are based on computing prime implicants for computing different
kinds of reducts. Unfortunately, they are computationally hard. However, many heuristics have been devel-
oped which turned out to be very promising. The results of experiments on many data sets, reported in the
literature, show a very good quality of classification of unseen objects using these heuristics. A variety of meth-
ods for computing reducts and their applications can be found in [5,51,57,88,99,100,106,107,112,114,
117,118,135,136]. The fact that the problem of finding a minimal reduct of a given information system is
NP-hard was proved in [114].
1 That is, without the necessity of generation and storing of the discernibility matrices.
2 For simplicity, we consider decision systems with one decision.
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As we mentioned, there exists a number of good heuristics that compute sufficiently many reducts in an
acceptable time. Moreover, a successful methodology, based on different reducts, has been developed for solu-
tion of many problems like attribute selection, decision rule generation, association rule generation, discreti-
zation of real-valued attributes, and symbolic value grouping. For further readings the reader is referred to
[10,105,127] (attribute selection); [74,68,69,72,109] (discretization); [70,71] (discretization of data stored in
relational databases); and [73] (reduct approximation and association rules).

Many of these methods are based on discernibility matrices defined in this section. It is possible to compute
the necessary information about these matrices using information or decision systems (e.g., sorted in prepro-
cessing [5,78]) directly what significantly improves the efficiency of algorithms.

The results presented in this section have been implemented, e.g., in the RSES and ROSETTA software
systems (see http://logic.mimuw.edu.pl/~rses/ for RSES and http://rosetta.lcb.uu.se/general/ for ROSETTA),
see also [4,5,9,14,48]. Sections 2.1–2.6 are based on a chapter of the book [23]. For links to other rough set
software systems such as GROBIAN, KDD-R, LERS, ROSE2, ROSECON the reader is referred to http://
rsds.wsiz.rzeszow.pl.

2.1. Reducts in information and decision systems

A crucial concept in the rough set approach to machine learning is that of a reduct. In fact, the term
‘‘reduct’’ corresponds to a wide class of concepts. What typifies all of them is that they are used to reduce
information (decision) systems by removing redundant attributes. In this section, we consider three kinds
of reducts which will be used in the remainder of this article.

Given an information system A ¼ ðU ;AÞ, a reduct is a minimal set (w.r.t. inclusion) of attributes B � A

such that I(B) = I(A), where I(B), I(A) are the indiscernibility relations defined by B and A, respectively
[89,92]. The intersection of all reducts is called a core.

Intuitively, a reduct is a minimal set of attributes from A that preserves the original classification defined by
A. Reducts are extremely valuable in applications. Unfortunately, finding a minimal reduct is NP-hard in the
general case. One can also show that, for any m, there is an information system with m attributes having an
exponential (w.r.t. m) number of reducts. Fortunately, there are reasonably good heuristics which allow one to
compute sufficiently many reducts in an acceptable amount of time.

To provide a general method for computing reducts, we will use the following constructs.
Let A ¼ ðU ;AÞ be an information system with n objects. The discernibility matrix of A is an n · n matrix

with elements cij consisting of the set of attributes from A on which objects xi and xj differ, i.e.,
cij ¼ fa 2 A : aðxiÞ 6¼ aðxjÞg; for i; j ¼ 1; . . . ; n: ð1Þ
A discernibility function fA for A is a propositional formula of m Boolean variables, a�1; . . . ; a�m, corresponding
to the attributes a1, . . . ,am, defined by
fAða�1; . . . ; a�mÞ ¼
^

16j<i6m

_
c2c�ij ;cij 6¼;

c; ð2Þ
where c�ij ¼ fa� : a 2 cijg. In the sequel, we write ai instead of a�i , for simplicity.
The discernibility function fA describes constraints which must hold to preserve discernibility between all

pairs of discernible objects from A. It requires keeping at least one attribute from each non-empty element of
the discernibility matrix corresponding to any pair of discernible objects.

It can be shown [114] that for any information system A ¼ ðU ;AÞ the set of all prime implicants of fA
determines the set of all reducts of A.

Example 1. Consider the information system A whose associated information table is provided in Table 1.
The discernibility matrix for A is presented in Table 2. (The letters s, c and h stand for Speed, Color and
Humidity, respectively.) The discernibility function for the information system A is then given by
fAðs; c; hÞ � ðc _ hÞ ^ ðs _ cÞ ^ ðs _ c _ hÞ:

http://logic.mimuw.edu.pl/~rses/
http://rosetta.lcb.uu.se/general/
http://rsds.wsiz.rzeszow.pl
http://rsds.wsiz.rzeszow.pl


Table 1
The information table considered in Example 1

Object Speed Color Humidity

car1 medium green high

car2 medium yellow low

car3 high blue high

Table 2
The discernibility matrix for the information table provided in Table 1

MðAÞ car1 car2 car3

car1 c,h s,c

car2 c,h s,c,h

car3 s,c s,c,h
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The prime implicants of fAðs; c; hÞ can be computed in order to derive the reducts for A:
Table
The de

Object

car1

car2

car3
fAðs; c; hÞ � ðc _ hÞ ^ ðs _ cÞ ^ ðs _ c _ hÞ � ðc _ hÞ ^ ðs _ cÞ � c _ ðh ^ sÞ:

The prime implicants of fAðs; c; hÞ are c and h ^ s. Accordingly, there are two reducts of A, namely {Color}
and {Humidity,Speed}.

The second type of reduct used in this article are the decision-relative reducts for decision systems.
In terms of decision tables, oA(x), called the generalized decision function, is the mapping on U such that

for any object x it specifies all rows in the table whose attribute values are the same as for x, and then collects
the decision values from each row [92]. A decision-relative reduct of A ¼ ðU ;A; dÞ is a minimal (w.r.t. inclu-
sion) non-empty set of attributes B � A such that oB = oA. Intuitively, the definition states that B allows us to
classify exactly the same objects, as belonging to equivalence classes U/oA, as A. In terms of decision tables, the
columns associated with the attributes AnB may be removed without affecting the classification power of the
original table.

To compute decision-relative reducts, we extend the definitions of discernibility matrix and discernibility
function in the following straightforward manner. Let A ¼ ðU ;A; dÞ be a consistent decision system (i.e.,
oA(x) consists of exactly one decision for any x 2 U) and let MðAÞ ¼ ½cij� be the discernibility matrix of
the information system (U,A). We construct a new matrix, M0ðAÞ ¼ ½c0ij�, where
c0ij ¼
;; if and only if dðxiÞ ¼ dðxjÞ;
cij; otherwise:

�

M0ðAÞ is called the decision-relative discernibility matrix of A. The decision-relative discernibility function f r
A

for A is constructed from the decision-relative discernibility matrix for A in the same way as a discernibility
function is constructed from a discernibility matrix. Then it can be shown [114], that the set of all prime impli-
cants of f r

A determines the set of all decision-relative reducts of the consistent decision system A.

Example 2. Consider the decision table associated with a decision system A as represented in Table 3.
The discernibility matrix for A is the same as the one given in Table 2, and the decision-relative

discernibility matrix for A is provided in Table 4.
3
cision table considered in Example 2

Speed Color Humidity Danger

medium green high no

medium yellow small no

high blue high yes



Table 4
The decision-relative discernibility matrix corresponding to the decision system shown in Table 3

M0ðAÞ car1 car2 car3

car1 s,c

car2 s,c,h

car3 s,c s,c,h

Table 5
{Speed}-reduction of the decision system A

Objects Speed Danger

car1, car2 medium no

car3 high yes
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Using the decision-relative discernibility matrix, we can compute the decision-relative discernibility
function for A:
3 Re
f r
Aðs; c; hÞ � ðs _ cÞ ^ ðs _ c _ hÞ � ðs _ cÞ:
The set of all prime implicants of f r
Aðs; c; hÞ is {s,c}. Therefore, there are two decision-relative reducts of A,

namely {Speed} and {Color}.
To each decision-relative reduct B of a decision system A, we assign a new decision system, called the B-

reduction of A. The details are as follows. Let A ¼ ðU ;A; dÞ be a consistent decision system and suppose that
B is a decision-relative reduct of A. A B-reduction of A is a decision system A� ¼ ðV ;B; dÞ, where3

• V = {[x]B :x 2 U};
• a([x]B) = a(x), for each a 2 B and each [x]B 2 V;
• d([x]B) = d(x), for each [x]B 2 V.

Let A� be the {Speed}-reduction of the decision system A. The decision table associated with A� is
provided in Table 5.

The above defined method for decision relative reducts computation can be easily extended to inconsistent
decision systems.

Observe that another kind of reducts can be obtained by using the discernibility requirement relative to the
positive regions, i.e., POSA(d) = POSB(d) instead of oB = oA. Certainly, for inconsistent decision systems the
former requirement is less restrictive than the latter.

The last type of reduct, considered in this section, is used in applications where approximations to reducts
are prefered to standard reducts. For example, approximate reducts for decision-relative reducts are making it
possible to generate approximate decision rules. In the case of approximate reducts we relax the requirement
for the discernibility preserving. Instead of preserving the discernibility for all entries of the discernibility
matrix where it is necessary we preserve it to a degree, i.e., in a number of entries characterized by a coefficient
a. Such reducts are called a-reducts, where a is a real number from the interval [0,1]. More formal definition of
approximate reducts is the following:

Let A ¼ ðU ;A; dÞ be a decision system and let MðAÞ be the discernibility matrix of A. Assume further that
n is the number of non-empty sets in MðAÞ. A set of attributes B � A is called an a-reduct if and only if m

n P a,
where m is the number of sets that have a non-empty intersection with B.

The reader is referred to [75,89,117,118] for information on various types of approximate reducts. Addi-
tionally, [8,73,101,119] provide approximation criteria based on discernibility and, therefore, related to
Boolean reasoning principles.
call that [x]B, where x 2 U, denotes the equivalence class of the relation I(B) which contains x.
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2.2. Attribute selection

In the supervised machine learning approach, a learning algorithm is provided with training data. In the
context of rough set machine learning techniques, training data is provided in the form of training decision
systems, or their equivalent representations as decision tables.

Since the conditional attributes of a specific decision table are typically extracted from large sets of unstruc-
tured data, it is often the case that some of the attributes are irrelevant for the purpose of classification. Such
attributes should be removed from the table if possible. The attribute selection problem is the problem of
choosing a relevant subset of attributes, while removing the irrelevant ones.

A natural solution of the attribute selection problem is to assume that the intersection of the decision-rel-
ative reducts of a training decision table is the source of the relevant attributes. Unfortunately, there are two
problems with this solution. Firstly, the intersection can be empty. Secondly, the number of attributes con-
tained in all decision-relative reducts is usually small. Consequently, although these attributes perfectly char-
acterize the training decision table, they are, in general, inadequate for providing a satisfactory classification of
new objects not occurring in the training data.

To deal with the attribute selection problem, it is often reasonable to use various approximations of deci-
sion-relative reducts.

