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Abstract. We consider association of decision trees and flow graphs,
resulting in a new method of decision rule generation from data, and
giving a better insight in data structure. The introduced flow graphs can
also give a new look at the conception of probability. We show that in
some cases the conception of probability can be eliminated and replaced
by a study of deterministic flows in a flow network.

1 Introduction

Decision tree is a very useful concept in computer science [7,9], decision science
[2], probability [11] and others.

In this paper, we propose to associate with a decision tree another kind of
graph, called flow graph, which gives better insight in data structure than the
corresponding decision tree and reveals very interesting novel properties of de-
cision trees, not visible directly from the tree. They can be used in many ways
and, particularly, enable an efficient generation of decision rules from data.

Besides, the introduced flow graphs can also be used as a new look at the
conception of probability. �Lukasiewicz [6] claimed that probability defined by
Laplace [5] and used today, is not a well defined concept and he proposed to base
probability calculus on logical ground, which gives to probability sound mathe-
matical foundations. Similar ideas have been proposed independently many years
after �Lukasiewicz by Carnap [3], Adams [1], Reichebach [10] and others.

We go a little bit farther and intend to show that in some cases the conception
of probability can be eliminated and replaced by a study of deterministic flows
in a flow network. The proposed approach gives a new method of decision rule
generation from data, and permits to study data structure in a new way.

The paper is a continuation of some author’s ideas presented in [8].

2 An Example

First, we explain our basic ideas by means of a simple example. Consider the set
U of play blocks having various shapes (e.g., square, round), sizes (e.g., large,
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small) and colors (e.g., black, white). Assume that the relation between different
play blocks is given by a decision tree as shown in Fig.1. We will use standard
terminology concerning decision trees, like root, branches, paths, etc.

Fig. 1. Decision tree showing relations between different play blocks

The decision tree reveals statistical relationship between various types of play
blocks. For example, the decision tree shows that there are 70% round and 30%
square blocks in the set and among round blocks there are 70% large and 30%
small blocks, whereas square blocks consist of 80% large and 20% small blocks.
Moreover, the set of round and large blocks consists of 20% white and 80% black
blocks, etc. In other words, the decision tree can be understood as a statistical
data structure representation of the set U .

With every decision tree we can associate uniquely another graph, called a
flow graph. The flow graph is an oriented graph obtained from a decision tree
by removing the root and merging nodes labeled by the same “attribute”, e.g.
small, large, etc., as shown in Fig. 2.

The resulting flow graph is given in Fig. 3.
The flow graph reveals the relational structure among objects of the universe.

For example, if the branch (square, small) is labeled by the number 0.06 it
means that there are 6% objects in the universe which are square and small -
the number 0.06 is computed from the data given in the decision tree.

Each path in the flow graph determines an “if ..., then...” decision rule. E.g.,
the path (square, large, white) determines a decision rule “if square and large,
then white”. In our approach, the number (percentage) associated with every
branch can be interpreted as a flow intensity through the branch and used to
study properties of decision rules. We can also interpret the flow graph in terms
of probability, but we will refrain from this interpretation here and we claim that
deterministic interpretation is more natural than the probabilistic one.
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Fig. 2. Merging nodes labeled by the same “attribute”

In order to solve our problem we will analyze the structure of the flow graph
in detail in the next section.

3 Flow Graphs – Basic Concepts

3.1 Flow Graphs

In this section we recall after [8] the fundamental concept of the proposed ap-
proach – a flow graph.

Flow graph is a directed, acyclic, finite graph G = (N, B, σ), where N is a set
of nodes, B ⊆ N × N is a set of directed branches and σ : B → 〈0, 1〉 is a flow
function of (x, y) such that σ(x, y) is a strength of (x, y). The strength of the
branch expresses simply the percentage of a total flow through the branch.

Input of a node x ∈ N is the set I(x) = {y ∈ N : (y, x) ∈ B}; output of a node
x ∈ N is defined as O(x) = {y ∈ N : (x, y) ∈ B}.

We will also need the concept of input and output of a graph G, defined,
respectively, as: I(G) = {x ∈ N : I(x) = ∅}, O(G) = {x ∈ N : O(x) = ∅}.

Inputs and outputs of G are external nodes of G; other nodes are internal
nodes of G.

If a flow graph G has only one input and every internal node of G has one
input then such a flow graph with be called a decision tree.

Input of the decision tree will be referred to as root, whereas outputs - as
leaves of the decision tree.

With every node x of a flow graph G we associate its inflow and outflow
defined as

σ+(x) =
∑

y∈I(x)

σ(y, x) (1)



4 Z. Pawlak

Fig. 3. Flow graph resulting from the decision tree

and

σ−(x) =
∑

y∈O(x)

σ(y, x). (2)

For any internal node x, we have σ+(x) = σ−(x) = σ(x), where σ(x) is a
throughflow of x. Moreover, let

σ+(G) =
∑

x∈I(G)

σ−(x) (3)

and

σ−(G) =
∑

x∈O(G)

σ+(x). (4)

Let us assume that σ+(G) = 1, then σ+(G) = σ−(G) = σ(G).
If we invert direction of all branches in G, then the resulting graph G =

(N, B′, σ′) will be called an inverted graph of G. Of course, the inverted graph
G′ is also a flow graph and all inputs and outputs of G become inputs and
outputs of G′ , respectively.