Let A ¼ ðU ;A; dÞ be a consistent decision system. Any subset B of A is called an approximate reduct of A.
The number
4 Re
5 Th

~rses/)
eA;fdgðBÞ ¼
cðA; fdgÞ � cðB; fdgÞ

cðA; fdgÞ ¼ 1� cðB; fdgÞ
cðA; fdgÞ ; ð3Þ
is called an error of reduct approximation.4

The error of reduct approximation expresses exactly how the set of attributes B approximates the set of
condition attributes A with respect to determination of d. Note that eA,{d}(B) 2 [0,1], where 0 indicates no
error, and the closer eA,{d}(B) is to 1, the greater is the error. The reader is referred, e.g., to [73,119] for more
information on approximate reducts.

There are two general approaches to attribute selection: an open-loop approach and a closed-loop
approach. Methods based on the open-loop approach are characterized by the fact that they do not use
any feedback information about classifier quality for attribute selection. In contrast, the methods based on
the closed-loop approach use feedback information as criteria for attribute selection.

A number of attribute selection algorithms have been proposed in the machine learning literature, but they
will not be considered here since our focus is on rough set based techniques. Rough set techniques which
attempt to solve the attribute selection problem are typically based on the closed-loop approach and consist
of the following basic steps5:

(1) Decision-relative reducts are extracted from a training decision table. The attributes contained in these
reducts (or in their intersection) are viewed as potentially relevant.

(2) Using the specific machine learning algorithm, a classifier based on the chosen attributes is constructed.
(3) The classifier is then tested on a new set of training data; if its performance is unsatisfactory (w.r.t. some

measure), a new set of attributes is constructed by extracting approximate additional reducts for the ini-
tial training table, and the process is repeated.

Reducts need not be the only source of information used in the selection of attributes. The rough set
approach offers another interesting possibility. The main idea is to generalize the notion of attribute reduction
by introducing the concept of significance of attributes. This measure enables attributes to be evaluated using a
multi-valued scale which assigns a real number from the interval [0, 1] to an attribute. This number, expressing
call that the coefficient c(X,Y) expresses the degree of dependency between sets of attributes X and Y (see [92]).
ere are public domain software packages, for instance the RSES system (for references see, e.g., [14] and http://logic.mimuw.edu.pl/
, which offer software that may be used to solve the attribute selection problem.

http://logic.mimuw.edu.pl/~rses/
http://logic.mimuw.edu.pl/~rses/
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the importance of an attribute in a decision system, is evaluated by measuring the effect of removing the attri-
bute from the table.

The significance of an attribute a in a decision table A ¼ ðU ;A; dÞ is defined by
6 R d
rA;fdgðaÞ ¼
cðA; fdgÞ � cðA� fag; fdgÞ

cðA; fdgÞ ¼ 1� cðA� fag; fdgÞ
cðA; fdgÞ : ð4Þ
Assume that B � A. The significance coefficient can be extended to sets of attributes as follows,
rðA;fdgÞðBÞ ¼
cðA; fdgÞ � cðA� B; fdgÞ

cðA; fdgÞ ¼ 1� cðA� B; fdgÞ
cðA; fdgÞ : ð5Þ
The coefficient rA,{d}(B), can be understood as a classification error which occurs when the attributes a 2 B are
removed from the decision system. Note that rA,{d}(B) 2 [0, 1], where 0 indicates that removal of attributes in
B causes no error, and the closer rA,{d}(B) is to 1, the greater the error is.

Remark 3. In this section, we have mainly concentrated on the case, where the attributes are selected from the
set of attributes of the input decision system. In some cases it might be useful to replace some attributes by a
new one.

For example, if one considers a concept of a safe distance between vehicles, then attributes, say VS standing
for ‘‘vehicle speed’’ and SL standing for ‘‘speed limit’’, can be replaced by an attribute DIF representing the
difference SL–VS. In fact, the new attribute better corresponds to the concept of safe distance than the pair
(VS,SL).
2.3. Value set reduction

Consider a decision system with a large number of attribute values. There is a very low probability that a
new object will be properly recognized by matching its attribute value vector with any of the rows in the deci-
sion table associated with the decision system. So, in order to construct a high quality classifier, it is often nec-
essary to reduce the cardinality of the value sets of specific attributes in a training decision table. The task of
reducing the cardinality of value sets is referred to as the value set reduction problem.

In this section, two methods of value set reduction are considered:

(1) discretization, used for real value attributes, and
(2) symbolic attribute value grouping, used for symbolic attributes.

2.3.1. Discretization
A discretization replaces value sets of conditional real-valued attributes with intervals. The replacement

ensures that a consistent decision system is obtained (assuming a given consistent decision system) by substi-
tuting original values of objects in the decision table by the unique names of the intervals comprising these
values. This substantially reduces the size of the value sets of real-valued attributes.

The use of discretization is not specific to the rough set approach to machine learning. In fact, a majority of
rule or tree induction algorithms require it for a good performance.

Let A ¼ ðU ;A; dÞ be a consistent decision system. Assume V a ¼ ½la; raÞ � R,6 for any a 2 A, and la < ra. A
pair (a,c), where a 2 A and c 2 Va, is called a cut on Va.

Any attribute a 2 A defines a sequence of real numbers va
1 < va

2 < � � � < va
ka

, where fva
1; v

a
2; . . . ; va

ka
g ¼

faðxÞ : x 2 Ug. The set of basic cuts on a, written Ba, is specified by
Ba ¼ fða; ðva
1 þ va

2Þ=2Þ; ða; ðva
2 þ va

3Þ=2Þ; . . . ; ða; ðva
ka�1 þ va

ka
Þ=2Þg:
The set ¨a2ABa is called the set of basic cuts on A.
enotes the set of real numbers.
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Example 4. Consider a consistent decision system A and the associated decision table presented in Table 6(a).
We assume that the initial value domains for the attributes a and b are
Table
The di
5

A

(a)
u1

u2

u3

u4

u5

u6

u7
V a ¼ ½0; 2Þ; V b ¼ ½0; 4Þ:

The sets of values of a and b for objects from U are
aðUÞ ¼f0:8; 1:0; 1:3; 1:4; 1:6g;
bðUÞ ¼f0:5; 1:0; 2:0; 3:0g:
By definition, the sets of basic cuts for a and b are
Ba ¼ fða; 0:9Þ; ða; 1:15Þ; ða; 1:35Þ; ða; 1:5Þg;
Bb ¼ fðb; 0:75Þ; ðb; 1:5Þ; ðb; 2:5Þg:
Using the idea of cuts, decision systems with real-valued attributes can be discretized. For a decision system
A ¼ ðU ;A; dÞ and a 2 A, let
Ca ¼ fða; ca
1Þ; ða; ca

2Þ; . . . ; ða; ca
kÞg;
be any set of cuts of a. Assume that ca
1 < ca

2 < � � � < ca
k . The set of cuts C = ¨a2ACa defines a new decision sys-

tem AC ¼ ðU ;AC; dÞ, called the C-discretization of A, where

• AC = {aC :a 2 A};

• aCðxÞ ¼
0; if and only if aðxÞ < ca

1;
i; if and only if aðxÞ 2 ½ca

i ; c
a
iþ1Þ; for i 2 f1; . . . ; k � 1g;

k þ 1; if and only if aðxÞ > ca
k :

8<
:

Example 5 (Example 4 continued). Let C = Ba [ Bb. It is easy to check that the C-discretization of A is the
decision system whose decision table is provided in Table 6(b).

Since a decision system can be discretized in many ways, a natural question arises how to evaluate various
possible discretizations.

A set of cuts C is called A-consistent, if oA ¼ oAC , where oA and oAC are generalized decision functions for
A and AC, respectively. An A-consistent set of cuts C is A-irreducible if C 0 is not A-consistent for any
C 0 � C. The A-consistent set of cuts C is A-optimal if card(C) 6 card(C

0
), for any A-consistent set of cuts C 0.

As easily observed, the set of cuts considered in Example 5 is A-consistent. However, as we shall see in
Example 6, it is neither optimal nor irreducible.

Since the purpose of the discretization process is to reduce the size of individual value sets of attributes, we
are primarily interested in optimal sets of cuts. These are extracted from the basic sets of cuts for a given deci-
sion system.

Let A ¼ ðU ;A; dÞ be a consistent decision system where U = {u1, . . . ,un}. Recall that any attribute a 2 A

defines a sequence va
1 < va

2 < � � � < va
ka

, where fva
1; v

a
2; . . . ; va

ka
g ¼ faðxÞ : x 2 Ug. Let IDðAÞ be the set of pairs
6
scretization process: (a) the original decision system A considered in Example 4 (b) the C-discretization of A considered in Example

a b d AC aC bC d

(b)
0.8 2.0 1 u1 0 2 1
1.0 0.5 0 u2 1 0 0
1.3 3.0 0 u3 2 3 0
1.4 1.0 1 ) u4 3 1 1
1.4 2.0 0 u5 3 2 0
1.6 3.0 1 u6 4 3 1
1.3 1.0 1 u7 2 1 1



Z. Pawlak, A. Skowron / Information Sciences 177 (2007) 41–73 49
(i, j) such that i < j and d(ui) 5 d(uj). We now construct a propositional formula, called the discernibility for-

mula of A, as follows:

(1) To each interval of the form ½va
k ; v

a
kþ1Þ, a 2 A and k 2 {1, . . . ,na � 1}, we assign a Boolean variable

denoted by pa
k . The set of all these variables is denoted by V ðAÞ.

(2) We first construct a family of formulas
fBða; i; jÞ : a 2 A and ði; jÞ 2 IDðAÞg;
where B(a, i, j) is a disjunction of all elements from the set
pa
k : va

k ; v
a
kþ1

� �
� minfaðuiÞ; aðujÞg;maxfaðuiÞ; aðujÞg
� �� �

:

(3) Next, we construct a family of formulas
fCði; jÞ : i; j 2 f1; . . . ; ng; i < j and ði; jÞ 2 IDðAÞg;
where C(i, j) = ¤a2AB(a, i, j).

(4) Finally, the discernibility formula for A, DðAÞ, is defined as
DðAÞ ¼
^

Cði; jÞ;
where i < j and ði; jÞ 2 IDðAÞ and C(i, j) 6� FALSE.

Any non-empty set S ¼ fpa1
k1
; . . . ; par

kr
g of Boolean variables from V ðAÞ uniquely defines a set of cuts, C(S),

given by
CðSÞ ¼ fða1; ðva1
k1
þ va1

k1þ1Þ=2Þ; � � � ; ðar; ðvar
kr
þ var

krþ1Þ=2Þg:
Then we have the following properties:
Let A ¼ ðU ;A; dÞ be a consistent decision system. For any non-empty set S � V ðAÞ of Boolean variables,

the following two conditions are equivalent:

(1) The conjunction of variables from S is a prime implicant of the discernibility formula for A.
(2) C(S) is an A-irreducible set of cuts on A.

Let A ¼ ðU ;A; dÞ be a consistent decision system. For any non-empty set S � V ðAÞ of Boolean variables,
the following two conditions are equivalent:

(1) The conjunction of variables from S is a minimal (w.r.t. to length) prime implicant of the discernibility
formula for A.

(2) C(S) is an A-optimal set of cuts on A.
Example 6 (Example 5 continued).
IDðAÞ ¼ fð1; 2Þ; ð1; 3Þ; ð1; 5Þ; ð2; 4Þ; ð2; 6Þ; ð2; 7Þ ð3; 4Þ; ð3; 6Þ; ð3; 7Þ; ð4; 5Þ; ð5; 6Þ; ð5; 7Þg:
(1) We introduce four Boolean variables, pa
1, pa

2, pa
3, pa

4, corresponding respectively to the intervals
½0:8; 1:0Þ; ½1:0; 1:3Þ; ½1:3; 1:4Þ; ½1:4; 1:6Þ

of the attribute a, and three Boolean variables, pb

1, pb
2, pb

3, corresponding respectively to the intervals
½0:5; 1:0Þ; ½1:0; 2:0Þ; ½2; 3:0Þ

of the attribute b.
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(2) The following are the formulas B(a, i, j) and B(b, i, j), where i < j and ði; jÞ 2 IDðAÞ:

Bða; 1; 2Þ � pa

1 Bðb; 1; 2Þ � pb
1 _ pb

2

Bða; 1; 3Þ � pa
1 _ pa

2 Bðb; 1; 3Þ � pb
3

Bða; 1; 5Þ � pa
1 _ pa

2 _ pa
3 Bðb; 1; 5Þ � False

Bða; 2; 4Þ � pa
2 _ pa

3 Bðb; 2; 4Þ � pb
1

Bða; 2; 6Þ � pa
2 _ pa

3 _ pa
4 Bðb; 2; 6Þ � pb

1 _ pb
2 _ pb

3

Bða; 2; 7Þ � pa
2 Bðb; 2; 7Þ � pb

1

Bða; 3; 4Þ � pa
3 Bðb; 3; 4Þ � pb

2 _ pb
3

Bða; 3; 6Þ � pa
3 _ pa

4 Bðb; 3; 6Þ � False

Bða; 3; 7Þ � False Bðb; 3; 7Þ � pb
2 _ pb

3

Bða; 4; 5Þ � False Bðb; 4; 5Þ � pb
2

Bða; 5; 6Þ � pa
4 Bðb; 5; 6Þ � pb

3

Bða; 5; 7Þ � pa
3 Bðb; 5; 7Þ � pb

2:
(3) The following are the formulas C(i, j), where i < j and ði; jÞ 2 IDðAÞ:

Cð1; 2Þ � pa

1 _ pb
1 _ pb

2 Cð1; 3Þ � pa
1 _ pa

2 _ pb
3

Cð1; 5Þ � pa
1 _ pa

2 _ pa
3 Cð2; 4Þ � pa

2 _ pa
3 _ pb

1

Cð2; 6Þ � pa
2 _ pa

3 _ pa
4 _ pb

1 _ pb
2 _ pb

3 Cð2; 7Þ � pa
2 _ pb

1

Cð3; 4Þ � pa
3 _ pb

2 _ pb
3 Cð3; 6Þ � pa

3 _ pa
4

Cð3; 7Þ � pb
2 _ pb

3 Cð4; 5Þ � pb
2

Cð5; 6Þ � pa
4 _ pb

3 Cð5; 7Þ � pa
3 _ pb

2:
(4) The discernibility formula for A is then given by
DðAÞ � ðpa
1 _ pb

1 _ pb
2Þ ^ ðpa

1 _ pa
2 _ pb

3Þ ^ ðpa
1 _ pa

2 _ pa
3Þ ^ ðpa

2 _ pa
3 _ pb

1Þ ^ ðpa
2 _ pa

3 _ pa
4 _ pb

1 _ pb
2 _ pb

3Þ
^ ðpa

2 _ pb
1Þ ^ ðpa

3 _ pb
2 _ pb

3Þ ^ ðpa
3 _ pa

4Þ ^ ðpb
2 _ pb

3Þ ^ pb
2 ^ ðpa

4 _ pb
3Þ ^ ðpa

3 _ pb
2Þ:
The prime implicants of the formula DðAÞ are
pa
2 ^ pa

4 ^ pb
2

pa
2 ^ pa

3 ^ pb
2 ^ pb

3

pa
3 ^ pb

1 ^ pb
2 ^ pb

3

pa
1 ^ pa

4 ^ pb
1 ^ pb

2:
Suppose we take the prime implicant pa
1 ^ pa

4 ^ pb
1 ^ pb

2. Its corresponding set of cuts is
C ¼ fða; 0:9Þ; ða; 1:5Þ; ðb; 0:75Þ; ðb; 1:5Þg:

The decision table for the C-discretization of A is provided in Table 7.

Observe that the set of cuts corresponding to the prime implicant pa
2 ^ pa

4 ^ pb
2 is {(a, 1.15), (a, 1.5), (b, 1.5)}.

Thus C is not an optimal set of cuts.

The problem of searching for an optimal set of cuts P in a given decision system A is NP-hard. However, it
is possible to devise efficient heuristics which, in general, return reasonable sets of cuts. One of them, called
MD-heuristics, is presented below.

We say that a cut (a,c) discerns objects x and y if and only if a(x) < c 6 a(y) or a(y) < c 6 a(x).
Let n be the number of objects and let k be the number of attributes of a decision system A. It can be shown

that the best cut can be found in O(kn) steps using O(kn) space only.



Table 7
The C-discretization considered in Example 6

AC aC bC d

u1 0 2 1
u2 1 0 0
u3 1 2 0
u4 1 1 1
u5 1 2 0
u6 2 2 1
u7 1 1 1
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Example 7. Consider the decision table with the associated decision system A, provided in Table 6 from
Example 4. The associated information table for the information system A� is presented in Table 8.

Under the assumption that columns with maximal number of 1’s are chosen from left to right (if many such
columns exist in a given step), the set of cuts returned by the algorithm is {(a, 1.35), (b, 1.5), (a, 1.15), (a, 1.5)}.
However, as shown in Example 6, it is not an optimal set of cuts.

INPUT: a decision system A ¼ ðU ;A; dÞ
OUTPUT: a set of cuts C
(1) Set C to ;.
(2) Let ¨a2ACa be the set of basic cuts on A.
(3) Construct an information table A� ¼ ðU �;A�Þ such that

• U* is the set of pairs (ui,uj) of objects discerned by d (in A) such that i < j;
• A* = ¨a2ACa, where for each c 2 A*,
Table
The in

A�

(u1,u2)
(u1,u3)
(u1,u5)
(u2,u4)
(u2,u6)
(u2,u7)
(u3,u4)
(u3,u6)
(u3,u7)
(u4,u5)
(u5,u6)
(u5,u7)
cðx; yÞ ¼
1; if and only if c discerns x and y ðin AÞ;
0; otherwise:

�

(4) Choose a column from A� with the maximal number of occurrences of 1’s; add the cut correspond-
ing to this column to C; delete the column from A�, together with all rows marked with 1 in it.

(5) If A* is non-empty, then go to step 4 else stop.
2.3.2. Symbolic attribute value grouping
Symbolic attribute value grouping is a technique for reducing the cardinality of value sets of symbolic attri-

butes. Let A ¼ ðU ;A; dÞ be a decision system. Any function ca :Va! {1, . . . ,m}, where m 6 card(Va), is called
a clustering function for Va. The rank of ca, denoted by rank(ca), is the value card({ca(x)jx 2 Va}).
8
formation table for the information system A�

(a, 0.9) (a, 1.15) (a, 1.35) (a, 1.5) (b, 0.75) (b, 1.5) (b, 2.5)

1 0 0 0 1 1 0
1 1 0 0 0 0 1
1 1 1 0 0 0 0
0 1 1 0 1 0 0
0 1 1 1 1 1 1
0 1 0 0 1 0 0
0 0 1 0 0 1 1
0 0 1 1 0 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
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For B � A, a family of clustering functions {ca}a2B is B-consistent if and only if
7 Th
8 Th

discret
8a 2 B ½caðaðuÞÞ ¼ caðaðu0ÞÞ�;
implies
ðu; u0Þ 2 IðBÞ [ IðfdgÞ; for any pair ðu; u0Þ 2 U :
The notion of B-consistency has the following intuitive interpretation: If two objects are indiscernible w.r.t.
clustering functions for value sets of attributes from B, then they are indiscernible either by the attributes from
B or by the decision attribute.

We consider the following problem, called the symbolic value partition grouping problem:
Given a decision system A ¼ ðU ;A; dÞ, where U = {u1, . . . ,uk}, and a set of attributes B � A, search for
a B-consistent family {ca}a2B of clustering functions such that

P
a2BrankðcaÞ is minimal.
In order to solve this problem, we apply the following steps:

(1) Introduce a set of new Boolean variables7:
fav0

v : a 2 B and v; v0 2 V a and v 6¼ v0g:

We extract a subset S of this set such that av0

v 2 S implies that v 0 < v w.r.t. some arbitrary linear order <
on the considered domain.

(2) Construct matrix M ¼ ½cij�i;j¼1;...;k as follows:
cij ¼ fav0

v 2 S : v0 ¼ aðuiÞ and v ¼ aðujÞ and dðuiÞ 6¼ dðujÞg:

It is easily seen that in the case of a binary decision, the matrix can be reduced by placing objects cor-
responding to the first decision in rows and those corresponding to the second decision in columns. We
call such a matrix a reduced discernibility matrix.

(3) Using the reduced matrix, M0, obtained in the previous step, construct the function
^
cij2M0

_
c2cij;cij 6¼;

c

0
@

1
A:
(4) Compute the shortest prime implicant I of the constructed function.
(5) Using I, construct, for each attribute a 2 B, an undirected graph Ca ¼ hV C

a ;E
C
a i, where
• V C
a ¼ fav j v 2 V ag;

• EC
a ¼ fðax; ayÞ j x; y 2 U and aðxÞ 6¼ aðyÞg. Note that using I one can construct EC

a due to the equality

EC
a ¼ fðav; av0 Þ : av0

v occurs in Ig:

(6) Find a minimal coloring of vertices for Ca.8 The coloring defines a partition of V C

a by assuming that all
vertices of the same color belong to the same partition set and no partition contains vertices with differ-
ent colors. Partition sets are named using successive natural numbers.
The clustering function for V a is ca(av) = i, provided that av is a member of the ith partition set.
Remark 8. In practical implementations, one does not usually construct the matrix M explicitly, as required in
Steps (2)–(3) above. Instead, prime implicants are directly extracted from the original decision system.

It should be emphasized that in Step (4) above, there can be many different shortest prime implicants and in
Step (6) there can be many different colorings of the obtained graphs. Accordingly, one can obtain many
e introduced variables serve to discern between pairs of objects w.r.t. an attribute a.
e colorability problem is solvable in polynomial time for k = 2, but remains NP-complete for all k P 3. But, similarly to
ization, one can apply some efficient search heuristics for generating (sub-) optimal partitions.
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substantially different families of clustering functions resulting in different classifiers. In practice, one often
generates a number of families of clustering functions, tests them against data and chooses the best one.

Using the construction above to generate a family of partitions, it is usually possible to obtain a substan-
tially smaller decision table, according to the following definition.

Let A ¼ ðU ;A; dÞ be a decision system and B � A. Any family of clustering functions c = {ca}a2B specifies
a new decision system Ac ¼ ðU ;Ac; dÞ called the c-reduction of A w.r.t. B, where Ac = {ac :a 2 B} and
ac(x) = ca(a(x)).