3.2 Certainty and Coverage Factors

With every branch (x, y) of a flow graph G we associate the certainty and the
coverage factors.

The certainty and the coverage of (x, y) are defined as

cer(x, y) =
σ(x, y)
σ(x)

, (5)
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and

cer(x, y) =
σ(x, y)
σ(y)

. (6)

respectively.
Evidently, cer(x, y) = cov(y, x), where (x, y) ∈ B and (y, x) ∈ B′.
Certainty and coverage factors for the flow graph shown in Fig. 3 are presented

in Fig. 4.

Fig. 4. Certainty and coverage factors

For every branch (x, y) of a decision tree cov(x, y) = 1.
Below, some properties, which are immediate consequences of definitions given

above, are presented:
∑

y∈O(x)

cer(x, y) = 1, (7)

∑

x∈I(y)

cov(x, y) = 1, (8)

σ(x) =
∑

y∈O(x)

cer(x, y)σ(x) =
∑

y∈O(x)

σ(x, y), (9)

σ(y) =
∑

x∈I(y)

cov(x, y)σ(y) =
∑

x∈I(y)

σ(x, y), (10)

cer(x, y) =
cov(x, y)σ(y)

σ(x)
, (11)

cov(x, y) =
cer(x, y)σ(x)

σ(y)
. (12)
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Obviously, the above properties have a probabilistic flavor, e.g., equations (9)
and (10) have a form of total probability theorem, whereas formulas (11) and
(12) are Bayes’ rules. However, these properties in our approach are interpreted
in a deterministic way and they describe flow distribution among branches in
the network.

3.3 Paths, Connections and Fusion

A (directed) path from x to y, x �= y in G is a sequence of nodes x1, . . . , xn such
that x1 = x, xn = y and (xi, xi1) ∈ B for every i, 1 ≤ i ≤ n − 1. A path from x
to y is denoted by [x . . . y] and n − 1 is called length of the path.

A flow graph is linear if all paths from node x to node y have the same length,
for every pair of nodes x, y.

A set of nodes of a linear flow graph is called a k-layer if it consists of the set
of all nodes of this graph linked by a path of the length k with some input node.

The set of all inputs of a flow graph will be called the input layer of the flow
graph, whereas the set of all outputs of the flow graph is the output layer of the
flow graph. For any input node x and output node y of a linear graph the length
of the path [x . . . y] is the same. The layers different from the input layer and
the output layer will be referred to as hidden layers.

In what follows we will interpret layers as attributes in an information system;
input and hidden layers are interpreted as condition attributes, whereas output
layer is interpreted as decision attribute.

The certainty of the path [x1 . . . xn] is defined as

cer[x1 . . . xn] =
n−1∏

i=1

cer(xi, xi+1), (13)

the coverage of the path [x1 . . . xn] is

cov[x1 . . . xn] =
n−1∏

i=1

cov(xi, xi+1), (14)

and the strength of the path [x . . . y] is

σ[x . . . y] = σ(x)cer[x . . . y] = σ(y)cov[x . . . y]. (15)

The set of all paths from x to y(x �= y) in G, denoted by 〈x, y〉, will be called
a connection from x to y in G. In other words, connection 〈x, y〉 is a sub-graph
of G determined by nodes x and y (see Fig. 5).

The certainty of the connection 〈x, y〉 is

cer〈x, y〉 =
∑

[x...y]∈〈x,y〉
cer[x . . . y], (16)

the coverage of the connection 〈x, y〉 is

cov〈x, y〉 =
∑

[x...y]∈〈x,y〉
cov[x . . . y], (17)



Decision Trees and Flow Graphs 7

and the strength of the connection 〈x, y〉 is

σ〈x, y〉 =
∑

[x...y]∈〈x,y〉
σ[x . . . y] = σ(x)cer〈x, y〉 = σ(y)cov〈x, y〉. (18)

If we substitute simultaneously for every sub-graph 〈x, y〉 of a given flow graph
G, where x is an input node and y an output node of G, a single branch (x, y)
such that σ(x, y) = σ〈x, y〉, then in the resulting graph G′, called the fusion of
G, we have cer(x, y) = cer〈x, y〉, cov(x, y) = cov〈x, y〉 and σ(G) = σ(G′).

Fig. 5. Connection between x0 and z0

Thus fusion of a flow graph can be understood as a simplification of the graph
and can be used to get a general picture of relationships in the flow graph (see
Fig. 6).