Example 9. Consider the decision table provided in Table 9. The goal is to solve the symbolic value partition
problem for B = A. One then has to perform the following steps:

(1) Introduce new Boolean variables au
v ; b

w
x , for all u,v 2 Va,u < v and w,x 2 Vb,w < x.

(2) The reduced matrix M0 is presented in Table 10.
(3) The required Boolean function is given by
Table
The de

A

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

Table
The re

M0

u5

u6

u7

u8

u9

u10
bb1
b4
^ bb2

b4
^ ðaa1

a2
_ bb3

b4
Þ ^ ðaa1

a3
_ bb1

b4
Þ ^ ðaa1

a2
_ bb1

b2
Þ ^ aa1

a2
^ bb2

b3
^ ðaa2

a3
_ bb1

b2
Þ ^ aa1

a2
^ ðaa1

a2
_ bb1

b2
Þ ^ bb1

b3

^ aa2
a3
^ ðaa1

a4
_ bb1

b2
Þ ^ aa1

a4
^ ðaa2

a4
_ bb2

b3
Þ ^ ðaa3

a4
_ bb1

b2
Þ ^ ðaa1

a3
_ bb1

b4
Þ ^ ðaa1

a3
_ bb2

b4
Þ ^ ðaa2

a3
_ bb3

b4
Þ ^ bb1

b4

^ ðaa1
a2
_ bb1

b5
Þ ^ ðaa1

a2
_ bb2

b5
Þ ^ bb3

b5
^ ðaa2

a3
_ bb1

b5
Þ:
(4) The shortest prime implicant for the function is
I � aa1
a2
^ aa2

a3
^ aa1

a4
^ aa3

a4
^ bb1

b4
^ bb2

b4
^ bb2

b3
^ bb1

b3
^ bb3

b5
:

(5) The graphs corresponding to a and b are shown in Fig. 1.
9
cision table considered in Example 9

a b d

a1 b1 0
a1 b2 0
a2 b3 0
a3 b1 0
a1 b4 1
a2 b2 1
a2 b1 1
a4 b2 1
a3 b4 1
a2 b5 1

10
duced matrix corresponding to the decision table provided in Table 9

u1 u2 u3 u4

bb1

b4
bb2

b4
aa1

a2
; bb3

b4
aa1

a3
; bb1

b4

aa1
a2
; bb1

b2
aa1

a2
bb2

b3
aa2

a3
; bb1

b2

aa1
a2

aa1
a2
; bb1

b2
bb1

b3
aa2

a3

aa1
a4
; bb1

b2
aa1

a4
aa2

a4
; bb2

b3
aa3

a4
; bb1

b2

aa1
a3
; bb1

b4
aa1

a3
; bb2

b4
aa2

a3
; bb3

b4
bb1

b4

aa1
a2
; bb1

b5
aa1

a2
; bb2

b5
bb3

b5
aa2

a3
; bb1

b5



Table 11
The reduced table corresponding to graphs shown in Fig. 1

ac bc d

1 1 0
2 2 0
1 2 1
2 1 1

Fig. 1. Coloring of attribute value graphs constructed in Example 9.
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(6) The graphs are 2-colored, as shown in Fig. 1, where nodes marked by 	 are colored black and the other
nodes are colored white. These colorings generate the following clustering functions:
9 A d
caða1Þ ¼caða3Þ ¼ 1

caða2Þ ¼caða4Þ ¼ 2

cbðb1Þ ¼cbðb2Þ ¼ cbðb5Þ ¼ 1

cbðb3Þ ¼cbðb4Þ ¼ 2:
Given these clustering functions, one can construct a new decision system (see Table 11).

Observe that discretization and symbolic attribute value grouping can be simultaneously used in decision
systems including both real-value and symbolic attributes.

2.4. Minimal decision rules

In this section, techniques for constructing minimal rules for decision systems will be considered.
Given a decision table A, a minimal decision rule (w.r.t. A) is a rule which is TRUE in A and which becomes

FALSE in A if any elementary descriptor from the left-hand side of the rule is removed.9

The minimal number of elementary descriptors in the left-hand side of a minimal decision rule defines the
largest subset of a decision class. Accordingly, information included in the conditional part of any minimal
decision rule is sufficient for predicting the decision value of all objects satisfying this part of the rule. The
conditional parts of minimal decision rules define the largest object sets relevant for approximating decision
classes. The conditional parts of minimal decision rules can be computed using prime implicants.

To compute the set of all minimal rules w.r.t. to a decision system A ¼ ðU ;A; dÞ, we proceed as follows, for
any object x 2 U:

(1) Construct a decision-relative discernibility function f r
x by considering the row corresponding to object x

in the decision-relative discernibility matrix for A.
(2) Compute all prime implicants of f r

x .
ecision rule u) w is TRUE in A if and only if kukA � kwkA.
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(3) On the basis of the prime implicants, create minimal rules corresponding to x. To do this, consider the
set A(I) of attributes corresponding to propositional variables in I, for each prime implicant I, and con-
struct the rule:
Table
Decisio

Object

1
2
3
4
5
6
7

Table
{L,W}

Object

1, 2
3, 4
5
6
7

^
a2AðIÞ
ða ¼ aðxÞÞ

 !
) d ¼ dðxÞ:
The following example illustrates the idea.

Example 10. Consider the decision system A whose decision table is provided in Table 12. Table 12 contains
the values of conditional attributes of vehicles (L, W, C, standing for Length, Width, and Color, respectively),
and a decision attribute S standing for Small which allows one to decide whether a given vehicle is small.

This system has exactly one decision-relative reduct consisting of attributes L and W. The {L,W}-reduction
of A as shown in Table 13.

Table 13 results in the following set of non-minimal decision rules:
ðL ¼ 7:0Þ ^ ðW ¼ largeÞ ) ðS ¼ noÞ
ðL ¼ 4:0Þ ^ ðW ¼ mediumÞ ) ðS ¼ yesÞ
ðL ¼ 5:0Þ ^ ðW ¼ mediumÞ ) ðS ¼ noÞ
ðL ¼ 4:5Þ ^ ðW ¼ mediumÞ ) ðS ¼ noÞ
ðL ¼ 4:0Þ ^ ðW ¼ largeÞ ) ðS ¼ noÞ:
To obtain the minimal decision rules, we apply the construction provided above, for x 2 {1, . . . , 7}.

(1) The decision-relative discernibility functions f r
1 ; . . . ; f r

7 are constructed on the basis of the reduced dis-
cernibility matrix shown in Table 14:
f r
1 � ðL _ W Þ ^ ðL _ W _ CÞ � ðL _ W Þ

f r
2 � ðL _ W _ CÞ ^ ðL _ W _ CÞ � ðL _ W _ CÞ

f r
3 � ðL _ W Þ ^ ðL _ W _ CÞ ^ ðL _ CÞ ^ L ^ ðW _ CÞ
� ðL ^ W Þ _ ðL ^ CÞ
12
n table considered in Example 10

L W C S

7.0 large green no

7.0 large blue no

4.0 medium green yes

4.0 medium red yes

5.0 medium blue no

4.5 medium green no

4.0 large red no

13
-reduction considered in Example 10

s L W S

7.0 large no

4.0 medium yes

5.0 medium no

4.5 medium no

4.0 large no



Table 14
Reduced decision-relative discernibility matrix from Example 10

3 4

1 L,W L,W,C

2 L,W,C L,W,C

5 L,C L,C

6 L L,C

7 W,C W
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f r
4 � ðL _ W _ CÞ ^ ðL _ W _ CÞ ^ ðL _ CÞ ^ ðL _ CÞ ^ W

� ðL ^ W Þ _ ðC ^ W Þ
f r

5 � ðL _ CÞ ^ ðL _ CÞ � ðL _ CÞ
f r

6 � L ^ ðL _ CÞ � L

f r
7 � ðW _ CÞ ^ W � W :
(2) The following prime implicants are obtained from formulas f r
1 ; . . . ; f r

7 :
f r
1 : L;W

f r
2 : L;W ;C

f r
3 : L ^ W ; L ^ C

f r
4 : L ^ W ;C ^ W

f r
5 : L;C

f r
6 : L

f r
7 : W :
(3) Based on the prime implicants, minimal decision rules are created for objects 1, . . . , 7. For instance, from
prime implicants L and W corresponding to f r

1 , the following minimal decision rules are generated based
on object 1:
ðL ¼ 7:0Þ ) ðS ¼ noÞ
ðW ¼ largeÞ ) ðS ¼ noÞ:
On the basis of object 3 and prime implicants L ^W and L ^ C for f r
3 we obtain the following rules:
ðL ¼ 4:0Þ ^ ðW ¼ mediumÞ ) ðS ¼ yesÞ
ðL ¼ 4:0Þ ^ ðC ¼ greenÞ ) ðS ¼ yesÞ:
Similarly, minimal decision rules can easily be obtained for all other formulas.

In practice, the number of minimal decision rules can be large. One then tries to consider only subsets of
these rules or to drop some conditions from minimal rules.

Remark 11. The main challenge in inducing rules from decision systems lies in determining which attributes
should be included into the conditional parts of the rules. Using the strategy outlined above, the minimal rules
are computed first. Their conditional parts describe the largest object sets with the same generalized decision
value in a given decision system. Although such minimal decision rules can be computed, this approach can
result in a set of rules of unsatisfactory classification quality. Such rules might appear too general or too
specific for classifying new objects. This depends on the data analyzed. Techniques have been developed for
the further tuning of minimal rules.



Table 15
Training data considered in Section 2.5

Object SL VS W AD Distance

1 70 60 rain 3.0 small

2 70 70 sun 5.0 medium

3 50 60 rain 5.0 small

4 50 60 sun 9.0 medium

5 30 15 rain 9.0 large

6 30 10 sun 5.0 large

7 70 60 rain 15.0 large

8 50 40 rain 15.0 large
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2.5. Example: learning of concepts

Given that one has all the techniques described in the previous sections at one’s disposal, an important task
is to induce definitions of concepts from training data, where the representation of the definition is as efficient
and of high quality as possible. These definitions may then be used as classifiers for the induced concepts.

Let us concentrate on the concept of Distance between cars on the road. The rough relation Distance(x,y,z)
denotes the approximate distance between vehicles x and y, where z 2 {small, medium, large, unknown}. Below
we simplify the definition somewhat, and consider Distance(x,z) which denotes that the distance between x

and the vehicle directly preceding x is z.10 Assume that sample training data has been gathered in a decision
table which is provided in Table 15, where11

• SL stands for the ‘‘speed limit’’ on a considered road segment;
• VS stands for the ‘‘vehicle speed’’;
• W stands for ‘‘weather conditions’’;
• AD stands for ‘‘actual distance’’ between a given vehicle and its predecessor on the road.

For the sake of simplicity, we concentrate on generating rules to determine whether the distance between
two objects is small.

On the basis of the training data, one can compute a discernibility matrix. Since we are interested in rules
for the decision small only, it suffices to consider a simplified discernibility matrix with columns labelled by
objects 1 and 3, as these are the only two objects, where the corresponding decision is small. The resulting dis-
cernibility matrix is shown in Table 16.

The discernibility matrix gives rise to the following discernibility functions:
10 In
11 Of
12 In
f1 � ðVS _ W _ ADÞ ^ ðSL _ W _ ADÞ ^ ðSL _ VS _ ADÞ
^ ðSL _ VS _ W _ ADÞ ^ AD ^ ðSL _ VS _ ADÞ
� AD

f3 � ðSL _ VS _ W Þ ^ ðW _ ADÞ ^ ðSL _ VS _ ADÞ
^ ðSL _ VS _ W Þ ^ ðSL _ ADÞ ^ ðVS _ ADÞ
� ðW ^ ADÞ _ ðSL ^ ADÞ _ ðVS ^ ADÞ _ ðSL ^ VS ^ W Þ:
Based on the discernibility functions, one can easily find prime implicants and obtain the following rules for
the decision small12:
fact, here we consider a distance to be small if it causes a dangerous situation, and to be large if the situation is safe.
course, real-life sample data would consist of hundreds or thousands of examples.
practical applications one would have to discretize AD before extracting rules.



13 As

Table 17
Information table considered in Example 12

Customer Bread Milk Jam Beer

1 yes yes no no

2 yes yes yes yes

3 yes yes yes no

4 no yes yes no

Table 16
Discernibility matrix of Table 15 for decision small

Object 1 3

2 VS,W,AD SL,VS,W

4 SL,W,AD W,AD

5 SL,VS,AD SL,VS,AD

6 SL,VS,W,AD SL,VS,W

7 AD SL,AD

8 SL,VS,AD VS,AD

58 Z. Pawlak, A. Skowron / Information Sciences 177 (2007) 41–73
ðAD ¼ 3:0Þ ) ðDistance ¼ smallÞ ð6Þ
ðW ¼ rainÞ ^ ðAD ¼ 5:0Þ ) ðDistance ¼ smallÞ
ðSL ¼ 50Þ ^ ðAD ¼ 5:0Þ ) ðDistance ¼ smallÞ
ðVS ¼ 60Þ ^ ðAD ¼ 5:0Þ ) ðDistance ¼ smallÞ
ðSL ¼ 50Þ ^ ðVS ¼ 60Þ ^ ðW ¼ rainÞ ) ðDistance ¼ smallÞ:
There have been also developed methods for approximation of compound concepts based on rough sets, hier-
archical learning, and ontology approximation (see, e.g., [7,11–13,77,80,79,108,113,115,116]).

2.6. Association rules

In this section [73,75], we show how rough set techniques can be used to extract association rules from
information systems. Association rules playing an important role in the field of data mining, provide associ-
ations among attributes.13 A real number from the interval [0, 1] is assigned to each rule and provides a mea-
sure of the confidence of the rule. The following example will help to illustrate this.

Example 12. Consider the information table provided in Table 17.
Each row in the table represents items bought by a customer. For instance, customer 1 bought bread and

milk, whereas customer 4 bought milk and jam. An association rule that can be extracted from the above table
is: a customer who bought bread also bought milk. This is represented by
ðBread ¼ yesÞ ) ðMilk ¼ yesÞ:

Since all customers who bought bread actually bought milk too, the confidence of this rule is 1. Now consider
the rule
ðBread ¼ yesÞ ^ ðMilk ¼ yesÞ ) ðJam ¼ yesÞ

stating that a customer who bought bread and milk, bought jam as well. Since three customers bought both
bread and milk and two of them bought jam, the confidence of this rule is 2/3.

We now formalize this approach to confidence measures for association rules. Recall that by a template we
mean a conjunction of elementary descriptors, i.e., expressions of the form a = v, where a is an attribute and
v 2 Va. For an information system A and a template T we denote by supportAðT Þ the number of objects
sociation between attributes are also studied using association reducts [117].
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satisfying T. Let A be an information system and T = D1 ^� � �^ Dm be a template. By an association rule gen-

erated from T, we mean any expression of the form
^
Di2P

Di )
^

Dj2Q

Dj;
where {P,Q} is a partition of {D1, . . . ,Dm}. By a confidence of an association rule / �
V

Di2P Di )
V

Dj2QDj we
mean the coefficient
confidenceAð/Þ ¼
supportAðD1 ^ � � � ^ DmÞ

supportA
V

Di2P
Di

 ! :
There are two basic steps used in methods aimed at generating association rules. (Below s and c stand for sup-
port and confidence thresholds w.r.t. a given information system A, respectively.)

(1) Generate as many templates T = D1 ^� � �^ Dk as possible, such that supportAðT ÞP s and
supportAðT ^ DiÞ < s, for any descriptor Di different from all descriptors D1, . . . ,Dk.

(2) Search for a partition {P,Q} of T, for each T generated in the previous step, satisfying
(a) supportAðP Þ <
supportAðT Þ

c .

(b) P has the shortest length among templates satisfying (a).
Every such partition leads to an association rule of the form P) Q whose confidence is greater than c.

The second step, crucial to the process of extracting association rules, can be solved using rough set
methods.

Let T = D1 ^ D2 ^� � �^ Dm be a template such that supportAðT ÞP s. For a given confidence threshold
c 2 [0, 1], the association rule / � P) Q is called c-irreducible if confidenceAðP ) QÞP c and for any asso-
ciation rule / 0 � P 0 ) Q 0 such that P 0 is a sub-formula of P, we have
confidenceAðP 0 ) Q0Þ < c:
The problem of searching for c-irreducible association rules from a given template is equivalent to the problem
of searching for a-reducts in a decision table, for some a 2 [0, 1] (see Section 2.1).

Let A be an information system and T = D1 ^ D2 ^� � �^ Dm be a template. By a characteristic table for T

w.r.t. A, we understand a decision system AjT ¼ ðU ;AjT ; dÞ, where

(1) AjT ¼ faD1
; aD2

; . . . ; aDmg is a set of attributes corresponding to the descriptors of T such that
aDiðuÞ ¼
1; if the object u satisfies Di;

0; otherwise;

�

(2) the decision attribute d determines if the object satisfies a template T, i.e.,
dðuÞ ¼
1; if the object u satisfies T ;

0; otherwise:

�

The following property provides the relationship between association rules and approximations of
reducts.

For a given information system A ¼ ðU ;AÞ, a template T = D1 ^ D2 ^� � �^ Dm and a set of descriptors
P � {D1, . . . ,Dm}, the association rule
^

Di2P

Di )
^

Dj2fD1;...;Dmg�P

Dj;
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is

(1) a 1-irreducible association rule from T if and only if
S

Di2PfaDig is a decision-relative reduct of AjT ;
(2) a c-irreducible association rule from T if and only if

S
Di2PfaDig is an a-reduct of AjT , where
Table
Inform

A

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u16

u17

u18
a ¼ 1� 1

c
� 1

� �
jU j

supportAðT Þ
� 1

� �	
 �
:

The problem of searching for the shortest association rules is NP-hard.
The following example illustrates the main ideas used in the searching method for association rules.

Example 13. Consider the information table A with 18 objects and 9 attributes presented in Table 18.
Consider the template
T ¼ ða1 ¼ 0Þ ^ ða3 ¼ 2Þ ^ ða4 ¼ 1Þ ^ ða6 ¼ 0Þ ^ ða8 ¼ 1Þ: ð7Þ

It is easily seen that supportAðT Þ ¼ 10. The new constructed decision table AjT is presented in Table 19.

The reduced discernibility matrix AjT is provided in Table 20, where for simplicity, the second column
represents, in fact, 10 columns with identical contents, labeled by u2,u3,u4,u8,u9,u10,u13,u15,u16,u17,
respectively. Given the discernibility matrix, one can easily compute the discernibility function AjT for AjT :
fAT ðaD1
; aD2

; aD3
; aD4

; aD5
Þ � ðaD2

_ aD4
_ aD5

Þ ^ ðaD1
_ aD3

_ aD4
Þ ^ ðaD2

_ aD3
_ aD4

Þ
^ ðaD1

_ aD2
_ aD3

_ aD4
Þ ^ ðaD1

_ aD3
_ aD5

Þ ^ ðaD2
_ aD3

_ aD5
Þ

^ ðaD3
_ aD4

_ aD5
Þ ^ ðaD1

_ aD5
Þ;
where Di denotes the ith conjunct of (7).
The discernibility function has the following prime implicants: aD3

^ aD5
, aD4

^ aD5
, aD1

^ aD2
^ aD3

, aD1
^

aD2
^ aD4

, aD1
^ aD2

^ aD5 , aD1
^ aD3

^ aD4
. This gives rise to the reducts: faD3

; aD5g, faD4
; aD5g, faD1

; aD2
; aD3
g,

faD1
; aD2

; aD4
g, faD1

; aD2
; aD5g, faD1

; aD3
; aD4
g. Thus, there are six association rules with confidence 1, i.e.,

1-irreducible:
D3 ^ D5 ) D1 ^ D2 ^ D4

D4 ^ D5 ) D1 ^ D2 ^ D3

D1 ^ D2 ^ D3 ) D4 ^ D5

D1 ^ D2 ^ D4 ) D3 ^ D5

D1 ^ D2 ^ D5 ) D3 ^ D4

D1 ^ D3 ^ D4 ) D2 ^ D5:
18
ation table A considered in Example 13

a1 a2 a3 a4 a5 a6 a7 a8 a9

0 1 1 1 80 2 2 2 3
0 1 2 1 81 0 aa 1 aa

0 2 2 1 82 0 aa 1 aa

0 1 2 1 80 0 aa 1 aa

1 1 2 2 81 1 aa 1 aa

0 2 1 2 81 1 aa 1 aa

1 2 1 2 83 1 aa 1 aa

0 2 2 1 81 0 aa 1 aa

0 1 2 1 82 0 aa 1 aa

0 3 2 1 84 0 aa 1 aa

0 1 3 1 80 0 aa 2 aa

0 2 2 2 82 0 aa 2 aa

0 2 2 1 81 0 aa 1 aa

0 3 2 2 81 2 aa 2 aa

0 4 2 1 82 0 aa 1 aa

0 3 2 1 83 0 aa 1 aa

0 1 2 1 84 0 aa 1 aa

1 2 2 1 82 0 aa 2 aa



Table 19
Decision table AjT considered in Example 13

AjT aD1
(a1 = 0) aD2

(a3 = 2) aD3
(a4 = 1) aD4

(a6 = 0) aD5
(a8 = 1) d

u1 1 0 1 0 0 0
u2 1 1 1 1 1 1
u3 1 1 1 1 1 1
u4 1 1 1 1 1 1
u5 0 1 0 0 1 0
u6 1 0 0 0 1 0
u7 0 0 0 0 1 0
u8 1 1 1 1 1 1
u9 1 1 1 1 1 1
u10 1 1 1 1 1 1
u11 1 0 1 1 0 0
u12 1 0 0 1 0 0
u13 1 1 1 1 1 1
u14 1 1 0 0 0 0
u15 1 1 1 1 1 1
u16 1 1 1 1 1 1
u17 1 1 1 1 1 1
u18 0 1 1 1 0 0