3.4 Dependencies in Flow Graphs

Let x and y be nodes in a flow graph G = (N, B, σ), such that (x, y) ∈ B.
Nodes x and y are independent in G if

σ(x, y) = σ(x)σ(y). (19)

From (19) we get

σ(x, y)
σ(x)

= cer(x, y) = σ(y), (20)

and

σ(x, y)
σ(y)

= cov(x, y) = σ(x). (21)

If

cer(x, y) > σ(y), (22)
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or

cov(x, y) > σ(x), (23)

x and y are positively dependent in G.
Similarly, if

cer(x, y) < σ(y), (24)

or

cov(x, y) < σ(x), (25)

then x and y are negatively dependent in G.
Relations of independency and dependencies are symmetric ones, and are

analogous to those used in statistics.
For every branch (x, y) ∈ B we define a dependency (correlation) factor η(x, y)

defined as

η(x, y) =
cer(x, y) − σ(y)
cer(x, y) + σ(y)

=
cov(x, y) − σ(x)
cov(x, y) + σ(x)

. (26)

Obviously, −1 ≤ η(x, y) ≤ 1; η(x, y) = 0 if and only if cer(x, y) = σ(y) and
cov(x, y) = σ(x); η(x, y) = −1 if and only if cer(x, y) = cov(x, y) = 0 ; η(x, y) =
1 if and only if σ(y) = σ(x) = 0. Evidently, if η(x, y) = 0, then x and y are

Fig. 6. Fusion of the flow graph

independent, if −1 ≤ η(x, y) < 0, then x and y are negatively dependent, and
if 0 < η(x, y) ≤ 1, then x and y are positively dependent (see Fig. 7). Thus,
the dependency factor expresses a degree of dependency, and can be seen as a
counterpart of correlation coefficient used in statistics.
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4 Flow Graphs and Decision Algorithms

Flow graphs can be interpreted as decision algorithms. The most general case of
this correspondence has been considered in [4].

Let us assume that the set of nodes of a flow graph is interpreted as a set of
logical formulas. The formulas are understood as propositional functions and if
x is a formula, then σ(x) is to be interpreted as a truth value of the formula. Let
us observe that the truth values are numbers from the closed interval < 0, 1 >,
i.e., 0 ≤ σ(x) ≤ 1.

These truth values can be also interpreted as probabilities. Thus σ(x) can be
understood as flow distribution ratio (percentage), truth value, or probability.
We will stick to the first interpretation.

With every branch (x, y) we associate a decision rule x → y, read as “if x,
then y”; x will be referred to as condition, whereas y – decision of the rule. Such
a rule is characterized by three numbers, σ(x, y), cer(x, y) and cov(x, y).

Thus, every path [x1 . . . xn] determines a sequence of decision rules x1 → x2,
x2 → x3, . . . , xn−1 → xn.

From previous considerations it follows that this sequence of decision rules can
be interpreted as a single decision rule x1x2 . . . xn−1 → xn, in short x∗ → xn,
where x∗ = x1x2 . . . xn−1, characterized by

cer(x∗, xn) =
σ(x∗, xn)

σ(x∗)
, (27)

cov(x∗, xn) =
σ(x∗, xn)

σ(xn)
, (28)

and

σ(x∗, xn) = σ(x∗)cer(xn−1, xn), σ(x∗) = σ[x1, . . . , xn−1]. (29)

Fig. 7. Dependencies in the flow graph
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The set of all decision rules xi1xi2 . . . xin−1 → xin associated with all paths
[xin . . . xin ], such that xi1 and xin are input and output of the flow graph, re-
spectively, will be called a decision algorithm induced by the flow graph.

The decision algorithm induced by the flow graph shown in Fig. 4 is shown in
Table 1. The corresponding flow graph, and the dependency between conditions

Table 1. The decision algorithm induced by the flow graph

certainty coverage strength
if square and small, then black 0.50 0.08 0.03
if square and small, then white 0.50 0.05 0.03
if square and large, then black 0.29 0.19 0.07
if square and large, then white 0.71 0.27 0.17
if round and small, then black 0.57 0.32 0.12
if round and small, then white 0.43 0.14 0.09
if round and large, then black 0.31 0.41 0.15
if round and large, then white 0.69 0.54 0.34

and decision in each decision rule are shown in Fig. 8.
It is interesting to compare diagrams shown in Fig. 1 and Fig. 8. Both dia-

grams show internal structure (relations) between various groups of play blocks.
The decision tree reveals simple statistical structure of the relationship, whereas
the flow graph gives much deeper insight into the relationship, and enables simple
decision rule generation.

Fig. 8. Flow graph for the decision algorithm
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5 Conclusions

Decision tree is an important concept, widely used in computer science, knowl-
edge discovery from data, decision analysis, probability and others. In this paper,
with every decision tree we associate another kind of graph, called a flow graph,
which reveals deeper insight in data structure associated with a decision tree.
This leads to novel methods of decision rule generation from data, and gives bet-
ter look into decision process analysis. Besides, the proposed approach throws
new light on the conception of probability.
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