Table 20
Reduced discernibility matrix for AjT from Example 13

MðAjT Þ u2,u3,u4,u8,u9 u10,u13,u15,u16,u17

u1 aD2
; aD4

; aD5

u5 aD1
; aD3

; aD4

u6 aD2
; aD3

; aD4

u7 aD1
; aD2

; aD3
; aD4

u11 aD1
; aD3

; aD5

u12 aD2
; aD3

; aD5

u14 aD3
; aD4

; aD5

u18 aD1
; aD5
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For confidence 0.9, we look for a-reducts for the decision table AjT , where
a¼ 1� 1

0:9
� 1

� �	
18

10
� 1

� �

 0:86:
Hence, we look for a set of descriptors that covers at least d(18 � 10)*ae = d8*0.86e = 7 elements of the dis-
cernibility matrix MðAjTÞ. One can see that the following sets of descriptors: {D1,D2}, {D1,D3}, {D1,D4},
{D1,D5}, {D2,D3}, {D2,D5}, {D3,D4} have nonempty intersections with exactly 7 members of the discernibil-
ity matrix MðAjT Þ. Consequently, the 0.9-irreducible association rules obtained from those sets are the
following:
D1 ^ D2 ) D3 ^ D4 ^ D5

D1 ^ D3 ) D2 ^ D4 ^ D5

D1 ^ D4 ) D2 ^ D3 ^ D5

D1 ^ D5 ) D2 ^ D3 ^ D4

D2 ^ D3 ) D1 ^ D4 ^ D5

D2 ^ D5 ) D1 ^ D3 ^ D4

D3 ^ D4 ) D1 ^ D2 ^ D5:
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The technique illustrated by this example can be applied to find useful dependencies between attributes in
complex application domains. In particular, one could use such dependencies in constructing robust classifiers
conforming to the laws of the underlying reality.
2.7. Approximate Boolean reasoning: discretization of large data sets stored in relational databases

In this section (see [70,71]), we discuss an application of approximate Boolean reasoning to efficient search-
ing for cuts in large data sets stored in relational databases. Searching for relevant cuts is based on simple sta-
tistics which can be efficiently extracted from relational databases. This additional statistical knowledge is
making it possible to perform the searching based on Boolean reasoning much more efficient. It can be shown
that the extracted cuts by using such reasoning are quite close to optimal.

Searching algorithms for optimal partitions of real-valued attributes, defined by cuts, have been intensively
studied. The main goal of such algorithms is to discover cuts which can be used to synthesize decision trees or
decision rules of high quality w.r.t. some quality measures (e.g., quality of classification of new unseen objects,
quality defined by the decision tree height, support and confidence of decision rules).

In general, all those problems are hard from computational point of view (e.g., the searching problem for
minimal and consistent set of cuts is NP-hard). In consequence, numerous heuristics have been developed for
approximate solutions of these problems. These heuristics are based on approximate measures estimating the
quality of extracted cuts. Among such measures discernibility measures are relevant for the rough set
approach.

We outline an approach for solution of a searching problem for optimal partition of real-valued attributes
by cuts, assuming that the large data table is represented in a relational database. In such a case, even the lin-
ear time complexity w.r.t. the number of cuts is not acceptable because of the time needed for one step. The
critical factor for time complexity of algorithms solving that problem is the number of SQL queries of the form

SELECT COUNT FROM aTable WHERE (anAttribute BETWEEN value1 AND value2) AND (addi-

tional condition)

necessary to construct partitions of real-valued attribute sets. We assume the answer time for such queries does
not depend on the interval length.14 Using a straightforward approach to optimal partition selection (w.r.t. a
given measure), the number of necessary queries is of order O(N), where N is the number of preassumed cuts.
By introducing some optimization measures, it is possible to reduce the size of searching space. Moreover,
using only O(logN) simple queries, suffices to construct a partition very close to optimal.

Let A ¼ ðU ;A; dÞ be a decision system with real-valued condition attributes. Any cut (a,c), where a 2 A

and c is a real number, defines two disjoint sets given by
14 Th
ULða; cÞ ¼ fx 2 U : aðxÞ 6 cg;
URða; cÞ ¼ fx 2 U : aðxÞ > cg:
If both UL(a,c) and UR(a,c) are non-empty, then c is called a cut on attribute a. The cut (a,c) discerns a pair of
objects x, y if either a(x) < c 6 a(y) or a(y) < c 6 a(x).

Let A ¼ ðU ;A; dÞ be a decision system with real-valued condition attributes and decision classes Xi, for
i = 1, . . . , r(d). A quality of a cut (a,c), denoted by W(a,c), is defined by
W ða; cÞ ¼
XrðdÞ
i 6¼j

Liða; cÞ � Rjða; cÞ ¼
XrðdÞ
i¼1

Liða; cÞ
 !

�
XrðdÞ
i¼1

Riða; cÞ
 !

�
XrðdÞ
i¼1

Liða; cÞ � Riða; cÞ; ð8Þ
where Li(a,c) = card(Xi \ UL(a,c)) and Ri(a,c) = card(Xi \ UR(a,c)), for i = 1, . . . , r(d).
In the sequel, we will be interested in finding cuts maximizing the function W(a,c).
The following definition will be useful. Let Ca ¼ fða; c1Þ; . . . ; ða; cN Þg be a set of cuts on attribute a, over a

decision table A and assume c1 < c2 � � � < cN. By a median of the ith decision class, denoted by Median(i), we
is assumption is satisfied in some existing database management systems.
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mean the minimal index j for which the cut ða; cjÞ 2 Ca minimizes the value jLi(a,cj) � Ri(a,cj)j,15 where Li and
Ri are defined before.

One can use only O(r(d)*logN) SQL queries to determine the medians of decision classes by using the well-
known binary search algorithm.

Then one can show that the quality function W aðiÞ ¼
def W ða; ciÞ, for i = 1, . . . ,N, is increasing in {1, . . . ,min}

and decreasing in {max, . . . ,N}, where min and max are defined by
15 Th
min ¼ min
16i6N

MedianðiÞ;

max ¼ max
16i6N

MedianðiÞ:
In consequence, the search space for maximum of W(a,ci) is reduced to i 2 [min,max].
Now, one can apply the divide and conquer strategy to determine the best cut, given by cBest 2 [cmin,cmax],

w.r.t. the chosen quality function. First, we divide the interval containing all possible cuts into k intervals.
Using some heuristics, one then predict the interval which most probably contains the best cut. This process
is recursively applied to that interval, until the considered interval consists of one cut. The problem which
remains to be solved is how to define such approximate measures which could help us to predict the suitable
interval.

Let us consider a simple probabilistic model. Let (a,cL), (a,cR) be two cuts such that cL < cR and i =
1, . . . , r(d). For any cut (a,c) satisfying cL < c < cR, we assume that x1, . . . ,xr(d), where xi = card(Xi \ UL(a,c) \
UR(a,c)) are independent random variables with uniform distribution over sets {0, . . . ,M1}, . . . , {0, . . . ,Mr(d)},
respectively, that
Mi ¼ Miða; cL; cRÞ ¼ cardðX i \ ULða; cRÞ \ U Rða; cLÞÞ:

Under these assumptions the following fact holds. For any cut c 2 [cL,cR], the mean E(W(a,c)) of quality
W(a,c), is given by
EðW ða; cÞÞ ¼ W ða; cLÞ þ W ða; cRÞ þ conflictðða; cLÞ; ða; cRÞÞ
2

; ð9Þ
where conflictðða; cLÞ; ða; cRÞÞ ¼
P

i6¼jMi �Mj.
In addition, the standard deviation of W(a,c) is given by
D2ðW ða; cÞÞ ¼
Xn

i¼1

MiðMi þ 2Þ
12

X
j6¼i

ðRjða; cRÞ � Ljða; cLÞÞ
 !2

2
4

3
5: ð10Þ
Formulas (9) and (10) can be used to construct a predicting measure for the quality of the interval [cL,cR]:
Evalð½cL; cR�; aÞ ¼ EðW ða; cÞÞ þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðW ða; cÞÞ;

q
ð11Þ
where the real parameter a 2 [0,1] can be tuned in a learning process.
To determine the value Eval([cL,cR],a), we need to compute the numbers
L1ða; cLÞ; . . . ; LrðdÞða; cLÞ;M1; . . . ;MrðdÞ;R1ða; cRÞ; . . . ;RrðdÞða; cRÞ:
This requires O(r(d)) SQL queries of the form

SELECT COUNT

FROM DecTable

WHERE (attribute_a BETWEEN value_1 AND value_2) AND (dec = i).

Hence, the number of queries required for running this algorithm is
OðrðdÞklogkNÞ:
e minimization means that jLi(a,cj) � Ri(a,cj)j = min16k6NjLi(a,ck) � Ri(a,ck)j.
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In practice, we set k = 3, since the function f(k) = r(d)k logkN over positive integers is taking minimum for
k = 3.

Numerous experiments on different data sets have shown that the proposed solution allows one to find a
cut which is very close to the optimal one. For more details the reader is referred to the literature (see
[70,71]).
3. Conflicts

Knowledge discovery in databases considered in the previous sections reduces to searching for functional
dependencies in the data set. In this section, we will discuss another kind of relationship in the data – not
dependencies, but conflicts. Formally, the conflict relation can be seen as a negation (not necessarily classical)
of indiscernibility relation which was used as a basis of rough set theory. Thus indiscernibility and conflict are
closely related from logical point of view. It turns out that the conflict relation can be used to the conflict anal-
ysis study. Conflict analysis and resolution play an important role in business, governmental, political and
lawsuits disputes, labor-management negotiations, military operations, and others. To this end many mathe-
matical formal models of conflict situations have been proposed and studied, e.g., [16,19,20,27,49,50,52,
61,66,81,90,129]. Various mathematical tools, e.g., graph theory, topology, differential equations have been
used for that purpose. Needless to say, game theory can also be considered as a mathematical model of conflict
situations. In fact, there is no ‘‘universal’’ theory of conflicts yet, and mathematical models of conflict situa-
tions are strongly domain dependent. In this paper, we are going to present yet another approach to conflict
analysis – based on some ideas of rough set theory – along the lines of [90]. The considered model is simple
enough for easy computer implementation and seems to be adequate for many real life applications.
3.1. Basic concepts of conflict theory

In this section, we give definitions of basic concepts of the proposed approach in lines with [90].
Let us assume that we are given a finite, non-empty set Ag called the universe. Elements of Ag will be

referred to as agents. Let a voting function v :Ag! {�1,0,1} be given, assigning to every agent one of the num-
ber �1,0 or 1, which represents his opinion, view, voting result, etc. about some discussed issue, and meaning
against, neutral and favorable, respectively.

Voting functions correspond to situations. Hence, let us assume there is given a set of situations U and a set
of voting functions Voting_Fun as well as a conflict function Conflict : U ! Voting Fun. Any pair S = (s,v),
where s 2 U and v = Conflict(s) will be called a conflict situation.

In order to express relations between agents from Ag, defined by a given voting function v we define three
basic binary relations in Ag2 : conflict, neutrality, and alliance.

To this end, we first define the following auxiliary function:
/vðag; ag0Þ ¼
1; if vðagÞvðag0Þ ¼ 1 or ag ¼ ag0;

0; if vðagÞvðag0Þ ¼ 0 and ag 6¼ ag0;

�1; if vðagÞvðag0Þ ¼ �1:

8><
>: ð12Þ
This means that if /v(ag,ag 0) = 1, then agents ag and ag 0 have the same opinion about issue v (are allied on v);
/v(ag,ag 0) = 0 means that at least one of agents ag or ag 0 has neutral approach to issue v (is neutral on v), and
/v(ag,ag 0) = �1, means that both agents have different opinions about issue v (are in conflict on v).

In what follows we will define three basic binary relations Rþv , R0
v ;R

�
v � Ag2 called alliance, neutrality and

conflict relations, respectively, and defined by
Rþv ðag; ag0Þ iff /vðag; ag0Þ ¼ 1

R0
vðag; ag0Þ iff /vðag; ag0Þ ¼ 0

R�v ðag; ag0Þ iff /vðag; ag0Þ ¼ �1:

ð13Þ
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It is easily seen that the alliance relation has the following properties:
16 Fo
Rþv ðag; agÞ
Rþv ðag; ag0Þ implies Rþv ðag0; agÞ
Rþv ðag; ag0Þ and Rþv ðag0; ag00Þ implies Rþv ðag; ag00Þ;

ð14Þ
i.e., Rþv is an equivalence relation. Each equivalence class of alliance relation will be called a coalition with re-
spect to v. Let us note that the last condition in (14) can be expressed as ‘‘a friend of my friend is my friend’’.

For the conflict relation we have the following properties:
not R�v ðag; agÞ
R�v ðag; ag0Þ implies R�v ðag0; agÞ
R�v ðag; ag0Þ and R�v ðag0; ag00Þ implies Rþv ðag; ag00Þ
R�v ðag; ag0Þ and Rþv ðag0; ag00Þ implies R�v ðag; ag00Þ:

ð15Þ
The last two conditions in (15) refer to well known sayings ‘‘an enemy of my enemy is my friend’’ and ‘‘a friend
of my enemy is my enemy’’.

For the neutrality relation we have:
not R0
vðag; agÞ

R0
vðag; ag0Þ ¼ R0

vðag0; agÞ:
ð16Þ
Let us observe that there are no coalitions in the conflict and neutrality relations.
We have Rþv [ R0

v [ R�v ¼ Ag2 because for any pair of agents (ag,ag 0) 2 Ag2, Uv(ag,ag 0) = 1 or Uv(ag,
ag 0) = 0 or Uv(ag,ag 0) = �1, so ðag; ag0Þ 2 Rþv or ðag; ag0Þ 2 R�v or ðag; ag0Þ 2 R�v . All the three relations Rþv ,
R0

v , R�v are pairwise disjoint, i.e., every pair of objects (ag,ag 0) belongs to exactly one of relation (is in conflict,
is allied or is neutral).

With every conflict situation S = (s,v) we will associate a conflict graph
GS ¼ ðRþv ;R0
v ;R

�
v Þ: ð17Þ
An example of a conflict graph is shown in Fig. 2. Solid lines denote conflicts, whereas dotted line – alliance.16

Clearly, B,C, and D form a coalition.
A conflict degree Con(S) of the conflict situation S = (s,v) is defined by
ConðSÞ ¼
P
fðag;ag0Þ: /vðag;ag0Þ¼�1gj/vðag; ag0Þj

2dn
2
e � ðn� dn

2
eÞ ; ð18Þ
where n = card(Ag).
One can consider a more general case of a conflict function viz., a mapping of the form Conflict:

U ! Voting Funk, where k is a positive integer. Then, a conflict situation is any pair S = (s, (v1, . . . ,vk)), where
(v1, . . . ,vk) = Conflict(s), and the conflict degree in S can be defined by
ConðSÞ ¼
Pk

i¼1ConðSiÞ
k

; ð19Þ
where Si = (s,vi) for i = 1, . . . ,k. Each function vi is called a voting function on the ith issue in s.

3.2. An example

In this section, we will illustrate the ideas presented above by means of a very simple tutorial example using
concepts presented previously. We consider a conflict situation S = (s,v), where the domain ag of the voting func-
tion v is defined by Ag = {(1,A), . . . , (240,A), (241, B), . . . , (280, B), (281,C), . . . , (340,C), (341, D), . . . , (500,D)}
and v(1,A) =� � �= v(200,A) = 1, v(201,A) =� � �= v(230,A) = 0, v(231,A) =� � �= v(240,A) = �1, v(241,B) =� � �=
r simplicity, the neutrality is not shown explicitly in the graph.



Fig. 2. Exemplary conflict graph.
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v(255,B) = 1, v(256, B) =� � �= v(280,B) = �1, v(281,C) =� � �= v(300, C) = 0, v(301, C) =� � �= v(340,C) = �1,
v(341,D) =� � �= v(365, D) = 1, v(366, D) =� � �= v(400, D) = 0, v(401, D) =� � �= v(500, D) = �1.

This conflict situation is presented in Table 21, where 1 and �1 are abbreviated by ‘+’, ‘�’, respectively.
The maximal coalitions in this conflict situation are v�1({1}) and v�1({�1}).

If one would like to keep only party name, then Table 21 can be represented as it is shown in Table 22. This
table presents a decision table in which the only condition attribute is Party, whereas the decision attribute is
Voting. The table describes voting results in a parliament containing 500 members grouped in four political
parties denoted A,B,C and D. Suppose the parliament discusses certain issue (e.g., membership of the country
in European Union) and the voting result is presented in column Voting, where +, 0 and � denoted yes,
abstention and no, respectively. The column support contains the number of voters for each option.
Table 21
Conflict situation with agents (Member, Party) and the voting function Voting

(Member, Party) Voting

(1, A) +
. . . . . .
(200, A) +
(201, A) 0
. . . . . .

(230, A) 0
(231, A) �
. . . . . .

(240, A) �
(241, B) +
. . . . . .

(255, B) +
(256, B) �
. . . . . .

(280, B) �
(281, C) 0
. . . . . .
(300, C) 0
(301, C) �
. . . . . .
(340, C) �
(341, D) +
. . . . . .

(365, D) +
(366, D) 0
. . . . . .

(400, D) 0
(401, D) �
. . . . . .

(500, D) �



Table 23
The certainty and coverage factors for Table 22

Fact Strength Certainty Coverage

1 0.40 0.83 0.83
2 0.06 0.13 0.35
3 0.02 0.04 0.06
4 0.03 0.36 0.06
5 0.05 0.63 0.14
6 0.04 0.33 0.23
7 0.08 0.67 0.23
8 0.05 0.16 0.10
9 0.07 0.22 0.41
10 0.20 0.63 0.57

Table 22
Decision table with one condition attribute Party and the decision Voting

Fact Party Voting Support

1 A + 200
2 A 0 30
3 A � 10
4 B + 15
5 B � 25
6 C 0 20
7 C � 40
8 D + 25
9 D 0 35
10 D � 100
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The strength, the certainty and the coverage factors for Table 22 are given in Table 23. The certainty and
coverage factors have now a natural interpretation for the considered conflict situation.

From the certainty factors we can conclude, for example, that

• 83.3% of party A voted yes;
• 12.5% of party A abstained;
• 4.2% of party A voted no.

From the coverage factors we can get, for example, the following explanation of voting results:

• 83.3% yes votes came from party A;
• 6.3% yes votes came from party B;
• 10.4% yes votes came from party C.

3.3. Conflicts and rough sets

There are strong relationships between the approach to conflicts presented in Section 3.1 and the rough set
approach. In this section, we discuss examples of such relationships. The approach presented in this section
seems to be very promising for solving problems related to conflict resolution and negotiations (see, e.g.,
[49,50,52,129]).

The application of rough sets can bring new results in the area related to conflict resolution and negotia-
tions between agents because this makes it possible to introduce approximate reasoning about vague concepts
into the area.
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Now, we would like to outline this possibility.
First, let us observe that any conflict situation S = (s,V), where V = (v1, . . . ,vk) and each vi is defined on the

set of agents Ag = {ag1, . . . ,agn}, can be treated as an information system AðSÞ with the set of objects Ag and
the set of attributes {v1, . . . ,vk}. The discernibility degree between agents ag and ag 0 in S can be defined by
17 To
corresp
discern
18 Fo
discSðag; ag0Þ ¼
P
fi: /vi

ðag;ag0Þ¼�1gj/vi
ðag; ag0Þj

k
; ð20Þ
where ag,ag 0 2 Ag and Æ denotes the absolute value.
Now, one can consider reducts of AðSÞ relative to the discernibility degrees defined by discS. For example,

one can consider agents ag,ag
0

as discernible if
discSðag; ag0ÞP tr;
where tr is a given threshold.17 Any reduct R � V of S is a minimal set of voting functions preserving on R to a
degree at least tr the discernibility in voting between any two agents which are discernible on V to degree at
least tr. All voting functions from V–R are dispensable with respect to such a preservation of discernibility
degrees between agents.

Reducts of the information system AT ðSÞ with the universe of objects equal to {v1, . . . ,vk} and attributes
defined by agents and voting functions by ag(v) = v(ag), for ag 2 Ag and v 2 V, can be considered in an anal-
ogous way. The discernibility degree between voting functions can be defined, e.g., by
discðv; v0Þ ¼ jConðSvÞ � ConðSv0 Þj; ð21Þ

and it can be used to measure the difference between voting functions v and v 0.

Any reduct R of AT ðSÞ is a minimal set of agents preserving on R to a degree at least tr the discernibility
degree between any two voting functions which are discernible on Ag to degree at least tr.

In our next example, we extend the model of conflict by adding a set A of (condition) attributes used to
describe the situations in terms of values of attributes from A. The set of given situations is denoted by U.
In this way, we have defined an information system (U,A). Let us assume that there is also given a set of agents
Ag. Each agent ag 2 Ag has access to a subset Aag � A of condition attributes. Moreover, we assume that
A = ¨ag2AgAag. We assume that there is also defined a decision attribute d on U such that d(s) is a conflict
situation S = (s,V), where V = (v1, . . . ,vk). Observe that S = (s,V) can be represented by a matrix
½viðagjÞ�i¼1;...;n;j¼1;...;k;
where vi(agj) is the result of voting by jth agent on the ith issue. Such a matrix is a compound decision18 cor-
responding to s. For the constructed decision system (U,A,d) one can use, e.g., the function given by (19) to
measure conflict degrees of situations from U. Let us mention one more kind of reducts which have a natural
interpretation in conflict analysis. Such reducts preserve the discernibility between any two A-discernible sit-
uations such that the absolute value of the difference between corresponding to them conflict degrees is at least
equal tr, where tr is a given threshold.

The described decision table can also be used in conflict resolution. We would like to illustrate this possi-
bility. First, let us recall some notation. For B � A, we denote by InfB(s) the B-signature of the situation s, i.e.,
the set {(a,a(s)) :a 2 A}. Let INF(B) = {InfB(s) : s 2 U}. Let us also assume, that for each agent ag 2 Ag there is
given a similarity relation sag � INF(Aag) · INF(Aag). In terms of these similarity relations one can consider
the problem of conflict resolution relative to a given threshold tr in a given situation s described by InfA(s).
This is a searching problem for a situation s 0, if such a situation exists, satisfying the following conditions:

(1) InfAðs0ÞjAag 2 sagðInfAagðsÞÞ, where sagðInfAagðsÞÞ is the tolerance class of InfAagðsÞ with respect to sag and
InfA(s 0)jAag denotes the restriction of InfA(s 0) to Aag.
compute such reducts one can follow the method presented in [114], assuming that any entry of the discernibility matrix
onding to (ag,ag0) with disc(ag,ag0) < tr is empty and the remaining entries are families of all minimal subsets of V on which the
ibility between (ag,ag0) is at least equal to tr [21].

r references to other papers on compound decision the reader is referred, e.g., to [6,8].
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(2) InfA(s 0) satisfies given local constraints (e.g., specifying coexistence of local situations [21,96,123]) and
given global constraints (e.g., specifying quality of global situations [21]).

(3) The conflict degree in the conflict situation d(s 0),19 measured by means of the chosen conflict measure,20

is at most tr.

In searching for conflict resolution one can apply methods based on Boolean reasoning (see Section 2 and
[21]).

We have proposed changes in the acceptability by agents to be expressed by similarity relations. Observe
that in real-life applications, these similarities are more compound than it was suggested above, i.e., they
are not defined directly by sensory concepts describing situations. However, they are often specified by high
level concepts (see, e.g., [49,91,116]). These high level concepts can be vague, and they are linked with the sen-
sory concepts describing situations by means of a hierarchy of other vague concepts. Approximation of vague
concepts in the hierarchy and dependencies between them (see [91]) makes it possible to approximate the sim-
ilarity relations. This allows us to develop searching methods for acceptable value changes of sensory concepts
preserving similarities (constraints) specified over high level vague concepts. One can also introduce some costs
of changes of local situations by agents and search for new situations accessible under minimal or sub-minimal
costs.

Using the rough set approach to conflict resolution and negotiations between agents, one can also consider
more advanced models in which actions and plans performed by agents or their teams are involved in nego-
tiations and conflict resolution. This is one of many interesting directions for further research study of the rela-
tionships between rough sets and conflicts.

4. Conclusions

We have discussed the methodology based on discernibility and Boolean reasoning for efficient computa-
tion of different entities including reducts and decision rules. We have also outlined a promising research direc-
tion based on approximate Boolean reasoning. Exemplary applications of the developed methods used for
solving problems in pattern recognition, machine learning, and data mining are included.

We have also presented an approach to conflict analysis based on rough sets. This approach is based on
properties of (in)discernibility.
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[75] H.S. Nguyen, D. Śle�zak, Approximate reducts and association rules – correspondence and complexity results, in: Skowron et al.

[110], pp. 137–145.
[76] S.H. Nguyen, Regularity analysis and its applications in data mining, in: Polkowski et al. [98], pp. 289–378.
[77] S.H. Nguyen, J. Bazan, A. Skowron, H.S. Nguyen, Layered learning for concept synthesis, in: Peters and Skowron [94], pp. 187–208.
[78] S.H. Nguyen, H.S. Nguyen, Some efficient algorithms for rough set methods, in: Sixth International Conference on Information

Processing and Management of Uncertainty on Knowledge Based Systems IPMU’1996, Granada, Spain, vol. III, 1996, pp. 1451–
1456.

[79] T.T. Nguyen, Eliciting domain knowledge in handwritten digit recognition, in: Pal et al. [82], pp. 762–767.
[80] T.T. Nguyen, A. Skowron, Rough set approach to domain knowledge approximation, in: Wang et al. [131], pp. 221–228.
[81] H. Nurmi, J. Kacprzyk, M. Fedrizzi, Theory and methodology: Probabilistic, fuzzy and rough concepts in social choice, European

Journal of Operational Research 95 (1996) 264–277.

http://www.doc.ic.ac.uk/~rak/papers/conflictresolution.pdf


72 Z. Pawlak, A. Skowron / Information Sciences 177 (2007) 41–73
[82] S.K. Pal, S. Bandoyopadhay, S. Biswas (Eds.), First International Conference on Pattern Recognition and Machine Intelligence
(PReMI’05) December 18–22, 2005, Indian Statistical Institute, Kolkata, Lecture Notes in Computer Science, vol. 3776, Springer-
Verlag, Heidelberg, 2005.

[83] S.K. Pal, B. Dasgupta, P. Mitra, Rough self organizing map, Applied Intelligence 21 (2004) 289–299.
[84] S.K. Pal, P. Mitra, Case generation using rough sets with fuzzy representation, IEEE Transactions on Knowledge and Data

Engineering 16 (3) (2004) 292–300.
[85] S.K. Pal, P. Mitra, Pattern Recognition Algorithms for Data Mining, CRC Press, Boca Raton, FL, 2004.
[86] S.K. Pal, W. Pedrycz, A. Skowron, R. Swiniarski (Eds.), Special Volume: Rough-neuro Computing, Neurocomputing, vol. 36, 2001.
[87] S.K. Pal, L. Polkowski, A. Skowron (Eds.), Rough-Neural Computing: Techniques for Computing with Words, Cognitive

Technologies, Springer-Verlag, Heidelberg, 2004.
[88] S.K. Pal, A. Skowron (Eds.), Rough Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag, Singapore, 1999.
[89] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem

Solving, vol. 9, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
[90] Z. Pawlak, An inquiry into anatomy of conflicts, Journal of Information Sciences 109 (1998) 65–78.
[91] Z. Pawlak, A. Skowron, Rough sets: some extensions, Information Sciences, in press, doi:10.1016/j.ins.2006.06.006.
[92] Z. Pawlak, A. Skowron, Rudiments of rough sets, Information Sciences, in press, doi:10.1016/j.ins.2006.06.003.
[93] Z. Pawlak, L. Polkowski, A. Skowron, Rough sets and rough logic: a KDD perspective, in: Polkowski et al. [98], pp. 583–646.
[94] J.F. Peters, A. Skowron (Eds.), Transactions on Rough Sets I: Journal Subline, Lecture Notes in Computer Science, vol. 3100,

Springer, Heidelberg, 2004.
[95] J.F. Peters, A. Skowron, D. Dubois, J.W. Grzymała-Busse, M. Inuiguchi, L. Polkowski (Eds.), Transactions on Rough Sets II.

Rough Sets and Fuzzy Sets: Journal Subline, Lecture Notes in Computer Science, vol. 3135, Springer, Heidelberg, 2004.
[96] J.F. Peters, A. Skowron, Z. Suraj, An application of rough set methods in control design, Fundamenta Informaticae 43 (1–4) (2000)

269–290.
[97] J.F. Peters, Z. Suraj, S. Shan, S. Ramanna, W. Pedrycz, N.J. Pizzi, Classification of meteorological volumetric radar data using

rough set methods, Pattern Recognition Letters 24 (6) (2003) 911–920.
[98] L. Polkowski, T.Y. Lin, S. Tsumoto (Eds.), Rough Set Methods and Applications: New Developments in Knowledge Discovery in

Information Systems, Studies in Fuzziness and Soft Computing, vol. 56, Springer-Verlag/Physica-Verlag, Heidelberg, 2000.
[99] L. Polkowski, A. Skowron (Eds.), Rough Sets in Knowledge Discovery 1: Methodology and Applications, Studies in Fuzziness and

Soft Computing, vol. 18, Physica-Verlag, Heidelberg, 1998.
[100] L. Polkowski, A. Skowron (Eds.), Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, Studies

in Fuzziness and Soft Computing, vol. 19, Physica-Verlag, Heidelberg, 1998.
[101] M. Quafafou, M. Boussouf, Generalized rough sets based feature selection, Intelligent Data Analysis 4 (1) (2000) 3–17.
[102] A. Roy, S.K. Pal, Fuzzy discretization of feature space for a rough set classifier, Pattern Recognition Letters 24 (6) (2003) 895–902.
[103] H. Sever, V.V. Raghavan, T.D. Johnsten, The status of research on rough sets for knowledge discovery in databases, in: S.

Sivasundaram (Ed.), Proceedings of the Second Internationall Conference on Nonlinear Problems in Aviation and Aerospace
(ICNPAA’1998), April 29–May 1, 1998, Daytona Beach, FL, vol. 2, Embry-Riddle Aeronautical University, Daytona Beach, FL,
1998, pp. 673–680.

[104] N. Shan, W. Ziarko, An incremental learning algorithm for constructing decision rules, in: W. Ziarko (Ed.), Rough Sets, Fuzzy Sets
and Knowledge Discovery, Springer Verlag, Berlin, 1994, pp. 326–334.

[105] A. Skowron, Synthesis of adaptive decision systems from experimental data, in: A. Aamodt, J. Komorowski (Eds.), Fifth
Scandinavian Conference on Artificial Intelligence SCAI’1995, Frontiers in Artificial Intelligence and Applications, vol. 28, IOS
Press, Trondheim, Norway, 1995, pp. 220–238.

[106] A. Skowron, Rough sets in KDD – plenary talk, in: Z. Shi, B. Faltings, M. Musen (Eds.), 16th World Computer Congress
(IFIP’2000): Proceedings of Conference on Intelligent Information Processing (IIP’2000), Publishing House of Electronic Industry,
Beijing, 2000, pp. 1–14.

[107] A. Skowron, Rough sets and boolean reasoning, in: W. Pedrycz (Ed.), Granular Computing: An Emerging Paradigm, Studies in
Fuzziness and Soft Computing, vol. 70, Springer-Verlag/Physica-Verlag, Heidelberg, 2001, pp. 95–124.

[108] A. Skowron, Approximate reasoning in distributed environments, in: N. Zhong, J. Liu (Eds.), Intelligent Technologies for
Information Analysis, Springer, Heidelberg, 2004, pp. 433–474.

[109] A. Skowron, H.S. Nguyen, Boolean reasoning scheme with some applications in data mining, in: Proceedings of the Third European
Conference on Principles and Practice of Knowledge Discovery in Databases, Lecture Notes in Computer Science, vol. 1704,
Springer Verlag, Berlin, 1999, pp. 107–115.

[110] A. Skowron, S. Ohsuga, N. Zhong (Eds.), Proceedings of the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining,
and Granular-Soft Computing (RSFDGrC’99), Yamaguchi, November 9–11, 1999, Lecture Notes in Artificial Intelligence, vol.
1711, Springer-Verlag, Heidelbergy, 1999.

[111] A. Skowron, S.K. Pal (Eds.), Special volume: Rough sets, pattern recognition and data mining, Pattern Recognition Letters, vol. 24
(6), 2003.

[112] A. Skowron, Z. Pawlak, J. Komorowski, L. Polkowski, A rough set perspective on data and knowledge, in: W. Kloesgen, J. _Zytkow
(Eds.), Handbook of KDD, Oxford University Press, Oxford, 2002, pp. 134–149.

[113] A. Skowron, J. Peters, Rough sets: trends and challenges, in: Wang et al. [131], pp. 25–34 (plenary talk).

http://dx.doi.org/10.1016/j.ins.2006.06.006
http://dx.doi.org/10.1016/j.ins.2006.06.003


Z. Pawlak, A. Skowron / Information Sciences 177 (2007) 41–73 73
[114] A. Skowron, C. Rauszer, The discernibility matrices and functions in information systems, in: R. Słowiński (Ed.), Intelligent
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